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Abstract

:

Calculating rainfall erosivity, which is the capacity of rainfall to dislodge soil particles and cause erosion, requires the measurement of the rainfall kinetic energy (KE). Direct measurement of KE has its own challenges, owing to the high cost and complexity of the measuring instruments involved. Consequently, the KE is often approximated using empirical equations derived from rainfall intensity (Ir) inputs in the absence of such instruments. However, the KE–Ir equations strongly depend on local climate patterns and measurement methods. Therefore, this study aims to compare and evaluate the efficacy of 27 KE–Ir equations with observed data. Based on a re-analysis, we also propose an exponential KE–Ir equation for the entire Korean site, and the spatial distribution of its parameter in the equation is also discussed. In this investigation, we used an optical disdrometer (OTT Parsivel2) to gather data in Sangju City (Korea) between June 2020 and December 2021. The outputs of this study are shown as follows: (1) The statistically most accurate estimates of KE expenditure and KE content in Sangju City are obtained using power-law equations given by Sanchez-Moreno et al. and exponential equations published by Lee and Won, respectively. (2) The suggested KE–Ir equation applied to the entire Korean site exhibits a comparable general correlation with the observed data. The parameter maps indicate a high variance in geography.
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1. Introduction


In nature, soil provides a variety of essential functions that aid in the maintenance of an environment that is resistant to drought [1], floods [2], and wildfires [3]. The increasing extreme rainfall events due to climate change [4] and their harmful effects are emerging issues in contemporary civilizations, which are strongly connected with surface soil erosion [5]. Water-induced soil erosion causes significant environmental and agricultural harm during severe precipitation events [6]. Therefore, it is necessary to understand the soil erosion processes.



Soil erosion by water involves separation by rainfall impact [7] and the movement of soil particles by surface runoff agents [8]. Splash erosion, the first step in water-induced soil loss, has been acknowledged to be a crucial stage in initiating surface soil erosion [9]. The relationship between rainfall intensity (Ir) and rainsplash erosion under field conditions has been comprehensively investigated [10]. Raindrops release kinetic energy (KE) when they strike the ground, forcing soil particles to become airborne and triggering rainsplash erosion [11]. The KE of rainfall includes two distinct types: kinetic energy expenditure (KEexp; J m−2h−1) and kinetic energy content (KEcon; J m−2mm−1). The former is the rate at which the KE is spent per unit area over a certain period, and the latter is defined as the KE per unit area per unit depth. These two types of KE are connected by Ir in the following formulation: KEcon = KEexp/Ir.



Owing to the expense and complexity of the procedure, direct measurements of KE have been terminated since the first attempt by Madden et al. [12]. Consequently, empirical equations are a replacement for estimating KE from Ir, which is easy to collect. Precise measurement of the mass and velocity of raindrops is required for accurate determination of the KE, and there are many ways to measure raindrop properties. Early research from the 1900s sought to measure raindrop size and velocity using manual measuring methods [13]. Since 1960, acoustic/piezoelectric sensors have been employed to measure the size of raindrops, allowing for automated data collection and a significant reduction in labor. With the introduction of technical and electrical advancements, laser-based equipments (i.e., optical disdrometers) can monitor the features of raindrops more accurately than their predecessors because of their non-invasive approaches for measuring rain droplets. These approaches do not affect drop behavior during measurement and effectively fix the drop fragmentation and drop splatter issues encountered with conventional measurement techniques [14]. According to Angulo-Martínez et al., optical disdrometers can precisely estimate the velocity of raindrops [15]. Thus, there have been numerous studies conducted around the world that have utilized optical instruments to assess the characteristics of raindrops, such as in Korea [16,17], Spain [15], the Philippines [18], Slovenia [19], and Cape Verde [20].



Rainfall KE and momentum are reliable factors for characterizing the erosivity of raindrops; however, their robust functions in soil erosion models are controversial among researchers. Rose [21] and Paringit and Nadaoka [22] noted that rainfall momentum significantly surpasses KE when estimating soil detachment. However, Al-Durrah and Bradford preferred the use of the KE to predict the amount of topsoil erosion [23]. In addition, Van Dijk et al. hypothesized that KE represents the amount of energy available for separation and transmission via rain-splash [24]. Morgan determined that the optimum expression for rainfall-induced erosivity is KE [25]. Consequently, numerous water-induced erosion models, such as the USLE (Universal Soil Loss Equation [26]), SLEMSA [27], WaTEM/SEDEM [28], and SSEM (Surface Soil Erosion Model [29]), prefer to use the KE as a crucial parameter to describe the erosivity of raindrops. Rainfall KE has also been found in a few studies that evaluated the triggering threshold for landslides [30,31]. Rainfall KE still indicates the entire energy available for separation and transfer by rainsplash despite these complexities; therefore, understanding the link between KE and Ir is essential for predicting erosion potential.



