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Abstract: In mirrored aperture synthesis (MAS), the antenna array determines the rank of the
transformation matrix connecting the cross-correlations to the cosine visibilities. However, the
transformation matrix is rank-deficient, resulting in errors in the reconstructed brightness temperature
(BT) image. In this paper, the signal propagations for the vertically polarized wave and horizontally
polarized wave are analyzed. Then, the optimization model of the antenna array based on dual-
polarization is established. The optimal array configurations are presented, with the corresponding
transformation matrices being almost column full ranks. Simulation results demonstrate the validity
of the proposed optimization model.

Keywords: microwave remote sensing; mirrored aperture synthesis (MAS); dual-polarization;
optimal array configuration

1. Introduction

Microwaves can penetrate clouds and do not rely on the sun as the source of illu-
mination. These features make microwave radiometry usable in all time and almost all
weather conditions [1]. Therefore, microwave radiometry can provide information that
visible and infrared detection cannot [2]. However, requirements of applications related to
the acquisition of mesoscale and sub-mesoscale information cannot be met due to the exist-
ing microwave load capability [3]. With climate change and the intensification of human
activities, high-resolution microwave remote sensing of the earth is urgently needed.

At present, two methods are available to improve the spatial resolution of microwave
radiation measurement. The first method is to increase the antenna size, and the second is
to use synthetic aperture technology [4]. According to the experience of existing systems
such as SMAP [5] and GeoSTAR [6], a real aperture radiometer is limited by the size of the
large aperture antenna, while an aperture synthesis (AS) radiometer presents high system
complexity [7,8]. The principle of mirrored aperture synthesis (MAS) was proposed to
reduce system complexity compared with AS [9–11]. Experimental results implied the
validity of MAS [12].

The design of the antenna array is a key problem in radiometric imaging [13,14]. In
MAS, the antenna array collects multiple signals, including the direct signals from the
observation scene and the reflected signals from the reflectors. Therefore, there are multiple
cosine visibilities related to cross-correlation. Unlike the visibilities for AS, obtained by
antenna pairs [15,16], the cosine visibilities for MAS are acquired by solving the transforma-
tion equation. If the transformation matrix is rank-deficient, the solved cosine visibilities
will exhibit errors and have an impact on the accuracy of the reconstructed BT image for
earth observations. [17,18].

A maximum-rank array (MRA) with the maximum rank in all possible arrays has
been proposed [19,20]. The reconstructed brightness temperature (BT) image of MRA is
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much better than those of other arrays. However, the transformation matrix of MRA is still
rank-deficient, even a full array [21].

In this paper, the polarization of an electromagnetic wave is analyzed for one-dimensional
MAS (1-D MAS) and two-dimensional MAS (2-D MAS). The optimization models of the
antenna array based on the vertically polarized wave and horizontally polarized wave are
established. Optimal arrays for 1-D MAS and 2-D MAS are presented. Simulations are
performed to demonstrate the validity of the optimization models.

2. Polarization of Electromagnetic Wave

Regarding MAS, the phase of the reflected signal is different for different polarizations.
Figure 1 depicts the plane wave incident at an oblique angle on the surface of an ideal
conductor [1]. Metal plates with good electrical conductivity can be used as reflective
surfaces with microwaves and millimeter waves. The vectors

→
e i and

→
e r represent the

propagation directions of incident and reflected waves, respectively. An electromagnetic
wave incident at any angle on the interface of different media is called an oblique incidence.
Additionally, the plane formed by the wave vector of the incident wave and the normal
vector of the surface is called the incident plane in the case of oblique incidence. In
horizontal polarization, the electric field of the incident wave is parallel to the incident
plane, and the magnetic field is perpendicular to the incident plane. In vertical polarization,
the electric field is perpendicular to the incident plane, and the magnetic field is parallel to
the incident plane.
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Figure 1. Oblique incidence for horizontally and vertically polarized waves. (a) The horizontally
polarized wave. (b) The vertically polarized wave.