In previous studies, the KE–Ir equations took various mathematical forms: polynomial, power-law, exponential, linear, and logarithmic models [16,17,32,33]. Serial et al. discovered a novel equation for rainfall kinetic power using artificial precipitation consisting of droplets with the same volume and diameter as natural rainfall [34].



Our various literature assessments have revealed that academics have postulated over 27 distinct KE–Ir connections globally. According to Angulo-Martínez et al., rainfall KE and Ir are dependent on local climate patterns [15]; thus, experimentally determined KE–Ir equations may only apply to places where the data were collected or to regions with comparable geographical and climatic settings. Before implementation, the use of any KE–Ir equation in a climatically distinct setting from that for which it was designed must be justified [19]. For this reason, our objectives are to determine the equation that best describes our regional features of KE rainfall. This study was conducted to critically evaluate rainfall KE estimations derived from these equations and compare them with reliable measurements of rainfall KE obtained in Sangju City, Korea. We used an optical disdrometer (OTT Parsivel2) to gather data in Sangju City (Korea) between June 2020 and December 2021. As a result, 37 rainfall events were selected for this investigation. We also propose a KE–Ir equation for the entire Korean site based on re-analysis.



To the best of our knowledge, this work is the first report of KE comparison that accounts for 27 equations in Korea, as well as finds a new Korean KE–Ir equation. The discovered findings contribute to a new understanding of the relationship between KE and Ir for soil erosion modelling applications and provide basic soil conservation strategies for watersheds. The remainder of this study is organized as follows: Research location characteristics, measurement tools, and methodology are presented in Section 2. The results are thoroughly analyzed and discussed in Section 3 and Section 4, respectively. Finally, Section 5 summarizes the findings.




2. Materials and Methods


2.1. Study Area


Sangju is located on the northwestern border of the province of North Gyeongsang, where it touches the province of North Chungcheong (Figure 1). The city extends approximately 49 km from north to south and 43.3 km from east to west. The city of Sangju is situated in the Nakdong River valley. In Sangju, several tributaries feed into Nakdong, including Yeong (which rises in Mungyeong). The ground falls to the river valley from the Sobaek Mountains to the east. The highest point in Sangju is Songnisan, which is 1058 m above sea level. The landscape is usually mountainous, with only a few flat sections near the rivers, similar to most of Korea.



The climate of Sangju is characterized as being inland. Temperatures range from a high of 26 °C in August to a low of 3 °C in January, with the average yearly temperature falling between 12 °C and 13 °C. Temperatures in the hilly northwest are often much lower than those seen further south. The average annual precipitation is 1050 mm.
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Figure 1. Location of Sangju City in Korea. 
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2.2. Instrument Descriptions


The OTT Parsivel2 disdrometer is an optical sensor that creates a 30 mm wide, 180 mm long, and 1 mm high laser beam (Figure 2a). The functional principle is based on the following premise [35]: (a) If no raindrops cross the laser beam, maximum voltage is generated at the receiver. (b) Raindrops obstruct a portion of the laser beam proportional to its diameter as they travel across the beam; the resulting reduction in the output voltage determines the particle size. (c) A signal is created when a raindrop reaches the light strip, and is terminated when the raindrop completely departs the light strip. The duration of the signal determines the velocities of the particles.



After obtaining the volume equivalent diameter (D) and particle speed (V), the disdrometer divides particles into relevant categories, including measurement ranges of 0.2 to 8.0 mm for liquid precipitation particles and 0.2 to 25 mm for solid precipitation particles (i.e., hail and snow). Precipitation particles may move at rates of 0.2 to 20.0 m/s, with a lower scale for small, slow particles than for large, fast particles. The observed particles in a two-dimensional field are classified into 32 V and D classes [35].
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Figure 2. (a) Functional principle of the Parsivel2 disdrometer (Source: Operating instructions Present Wether Sensor OTT Parsivel2 [35]) and (b) the Parsivel2 located inside the Kyungpook National University, Sangju campus. 
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2.3. Methodology


The schemes outlined below (Figure 3) describe the steps of our work.




	
An OTT Parsivel2 disdrometer was installed on top of a Kyungpook National University building 80 m above sea level (Figure 2b). Beginning in June 2020, the disdrometer was used to automatically monitor rainfall characteristics at 10-s intervals. This device was then linked to a laptop so that the measured data could be automatically stored.