Figure 2 illustrates the signal propagation of 1-D MAS. Each antenna receives two
types of signal. bd(t) and br(t) indicate the signal from the observation scene and the signal
reflected by the reflector, respectively. The process can be interpreted as one mirrored an-
tenna and one real antenna that receive the signal from the observation scene, respectively.

b(t) = bd(t) + br(t) (1)

where bd(t) is

bd(t) =
∫ π

2

0
β(θ; t) cos[2π fct− krd(θ)]dθ (2)

where β(θ; t) denotes the baseband signal per steradian, fc represents the center frequency,
and rd(θ) indicates the path length from the observation scene at θ to the antenna.
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For vertical polarization, the phase of the reflected signal reverses 180 degrees.

br(t) = −
∫ π

2

0
β(θ; t) cos[2π fct− krr(θ)]dθ (3)

Concerning horizontal polarization, the phase of the reflected signal does not change.

br(t) =
∫ π

2

0
β(θ; t) cos[2π fct− krr(θ)]dθ (4)

Figure 3 shows the signal propagation of 2-D MAS. Each antenna receives four types
of signal bd(t), b1(t), b2(t), and bo(t) indicate the signal directly from the source, the
reflected signal with one reflection from reflector 1, the reflected signal with one reflection
from reflector 2, and the reflected signal with double reflection from the two reflectors,
respectively. The process can be interpreted as three mirrored antennas and one real
antenna that receive the signal from the observation scene, respectively.

b(t) = bd(t) + b1(t) + b2(t) + bo(t) (5)

where bd(t) is

bd(t) =
∫ π

2

0

∫ π
2

0
β(θ, φ; t) · cos[2π fct− krd(θ, φ)] sin θdθdφ (6)
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The case of the single reflection has been analyzed in the signal propagation of 1-
D MAS. Concerning a double reflection, regardless of whether the wave is vertically or
horizontally polarized, bo(t) is

bo(t) = −
∫ π

2

0

∫ π
2

0
β(θ, φ; t) · cos[2π fct− kro(θ, φ)] sin θdθdφ (7)

where ro(θ, φ) represents the path length from the observation scene at (θ, φ) to the antenna.

3. Array Optimization for 1-D MAS

A 1-D MAS consisting of an antenna array and a reflector is illustrated in Figure 4. The
cross-correlation of the two antennas is expressed in (8) when the polarization directions of
the receiving antennas i and j are along the y-axis (y- polarization).

R1
ij =< bi(t)bj(t) >= Cv(xj − xi)− Cv(xj + xi) (8)

where xi and xj represent the normalized coordinates with respect to wavelength (λ), and
Cv(u) refers to the 1-D cosine visibility.

Cv(u) = 2
∫ π

2

0
TΩ(θ) cos(2πu sin θ)dθ (9)
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When the polarization directions of the receiving antennas are along the x-axis (x-
polarization), the cross-correlation is expressed as

R2
ij = Cv(xj − xi) + Cv(xj + xi) (10)

The transformation equation relating the cosine visibilities with the cross-correlations is

R = P ·Cv (11)

where P = [P12, P13, . . . , Pij, . . . , P(S−1)S]
T indicates the transformation matrix with each

row Pij = [Pij(1), Pij(2), . . . , Pij(m), . . . , Pij(M)].
Regarding the antenna with x-polarization, the element P1

ij(m) in the transformation

matrix P1 is calculated by

P1
ij(m) =


1, m =

∣∣xi − xj
∣∣

1, m =
∣∣xi + xj

∣∣
0, otherwise

(12)
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Concerning the antenna with y-polarization, the element P2
ij(m) in the transformation

matrix P2 can be calculated by

P2
ij(m) =


1, m =

∣∣xi − xj
∣∣

−1, m =
∣∣xi + xj

∣∣
0, otherwise

(13)

In terms of any pair of antennas with x-polarization or y-polarization, a transformation
equation similar to (11) can be obtained. The set of cross-correlations based on the dual-
polarization is combined as [

R1

R2

]
=

[
P1

P2

]
Cv (14)

where R1 and R2 represent the cross-correlation vectors with x-polarization and with
y-polarization, respectively.

For a given number of antennas, the optimization array design of 1-D MAS seeks
a maximum rank array without a missing baseline. Considering dual-polarization, the
following model is obtained as {

min N, s.t. xN = H
s.t. Rank(P) = 2H − 1

(15)

where N denotes the number of antennas, and H is the array size.
The antenna array based on dual-polarization is called the dual-polarization array

(DPA). The simulated annealing (SA) optimization algorithm is a heuristic solution to
simulate the annealing process under physical conditions. Additionally, the metropolis
criterion is introduced to avoid the solution converging to the local optimal value of the
objective function in a certain solution space. The SA optimization algorithm has been
applied to many optimization problems, especially discrete solution space optimization
problems, due to its easy implementation and stability. Therefore, this algorithm can be
adopted to solve the antenna array optimization problem of 1-D MAS. The SA optimization
algorithm is detailed as follows. (1) The SA optimization algorithm is used to construct an
initial antenna array at random for a given number of antennas N and a given array size
H; (2) if the initial antenna array does not satisfy (15), then the position of an antenna is
randomly adjusted; if the initial antenna array satisfies (15), N is decreased, and procedure
(1) is repeated until SA optimization algorithm cannot produce an acceptable solution.
Some DPAs are listed in Table 1.