	
Selected precipitation events (Table 1) were categorized based on strict criteria [16,18,19]: (i) two different rainfall events must be separated by at least 6 h, (ii) total rainfall accumulation must exceed 3 mm, and (iii) a storm event length and its average intensity must exceed 30 min and 0.1 mm/h, respectively. The information in Table 1 pertains to specified precipitation events. Subsequently, each event was rigorously examined for outliers in the Ir distribution. Raindrops colliding with the protective covers of the disdrometer and combined with other raindrops may disrupt the laser zone, leading to larger raindrops [16]. During storms, two raindrops may instantaneously travel through the sensor, producing in an inflated, abnormally-high intensity value [19]. Consequently, records with abnormally high-intensity levels were deemed outliers and removed.
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Table 1. Information of specified precipitation events.
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Event

	
Date

(dd/mm/yy hh:mm)

	
Duration

	
No. of

Raindrops

	
No. of

Outliers

	
Rain

Depth

(mm)

	

	
Intensity (mm/h)




	
Max

	
Mean

	
Median

	
St. Dev

	
Skewness






	
1

	
10/06/2020 20:51

	
09 h 30 min

	
307,808

	
119

	
50.46

	
17.87

	
4.70

	
4.00

	
4.26

	
0.87




	
2

	
13/06/2020 19:54

	
13 h 42 min

	
385,208

	
431

	
29.75

	
7.4

	
1.36

	
0.21

	
1.85

	
1.49




	
3

	
24/06/2020 12:45

	
26 h 31 min

	
347,936

	
1573

	
14.91

	
1.22

	
0.20

	
0.10

	
0.24

	
2.37




	
4

	
12/03/2021 10:40

	
06 h 01 min

	
95,761

	
93

	
9.69

	
3.95

	
1.44

	
1.31

	
0.87

	
0.65




	
5

	
27/03/2021 13:25

	
14 h 04 min

	
359,840

	
117

	
24.08

	
5.01

	
1.61

	
1.47

	
1.14

	
0.60




	
6

	
03/04/2021 10:20

	
21 h 06 min

	
714,019

	
314

	
34.15

	
5.20

	
1.35

	
0.98

	
1.24

	
1.02




	
7

	
12/04/2021 11:53

	
13 h 36 min

	
223,265

	
202

	
20.18

	
4.73

	
1.30

	
1.08

	
1.12

	
0.92




	
8

	
01/05/2021 12:32

	
17 h 09 min

	
61,303

	
1088

	
4.02

	
0.5

	
0.13

	
0.10

	
0.08

	
2.89




	
9

	
04/05/2021 16:31

	
09 h 32 min

	
182,322

	
326

	
9.56

	
3.07

	
0.65

	
0.39

	
0.69

	
1.41




	
10

	
10/05/2021 07:26

	
25 h 33 min

	
188,754

	
1156

	
18.36

	
2.05

	
0.35

	
0.10

	
0.47

	
1.94




	
11

	
16/05/2021 18:15

	
13 h 23 min

	
512,393

	
525

	
14.46

	
2.55

	
0.51

	
0.24

	
0.57

	
1.50




	
12

	
20/05/2021 09:37

	
14 h 49 min

	
743,031

	
188

	
20.28

	
4.38

	
1.19

	
0.96

	
1.04

	
0.90




	
13

	
28/05/2021 11:49

	
2 h 39 min

	
92,003

	
68

	
19.92

	
18.24

	
5.96

	
4.75

	
3.92

	
1.02




	
14

	
30/05/2021 22:25

	
7 h 04 min

	
51,022

	
151

	
9.90

	
4.71

	
0.94

	
0.10

	
1.22

	
1.37




	
15

	
03/06/2021 10:01

	
16 h 13 min

	
484,004

	
251

	
25.25

	
5.68

	
1.31

	
0.90

	
1.31

	
1.03




	
16

	
10/06/2021 20:06

	
11 h 45 min

	
149,679

	
131

	
14.6

	
4.34

	
1.13

	
0.83

	
1.04

	
0.98




	
17

	
22/06/2021 19:45

	
52 min

	
17,647

	
22

	
8.46

	
32.48

	
7.37

	
3.37

	
8.29

	
1.35




	
18

	
03/07/2021 13:17

	
15 h

	
371,419

	
305

	
33.4

	
7.65

	
1.66

	
0.76

	
1.90

	
1.28




	
19

	
05/07/2021 19:18

	
9 h 04 min

	
196,799

	
75

	
11.95

	
4.75

	
1.23

	
0.82

	
1.17

	
1.05




	
20

	
06/07/2021 17:13

	
24 h 40 min

	
210,285

	
1704

	
12.39

	
0.37

	
0.12

	
0.10

	
0.05

	
3.15




	
21

	
08/07/2021 01:29

	
4 h 16 min

	
149,756

	
99

	
32.22

	
19.50

	
5.71

	
4.42

	
4.71

	
1.05




	
22

	
10/07/2021 19:08

	
03 h 58 min

	
52,814

	
208

	
16.36

	
4.93

	
0.70

	
0.10

	
1.13

	
2.06




	
23

	
11/07/2021 19:06

	
40 min

	
43,737

	
36

	
18.97

	
53.55

	
14.22

	
12.40

	
11.54

	
1.28




	
24

	
27/07/2021 19:33

	
01 h 01 min

	
81,024

	
7

	