Table 1. Optimal array configurations for 1-D MAS.

N The Coordinates of the Antennas

5 1.5 4.5 6.5 7.5 8.5
6 2 6 9 10 11 12
7 2 6 10 13 14 15 16
8 2.5 7.5 12.5 16.5 17.5 18.5 19.5 20.5
9 2.5 7.5 12.5 17.5 21.5 22.5 23.5 24.5 25.5

10 3 9 15 21 26 27 28 29 30 31
11 3.5 10.5 17.5 24.5 27.5 31.5 32.5 33.5 35.5 36.5 37.5
12 3.5 10.5 17.5 24.5 31.5 37.5 38.5 39.5 40.5 41.5 42.5 43.5
13 3.5 10.5 17.5 23.5 30.5 37.5 43.5 44.5 45.5 46.5 47.5 48.5 49.5
14 3.5, 10.5, 17.5, 24.5, 31.5, 38.5, 44.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5

Table 2 provides the maximum baselines and ranks of 1-D DPAs. Compared with
1-D maximum rank arrays (MRAs) [7], 1-D DPAs can achieve longer maximum baselines
with the same number of antennas. The transformation matrix becomes a column full rank
matrix by combining the cross-correlations with different polarizations.
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Table 2. Performance comparison.

N
MRA DPA

Maximum Baseline Rank Maximum Baseline Rank

5 11 9 16 16
6 17 15 23 23
7 22 21 31 31
8 29 27 40 40
9 37 35 50 50
10 46 45 61 61
11 57 55 74 74
12 64 63 86 86
13 72 71 98 98
14 80 79 112 112

Simulations were conducted to demonstrate the validity of 1-D DPA. A test scene
composed of two close point sources and extended sources is utilized in the simulations.
Two types of arrays, 1-D MRA and 1-D DPA, are employed for comparison. The number of
antennas for two arrays is the same (14). The minimum spacing between antenna elements
is λ.

The reconstructed BT images are displayed in Figure 5. Figure 5a presents the result
for a 1-D MRA with the array configuration {4.5, 6.5, 13.5, 14.5, 19.5, 23.5, 24.5, 30.5, 35.5,
36.5, 37.5, 38.5, 39.5, 40.5}. Figure 5b exhibits the result for a 1-D DPA with the array
configuration {3.5, 10.5, 17.5, 24.5, 31.5, 38.5, 44.5, 50.5, 51.5, 52.5, 53.5, 54.5, 55.5, 56.5}. The
reconstructed BT image of 1-D DPA is much better than that of 1-D MRA, and the two-point
sources are distinguished in Figure 5b but not in Figure 5a. Compared with Figure 5b, there
are large errors at image boundaries in Figure 5a, owing to the errors between the solved
cosine visibilities and the ideal cosine visibilities. With the same number of antennas,
the maximum baselines corresponding to the 1-D MRA and 1-D DPA are 80 and 112,
respectively, and the ranks are 79 and 112, respectively. Therefore, the 1-D DPA with a
full-rank transformation matrix has a larger maximum baseline than the 1-D MRA with a
rank-defificient transformation matrix, contributing to providing higher image quality and
spatial resolution.
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4. Array Optimization for 2-D MAS

A 2-D MAS consisting of two reflectors and an antenna array is illustrated in Figure 6.
The cross-correlation for the receiving antennas i and j with y-polarization is
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R1
ij = Cv(xj − xi, yj − yi) + Cv(xj − xi, yj + yi)− Cv(xj + xi, yj − yi)− Cv(xj + xi, yj + yi) (16)

where (xi, yi) and (xj, yj) are the normalized coordinates, Cv(u, v) denotes the 2-D cosine
visibility, and (u, v) are the spatial frequency determined by the spacing between the
antenna positions.

Cv(u, v) = 4
∫ π

2

0

∫ π
2

0
TΩ(θ, φ) cos(u sin θ cos φ) cos(v sin θ sin φ) sin θdθdφ (17)
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The cross-correlation for the receiving antennas i and j with x-polarization is

R2
ij = Cv(xj − xi, yj − yi)− Cv(xj − xi, yj + yi) + Cv(xj + xi, yj − yi)− Cv(xj + xi, yj + yi) (18)

The transformation equation connecting the cosine visibilities to the cross-correlations is

R = P ·Cv (19)

where P = [P12, P13, · · · , Pij, · · · , P(S−1)S]
T indicates the transformation matrix with

Pij = [Pij(0, 1), Pij(0, 2), · · · , Pij(m, n), · · · , Pij(M, N)].
The element Pij(m, n) for the antenna with x-polarization can be calculated by

P1
ij(m, n) =


1, (m, n) = (

∣∣xi − xj
∣∣, ∣∣yi − yj

∣∣ )
−1, (m, n) = (

∣∣xi − xj
∣∣, ∣∣yi + yj

∣∣ )
1, (m, n) = (

∣∣xi + xj
∣∣, ∣∣yi − yj

∣∣ )
−1, (m, n) = (

∣∣xi + xj
∣∣, ∣∣yi + yj

∣∣)
0, otherwise

(20)

The element Pij(m, n) for the antenna with y-polarization can be calculated by

P2
ij(m, n) =


1, (m, n) = (

∣∣xi − xj
∣∣, ∣∣yi − yj

∣∣ )
1, (m, n) = (

∣∣xi − xj
∣∣, ∣∣yi + yj

∣∣ )
−1, (m, n) = (

∣∣xi + xj
∣∣, ∣∣yi − yj

∣∣ )
−1, (m, n) = (

∣∣xi + xj
∣∣, ∣∣yi + yj

∣∣ )
0, otherwise

(21)
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Concerning any pair of antennas with x-polarization or y-polarization, a transforma-
tion equation similar to (19) can be obtained. The set of cross-correlations based on the
dual-polarization is combined as [

R1

R2

]
=

[
P1

P2

]
Cv (22)

The maximum rank of the antenna array based on the dual-polarization should be
determined first, to obtain DPAs for 2-D MAS. Considering a full array with the array size
of Hx × Hy, the coordinates of the antennas are divided into three cases depending on
whether the antenna coordinates are odd or even multiples of 0.5:

(1) The coordinates of each antenna along two dimensions are even multiples of 0.5.
(2) The coordinates of each antenna along two dimensions are odd multiples of 0.5.
(3) The coordinate of each antenna along one dimension is an even multiple of 0.5, and

along the other dimension is an odd multiple of 0.5.

1 The first case

The ranks of the full arrays when the coordinates of each antenna along two dimen-
sions are even multiples of 0.5 are presented in Table 3. The maximum rank is expressed as

Rank(PHx Hy) = 4Hx Hy + 2Hx + 2Hy − 7 (23)

where Hx ≥ 4 and Hy ≥ 3, or Hx = 3 and Hy ≥ 4 both hold.

Table 3. The Ranks of the First Case.

The size of the array 3 × 3 3 × 4 3 × 5 3 × 6
The rank of P 40 55 69 83

The size of the array 4 × 3 4 × 4 4 × 5 4 × 6
The rank of P 55 73 91 109

The size of the array 5 × 3 5 × 4 5 × 5 5 × 6
The rank of P 69 91 113 135

The size of the array 6 × 3 6 × 4 6 × 5 6 × 6
The rank of P 83 109 135 161

2 The second case

The ranks of the full arrays when the coordinates of each antenna along two dimen-
sions are odd multiples of 0.5 are provided in Table 4. The maximum rank is calculated by

Rank(PHx Hy) = 4Hx Hy + 2Hx + 2Hy − 5 (24)

where Hx ≥ 2.5 and Hy ≥ 2.5 both hold.

Table 4. The Ranks of the Second Case.

The size of the array 2.5 × 2.5 2.5 × 3.5 2.5 × 4.5 2.5 × 5.5
The rank of P 30 42 54 66

The size of the array 3.5 × 2.5 3.5 × 3.5 3.5 × 4.5 3.5 × 5.5
The rank of P 42 58 74 90

The size of the array 4.5 × 2.5 4.5 × 3.5 4.5 × 4.5 4.5 × 5.5
The rank of P 54 74 94 114

The size of the array 5.5 × 2.5 5.5 × 3.5 5.5 × 4.5 5.5 × 5.5
The rank of P 66 90 114 138

3 The third case

The ranks of the full arrays when the coordinate of each antenna along one dimension
is an even multiple of 0.5, and along the other dimension is an odd multiple of 0.5, are
listed in Table 5. The maximum rank is obtained by

Rank(PHx Hy) = 4Hx Hy + 2Hx + 2Hy − 5 (25)
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where Hx ≥ 3.5 and Hy ≥ 3, Hx = 2.5 and Hy ≥ 4, Hy ≥ 3.5 and Hx ≥ 3, or Hy = 2.5 and
Hx ≥ 4 both hold.

Table 5. The Ranks of the Third Case.