30.5

	
92.52

	
26.08

	
21.43

	
23.14

	
0.82




	
25

	
01/08/2021 15:47

	
07 h 15 min

	
167,090

	
318

	
43.74

	
10.04

	
1.90

	
1.15

	
2.14

	
1.45




	
26

	
08/08/2021 13:55

	
01 h 21 min

	
36,583

	
78

	
16.12

	
30.97

	
4.29

	
1.24

	
7.25

	
2.32




	
27

	
10/08/2021 09:54

	
01 h 13 min

	
31,325

	
30

	
11.09

	
36.20

	
6.31

	
0.78

	
9.59

	
1.52




	
28

	
23/08/2021 09:09

	
27 h 49 min

	
578,908

	
659

	
81.07

	
8.47

	
1.99

	
1.40

	
1.98

	
1.16




	
29

	
25/08/2021 16:20

	
07 h 34 min

	
137,149

	
339

	
12.84

	
2.87

	
0.47

	
0.1

	
0.69

	
2.00




	
30

	
27/08/2021 08:59

	
8 h 17 min

	
118,828

	
138

	
16.63

	
8.33

	
1.55

	
0.19

	
2.22

	
1.41




	
31

	
01/09/2021 02:48

	
13 h 21 min

	
286,138

	
404

	
51.13

	
11.05

	
2.09

	
0.73

	
2.59

	
1.34




	
32

	
06/09/2021 16:38

	
21 h 54 min

	
290,235

	
837

	
30.94

	
3.72

	
0.65

	
0.11

	
0.88

	
1.66




	
33

	
16/09/2021 23:06

	
13 h 25 min

	
320,541

	
173

	
39.3

	
11.13

	
2.45

	
1.23

	
2.72

	
1.11




	
34

	
21/09/2021 07:01

	
4 h 06 min

	
86,537

	
38

	
10.47

	
9.40

	
2.32

	
1.58

	
2.25

	
0.94




	
35

	
11/10/2021 02:20

	
40 h 37 min

	
695,308

	
561

	
22.78

	
2.20

	
0.50

	
0.29

	
0.49

	
1.15




	
36

	
15/10/2021 16:26

	
14 h 19 min

	
210,792

	
419

	
14.26

	
2.79

	
0.75

	
0.57

	
0.64

	
1.19




	
37

	
30/11/2021 07:22

	
16 h 04 min

	
158,070

	
406

	
13.98

	
3.07

	
0.62

	
0.17

	
0.76

	
1.43














	iii.

	
Linear [36] and power-law [37] relationships were employed to establish a strong connection between KEexp and Ir, whereas logarithmic [26] and exponential [38] relationships were applied to link KEcon and Ir. In addition, we conducted a study in Sangju City (Korea) to determine the comprehensive relationship between KE and Ir; the results showed that the best fit between KEexp and Ir was obtained using a power-law form, whereas the closest match between KEcon and Ir was discovered using an exponential equation [17]. Thus, we attempted to gather equations using the power-law and exponential forms for comparison with the data collected in this investigation (Table 2). For various locations, climatic settings, and measurement methods, equations employed in different forms were also used. The selected equations were then compared to the observed KE data from 37 rainfall events with three statistical criteria (See Section v).
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Table 2. Information about the 27 KE–Ir equation used in this study. Acronyms: A—tropical climates, B—dry climates, C—temperate climates, AD—acoustic disdrometer, OD—optical disdrometer (P—Parsivel, P2—Parsivel2), FP—flour pellet, and CA—camera. The climate zone is based on Köppen–Geiger climate classification [39].
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	Equation
	Location
	Altitude

(m. a.s.l.)
	Method
	Climate Zone
	Source





	EXP1
	21.1   I r     1.156    
	USA
	n.a.
	n.a.
	A
	[40]



	EXP2
	24.48 (   I r    − 1.235)
	Australia
	25
	AD
	B
	[41]



	EXP3
	28.3   I r   (1 − 0.52   e  −   0.042 I  r    )  
	Universal
	n.a.
	n.a.
	n.a.
	[38]



	EXP4
	13   I r     1.21    
	USA
	n.a.
	CA
	A
	[42]



	EXP5
	11   I r     1.25    
	USA
	n.a.
	AD
	A
	[43]



	EXP6
	23.4   I r    − 18
	Spain
	n.a.
	AD
	B
	[36]



	EXP7
	29.02   I r    − 71.67
	Philippines
	44
	AD
	A
	[18]



	EXP8
	12.05   I r     1.19    
	Philippines
	44
	AD
	A
	[18]



	EXP9
	5.9   I r     1.37    
	Cape Verde
	321
	OD-P
	A
	[20]



	EXP10
	30.4   I r   
	Cape Verde
	321
	OD-P
	A
	[20]



	EXP11
	23.97   I r    − 24.28
	Korea (Daejeon)
	58
	O-P
	C
	[16]



	EXP12
	12.49   I r     1.16    
	Korea (Daejeon)
	58
	OD-P
	C
	[16]



	EXP13
	7.62   I r     1.3    
	Korea (Sangju)
	80
	OD-P2
	C
	[17]



	CON1
	   29.2     1 − 0.89 exp   − 0.048  I r        
	Zimbabwe
	1230
	FP
	C
	[44]



	CON2
	   29.3     1 − 0.28 exp   − 0.018  I r        
	USA (Florida)
	3
	CA
	A
	[44]



	CON3
	   29.0     1 − 0.59 exp   − 0.04  I r        
	Australia
	25
	AD
	B
	[41]



	CON4
	   29.0     1 − 0.72 exp   − 0.05  I r        
	USA
	180
	FP
	A
	[33]



	CON5
	   35.9     1 − 0.56 exp   − 0.034  I r        
	Portugal
	21
	AD
	C
	[45]



	CON6
	   38.4     1 − 0.54 exp   − 0.029  I r        
	Spain
	25
	OD
	B
	[46]



	CON7
	   36.8     1 − 0.69 exp   − 0.038  I r        
	Hong Kong
	50
	AD
	C
	[47]



	CON8
	   28.3     1 − 0.52 exp   − 0.042  I r        
	Universal
	n.a.
	n.a.
	n.a.
	[38]



	CON9
	   30.8     1 − 0.05 exp   − 0.03  I r        
	Philippines
	44
	AD-RD80
	A
	[18]



	CON10
	   29.8     1 − 0.60 exp   − 0.07  I r        
	Slovenia (Koseze)
	595
	OD-P
	C
	[19]



	CON11
	   35     1 − 0.79 exp   − 0.03  I r        
	Cape Verde
	321
	OD-P
	A
	[20]



	CON12
	   25.75     1 − 0.54 exp   − 0.05  I r        
	Korea (Daejeon)
	58
	OD-P
	C
	[16]



	CON13
	8.163 + 1.949log(Ir)
	Korea (Seoul)
	42
	OD-P
	C
	[48]



	CON14
	10.47 + 2.47log(Ir)
	Korea (Anseong)
	62
	OD-P
	C
	[49]



	CON15
	30.03 (1 − 0.74exp(−0.068Ir))
	Korea (Daegwallyeong)
	732
	OD-P
	C
	[50]



	CON16
	26.5 (1 − 0.94exp(−0.14Ir))
	Korea (Sangju)
	80
	OD-P2
	C
	[17]







EXP denotes KEexp types and CON denotes KEcon types. EXP13 and CON16 represent fitted lines of observed data.
















	iv.

	
Kinnell suggested an exponential form (Equation (1)) that is mostly used to link KEcon with Ir [44].











KEcon = a (1 − b exp(−c Ir))



(1)




where a, b, and c are empirical parameters.



According to Kinnell, the value of a parameter may be considered to be 29 J m2mm−1 worldwide, and the values of b and c parameters vary and depend on local sites [51]. However, other scientists have provided unique parameter values, demonstrating their high dependency on the geographical setting (Table 2). Based on re-analysis, the empirical parameters in Equation (CON8) for worldwide applications proposed by Van Dijk et al. are the averages derived by fitting the relationship to observed precipitation KE data taken from different locations, including Panama, Indonesia, the United States, the Marshall Islands, Australia, and Portugal [38]. Thus, we propose a Korean equation (Equation (2)) based on the approach of Van Dijk et al. [38].


KEcon = 27.4(1 − 0.74exp(−0.086Ir))



(2)




where 27.4, 0.74, and 0.086 are the averages derived from the KEcon–Ir relationship in three Korean locations (Figure 1): Daejeon (CON12), Daegwallyeong (CON15), and Sangju (CON16).




	v.

	
Several statistical measures were used to assess the recorded and predicted KE values estimated using the 27 KE–Ir equations. Table 3 presents the specifics of the evaluation criteria, and the validity of empirical equations was visually evaluated using goodness-of-fit plots.











3. Results


3.1. KE–Ir Relationships: Comparison


3.1.1. Kinetic Energy Expenditure


Rainfall KE and Ir are constrained by the microphysics of the in situ climate and meteorological factors. Thus, it is critical to benchmark several equations worldwide to determine their efficiency and accuracy in Korea.



First, we examined the performance of the 12 KEexp–Ir equations calibrated at various global locations. Each of the KE estimations produced by the 12 equations was compared with the actual KE data taken at our monitoring site. The performances of the 12 equations are shown in Figure 4. Table 4 and Figure 5 provide information about comparable findings of the 12 equations, all of which predicted good results of KEexp values, except for EXP1 (R2 = 0.37), EXP7 (R2 = 0.46), and EXP10 (R2 = 0.43). The rest of the equations produced accurate results, with R2 ranging from 0.72 (EXP2) to 0.94 (EXP9). The performance of EXP9 appears good, even though that site (Cape Verde Islands) has a very different environment from Korea. It is also noticeable that half of the 12 benchmarked equations have a power-law structure and provide accurate predictions of KEexp values (except for EXP1). The performance of EXP7 and EXP8 show a total difference, even though they were conducted in the same region and climate pattern (Philippines). This indicates that the power form (EXP8) outperformed the linear form (EXP7) in this test. The EXP9 is the most suitable equation for predicting KEexp values, with the highest R2 (0.94) and lowest RMSE and MAE (i.e., 14.08 J m−2h−1 and 3.85 J m−2h−1, respectively), followed by EXP8 (R2 = 0.92, RMSE = 16.24 J m−2h−1, and MAE = 6.72 J m−2h−1).