The size of the array 2.5 × 3 2.5 × 4 2.5 × 5 2.5 × 6
The rank of P 35 48 60 72

The size of the array 3.5 × 3 3.5 × 4 3.5 × 5 3.5 × 6
The rank of P 49 66 82 98

The size of the array 4.5 × 3 4.5 × 4 4.5 × 5 4.5 × 6
The rank of P 63 84 104 124

The size of the array 5.5 × 3 5.5×4 5.5 × 5 5.5 × 6
The rank of P 77 102 126 150

The relationship between the rank and the array size in the second case is the same as
in the third case. Therefore, the following model is obtained.

min N
s.t. xN = Hx
s.t. yN = Hy

s.t. Rank(P) =



4Hx Hy + 2Hx + 2Hy − 7,
when Hx and Hy are both even multiples of 0.5.
4Hx Hy + 2Hx + 2Hy − 5,
when Hx is an odd multiple of 0.5
and Hy is an even or odd multiple of 0.5,
or Hx is an odd multiple of 0.5
and Hy is an even or odd multiple of 0.5.

(26)

where xN and yN denote the farthest distances from the antenna to the two reflectors, respectively.
The simulated annealing optimization algorithm is also used to search for a 2-D DPA.

Some 2-D DPAs are exhibited in Figure 7.
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Figure 7. Irregular 2-D DPAs.

The array configurations in Figure 8 seem irregular. This type of array configuration
can be found in lots of numerical simulations.
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where Nx  and Ny  denote the farthest distances from the antenna to the two reflec-
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Figure 8. Regular 2-D DPAs.

There is a similar structure among the four arrays presented in Figure 9. Two arms
form an L shape on the edge of the array, and the rest of the antenna are distributed
randomly in other positions. These arrays are called L-shaped arrays, owing to their
L-shaped outline.
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Figure 9. L-shaped array.

Simulations were performed to confirm the validity of the 2-D DPAs. In the test scene,
four-point sources were used to test the spatial resolution, while the step extended source
was used to simulate land, ocean, and cold sky. Two types of arrays, a rectangular array and
an L-shaped array, were employed for comparison, as demonstrated in Figure 10a,c. The
rectangular array is a 2-D MRA [15]. A test scene composed of two close point sources and
extended sources was adopted in the simulations. The reconstructed images are displayed
in Figure 11. Figure 11a,b present the result for a rectangular array and for an L-shaped
array, both with the same antenna number of 22. The minimum spacing between antenna
elements is λ.
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Figure 10. Two types of arrays. (a) Rectangular array. (b) UV sampling plane of rectangular array.
(c) L-shaped array. (d) UV sampling plane of L-shaped array.
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Figure 11. Simulation results. (a) The rectangular array. (b) The L-shaped array.

The reconstructed BT image of the 2-D DPA is much better than that of the 2-D MRA.
The two-point sources are distinguished in Figure 11b, but not in Figure 11a. With the same
number of antennas, the maximum baselines corresponding to the 2-D DPA are 15 along
two dimensions, and the maximum baselines corresponding to the 2-D MRA are 12 and 13
along two dimensions. The ranks are 250 and 145, respectively. Therefore, the 2-D DPA
with an almost full-rank transformation matrix has a larger maximum baseline than the
2-D MRA with a rank-defificient transformation matrix, providing higher image quality
and spatial resolution.
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To compare the performances of the two arrays, the root-mean-square error (RMSE) of
the BT is calculated as

RMSE =
‖Tr − Tidael‖√

k
(27)

where k is the number of pixels, Tr is reconstructed by solved cosine visibilities, and Tideal
is reconstructed by ideal cosine visibilities.

The parameters of the arrays are listed in Table 6. The RMSEs of the BT images for
the rectangular array and the L-shaped array are 5.3 K and 1.39 K, respectively. This result
demonstrates that the L-shaped array has higher performance.

Table 6. Parameter comparison of the arrays.

The Shape of
the Array N RMSE (K) The Size of P The Rank of P

Rectangular 22 5.3 231 × 178 145
L-shaped 22 1.39 462 × 252 250

5. Conclusions

In this paper, first, the antenna arrays of 1-D MAS based on dual-polarization are
presented. Then, a model based on dual-polarization is established for 2-D MAS, and a
regular array called an L-shaped array is designed. Simulations are conducted to verify the
DPAs. The results imply that the system with a DPA can achieve superior performance in
image quality and spatial resolution, compared with the system with an MRA. Moreover,
the transformation matrices of DPAs are almost full-rank column matrices. Therefore, the
accuracy of the reconstructed brightness temperature image is improved.
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