The power-law form of EXP12, conducted in the Korean area, was also in line with the observed data (R2 = 0.92, RMSE = 16.23 J m−2h−1, and MAE = 6.79 J m−2h−1). This could be accounted for by the fact that the location where the equation was developed and the location where our data were collected both had similar rainfall patterns.
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Figure 4. Comparison of 12 KEexp equations (represented by red lines) with measured data. The yellow line represents the fitted line of measured data (EXP13). 
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Figure 5. Statistical analysis results of 12 KEexp–Ir relationships with observed data. 
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Table 4. Statistical analysis results of 12 relationships between KEexp and Ir in the literature.
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	Equation
	R2
	RMSE (J m−2h−1)
	MAE (J m−2h−1)





	EXP1
	0.37
	45.57
	19.08



	EXP2
	0.75
	27.90
	22.47



	EXP3
	0.91
	17.01
	7.83



	EXP4
	0.86
	21.26
	8.40



	EXP5
	0.89
	18.83
	6.53



	EXP6
	0.83
	23.39
	15.73



	EXP7
	0.46
	58.61
	54.22



	EXP8
	0.92
	16.24
	6.72



	EXP9
	0.94
	14.08
	3.85



	EXP10
	0.43
	43.56
	24.98



	EXP11
	0.81
	25.20
	18.88



	EXP12
	0.92
	16.23
	6.79









3.1.2. Kinetic Energy Content


To further assess the influence of local climate, geography, and precipitation, we tested the performance of the 15 KEcon–Ir equations. It is noted that the KEcon–Ir equations performed poorly compared with KEexp–Ir equations (Figure 5 and Figure 6). Figure 7 illustrates a side-by-side comparison of the performance of these equations. The main reason for the cause of the low R2 values in Table 5 comes from the formation of KEexp and KEcon–Ir relationships, since the R2 from the formation of KEexp–Ir equations is always higher than that of KEcon–Ir [16,17,18,19,20]. It is noted that the observation of KEexp tends to follow a narrow and predictable trend, whereas the tendency of KEcon values is entirely different and scattered, making the development of accurate mathematical expressions more challenging to forecast.



According to the statistical data in Table 5 and Figure 6, all 13 equations produced very low R2, except for CON1 (0.45) and CON15 (0.51). The latter performed the best at our research site because it had the lowest RMSE (3.49 J m−2mm−1) and MAE (2.96 J m−2mm−1). While CON1 and CON15 are considered mountainous sites (1230 m a.s.l. and 732 m a.s.l., respectively) compared to our study area (80 m a.s.l.), it is assumed that the relationships would be different due to the effect of altitude [52]. The performance of CON1 was good (R2 = 0.45, RMSE = 3.71 J m−2mm−1, MAE = 3.05 J m−2mm−1), and this can be explained by the fact that both locations (CON1 and CON16) experienced the same predominantly temperate climates.



CON9 showed the poorest performance (RMSE = 25.03 J m−2mm−1, MAE = 24.54 J m−2mm−1) in this benchmark due to the difference in climate zone and the measurement method involved. Based on a re-analysis of several KEcon–Ir connections discovered globally, Van Dijk et al. suggested a global KEcon–Ir equation (CON8) [39]. However, it seems as if the equation is ineffective and inapplicable in Korea based on the statistical evidence from Table 5 (R2 = 0.00, RMSE = 10.43 J m−2mm−1, MAE = 9.67 J m−2mm−1).



The statistical results in Table 5 showed the uncertainty and inconsistency between the performance of four equations established in Korea (CON12–15). It is worth noting that the structures of CON13 and CON14 are logarithmic. Estimation of KEcon based on logarithmic forms indicates that KEcon has no upper bound, but other research has shown the contrary; that the exponential equation reaches a maximum KEcon value and then stays stable independent of Ir [41,44]. Since KEcon has a maximum value (specified as the parameter a in Equation (1)), the exponential equation is preferable to the others for estimating KEcon values. The maximum of KEcon value of CON15 (30.03 J m−2mm−1) is significantly higher than that of CON12 (25.75 J m−2mm−1) and CON16 (26.5 J m−2mm−1), and the location of the equation can explain this. CON15 is considered a mountainous site (732 m a.s.l.) compared to the lower altitude areas of CON 12 and CON16 (58 m a.s.l. and 80 m a.s.l., respectively). This phenomenon was consistent with a study by Petan et al. when they observed that KE values were higher at higher elevations for the same rainfall patterns in Slovenia [19]. Furthermore, high wind from the coastal site of CON15 (Figure 1) that causes non-vertical raindrop movements may also distort drop size distribution (DSD) predictions, leading to the difference in KE estimations. The further disparities in the result outputs will be discussed in Section 4.
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Figure 6. Statistical analysis results of 15 KEcon–Ir relationships with observed data. 
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Table 5. Statistical analysis of 15 KEcon–Ir equations in the literature.
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	Equation
	R2
	    RMSE   ( J    m  − 2     mm   − 1   )    
	    MAE   ( J    m  − 2     mm   − 1   )    





	CON1
	0.45
	3.71
	3.05



	CON2
	-
	17.18
	16.53



	CON3
	-
	8.94
	8.17



	CON4
	-
	5.95
	5.21



	CON5
	-
	12.53
	11.89



	CON6
	-
	14.25
	13.64



	CON7
	-
	8.68
	7.97



	CON8
	-
	10.43
	9.67



	CON9
	-
	25.03
	24.54



	CON10
	-
	9.29
	8.65



	CON11
	-
	5.36
	4.63



	CON12
	-
	8.90
	8.12



	CON13
	- 1
	5.88
	5.21



	CON14
	0.16
	4.59
	4.13



	CON15
	0.51
	3.49
	2.96







1 denotes minimal values of R2.
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Figure 7. Comparison of 15 KEcon equations (represented by red lines) with measured data. The yellow line represents the fitted line of measured data (CON16). 
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3.2. KE–Ir Relationships: Proposition


The previous section illustrated the variances in meteorological settings owing to complex orography and other geographical factors, as well as disparities in instrumental sensitivity, which can potentially contribute to the differences in these empirical parameters in Table 2. Consequently, we meticulously selected the most suitable equations (iv in Section 2.3) that satisfy the same requirements in measurement methodology, mathematical functions, climatic conditions, and statistical performance with observed data.



The proposed KEcon–Ir equation for the Korean area (Equation (2)) was drawn and compared with the observed KEcon data in Figure 8a, and the goodness-of-fit statistics are shown in Figure 8b. It is noted that the Korean equation yielded a good performance, with the RMSE and MAE values being 5.42 and 4.78 J m−2mm−1, respectively. However, this equation overestimates KEcon values in low-intensity zones, particularly when Ir is zero. Compared to the performance of the Daejeon equation, the performance of the Korean equation is more robust, but it is worse than the performance of the Sangju and Daegwallyeong equations.



The spatial distribution of a, b, and c parameters in Equation (2) showed a high variance in geography (Figure 9). The value of a parameter (Figure 9a), which denotes the maximum KEcon, is the highest (30.03 J m−2mm−1) in the northern part of Korea. These findings are in agreement with earlier research by Salles et al. that the b and c parameters are site-specific (Figure 9b,c) [53]. Reported values for a parameters in Table 2 range from 27.75 to 38.4 m−2mm−1, 0.05–0.89 for b parameters, and 0.018–0.07 for c parameters.





4. Discussion


Several factors could be attributed to the disparities in parameter values across numerous studies (Table 2) and disparities in the result outputs. These might be categorized as discrepancies in measurement methodologies, geographical sites, and meteorological patterns.



4.1. Measurement Method


To measure drop size distributions or KE, the authors have used various techniques (Table 2), and each has its own limitations and potential sources of error, which certainly contributed to some of the differences across research.



Sarkar et al. evaluated the comprehensive performance of three raindrop size methods in India, including the Joss–Waldvogel disdrometer [54]. The results indicated that the disdrometer had a low sensitivity for detecting extremely tiny drops (<0.5 mm) and failed to capture drops bigger than 5.5 mm. Consequently, the device is dependable for detecting rainfall intensity that is neither too low (<0.1 mm/h) nor too high (>20 mm/h). However, wind may have a significant effect on disdrometer measurements [41]. Beczek et al. used high-speed cameras to calculate the distribution of particle diameters and masses and confirmed that this approach overstated the diameter values [55]. Hall noted that the splashing of big drops may result in the formation of small droplets, which might impair the filter paper approach [56]. According to Niu et al., instrumental error caused tiny raindrops (approximately 0.3 mm in diameter) to have their velocity overestimated, but this problem dropped significantly as drop size increased [57].



A study conducted by Johannsen et al. explored the influence of three disdrometer types (OTT Parsivel, PWS100, and Thies) on the formation of KE–Ir equations [58]. Their findings demonstrated that errors resulting from instrumental variations were related to rainfall characteristics observations by various types of disdrometers. As a result, the detected parameters of the exponential KEcon–Ir equations varied mathematically by disdrometer type. Furthermore, Angulo-Martnez and Barros also noted that the disdrometer sensor also affects the formation of KE–Ir equations since the DSD from disdrometers is inconsistent and might result in several KE–Ir relationships for the same site [59].




4.2. Geographical Features and Meteorological Settings


Given the sampling error-related methods discussed in the preceding sections, geographical features, meteorological patterns, and different types of precipitation may also be responsible for the variance in the KE estimations.



Angulo-Martínez and Barros noted that rainfall DSDs vary greatly across ridges and valleys, as well as between exposed upwind ridges and the inner area for similar rainfall patterns when they evaluated the performance of two Parsivel disdrometers in three regions in the Southern Appalachian Mountains of the U.S. [59]. The findings also revealed a 40% disparity in KE estimations from the same disdrometers.



Tang et al. investigated the behavior of raindrop size distributions in three different areas of mainland China (i.e., Beijing, Yangjiang, and Zhangbei) using Parsivel disdrometers [60]. The authors noted that Zhangbei had the greatest number of raindrops smaller than 1 mm, owning to its greater altitude and evaporation. According to Montero-Martínez et al., altitude may also affect the distribution of raindrop size and velocity, thereby affecting the overall findings of each equation [52]. McIsaac noted that a decrease in KE was predicted at higher altitudes [61]. However, the greater the elevation of a place, the higher the rate of KE values, although scientists were stumped as to why this disparity existed [19].



A study by Johannsen et al. showed that it was unfeasible to provide a single KE–I equation applicable to Austria, the Czech Republic, and New Zealand [58].





5. Conclusions


Research on the spatial and temporal variability of precipitation features is crucial, considering the growing frequency of severe rainfall events globally. Therefore, understanding the link between rainfall intensity (Ir) and kinetic energy (KE) and its temporal and spatial variability is crucial for any physics-based soil erosion model application because KE plays a vital role as an erosivity parameter.



Direct estimation of rainfall KE is not practical and is often confined to space-restricted research. Consequently, most researchers use either theoretical or empirical relationships to establish empirical links between Ir and KE based on data availability. In this study, we compared and evaluated rainfall KE estimations from 27 KE–Ir equations with 37 rainfall events collected using an OTT Parsivel2 disdrometer. Based on a re-analysis, we proposed an exponential KEcon–Ir equation for the entire Korean site and illustrated the spatial distribution of their parameters on a map. The findings of this study are listed below.




	
Local climate, terrain, and precipitation patterns may affect KE estimates. Significant discrepancies were found when KE values were computed by the disdrometer and compared with 27 equations from different parts of the globe. The statistically most accurate estimates of KE expenditure and KE content in Sangju City were obtained using the power-law equation (R2 = 0.94; RMSE = 14.08 J m−2h−1, and MAE = J m−2h−1) given by Sanchez-Moreno et al. [20] and the exponential equation (R2 = 0.51, RMSE = 3.49 J m−2mm−1, and MAE = 2.96 J m−2mm−1) published by Lee and Won [50], respectively.



None of these empirical formulations can be employed globally, and their applicability far from the geographical and climatic circumstances under which they are calibrated is restricted. Only places in the dataset or regions with comparable geographic and climatic features might use empirical KE–Ir equations.



	
The suggested equation applied to the Korean site (Equation (2)) exhibits a comparable general correlation with the observed KEcon data (RMSE = 5.42 J m−2mm−1 and MAE= 4.78 J m−2mm−1). However, the equation must be confirmed and benchmarked at different locations in Korea with observed data. Nowadays, optical disdrometers are more affordable, pre-calibrated, and prepared for field use, making them easier to use and facilitate. More precision has been acquired over a large geographical region as more research has been conducted and more equations have been published. However, the same type of optical measuring equipment should be used to properly determine spatial variations in rainfall properties.



Because of the high variance in the spatial distribution of exponential parameters, any regional application for using KEcon as an erosivity parameter in surface erosion models should be strictly selected based on geographical settings, particularly in areas with complicated terrain where the spatial variability of rainfall is high.
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Figure 3. Flowchart of the study. 
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Figure 8. (a) Comparison and (b) statistical analysis results of 4 KEcon–Ir equations with measured data. 
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Figure 9. Spatial patterns of the (a) a, (b) b, and (c) c parameters in Equation (2) interpolated by the Inverse Distance Weighted (IDW) algorithm. 
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Table 3. Description of the evaluation criteria used in this research (ai: observations; bi: forecasts;    a ¯   : mean of recorded values,     b ¯   :     mean of forecasted values, n: number of samples).
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	Name
	Equation
	Available Range
	Best Value





	RMSE
	      1 n    ∑    i = 1   n       a i  −  b i     2      
	0.0 to +∞
	0.0



	MAE
	    1 n    ∑    i = 1   n     a i     – b   i      
	0.0 to +∞
	0.0



	R2
	           ∑    i = 1   n     a   i       –    a ¯        b i     –    b ¯        2      ∑    i = 1   n       a i   –    a ¯      2    ∑    i = 1   n       b i     –    b ¯      2      
	0.0 to 1.0
	1.0
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