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Abstract: Due to the low cost and easy deployment, self-supervised depth completion has been
widely studied in recent years. In this work, a self-supervised depth completion method is designed
based on multi-modal spatio-temporal consistency (MSC). The self-supervised depth completion
nowadays faces other problems: moving objects, occluded/dark light/low texture parts, long-
distance completion, and cross-modal fusion. In the face of these problems, the most critical novelty
of this work lies in that the self-supervised mechanism is designed to train the depth completion
network by MSC constraint. It not only makes better use of depth-temporal data, but also plays
the advantage of photometric-temporal constraint. With the self-supervised mechanism of MSC
constraint, the overall system outperforms many other self-supervised networks, even exceeding
partially supervised networks.

Keywords: depth completion; lidar data processing; self-supervised; sensor fusion; multi-modal;
deep learning

1. Introduction

In an intelligent traffic system, it has become a fundamental task to obtain the position
of objects around. Especially in autonomous driving, the ability to perceive the environment
is the basis for the safe and stable operation of autonomous driving [1,2]. The sparse depth
provided by LiDAR can support a object segmentation [3] or a simultaneous localization
and mapping (SLAM) system [4], but has a poor performance on the scene topology [5].
Moreover, increasing the density of 3D LiDAR measurements means it is cost-prohibitive.
Depth completion has always been a research hotspot, especially on low-cost devices.
However, the difficulty of obtaining dense annotations makes this technique difficult to
implement [6]. Therefore, the self-supervised depth completion have been widely studied
in recent years [7].

At present, many supervised depth completions have been proposed. Uhrig et al. [8]
proved that convolution still worked on sparse signals, and Ma et al. [6] proved that image
information could help reconstruct dense depth images with higher accuracy. Most of
depth completion methods have been proposed to generates dense depth map by LiDAR
sparse points cloud and RGB images. Due to the sparsity of input depth, convolutional
neural networks have difficulty adapting to spatial pixel information [8]. Uhrig et al. [8]
proposed a sparse invariant convolution, which enhanced the adaptability of convolution
to sparse signals through adaptive sparse weights. This method uses the sparse mask
to avoid the undifferentiated calculation of nonexistent points, while it cannot process
occluded points or fuse RGB image information.

However, most of the current depth completion networks use RGB images as guidance,
because RGB images can provide edge information of objects [9]. The depth map calibrated
by internal parameters can be aligned with the RGB images at pixel level, which provides
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the theoretical basis for the cross-modal depth completion [7]. Eldesokey et al. [10,11]
designed a normalized convolutional layer to introduce RGB image information while
completing the depth. Yan and Huang et al. [12,13] proposed a sparse invariant convolution,
which can perform feature fusion at each layer.

In terms of fusion methods, it can be divided into signal layer fusion and feature layer
fusion [7]. Ma et al. [14] proposed a modular coding network based on ResNet [15] to
predict the dense depth map of RGB-D images, and they began to fuse from the signal
layer. Jaritz et al. [9,16] chose the strategy of fusion at the feature layer. Another method
fuses RGB-D images into multiple-scale feature layers [17–19]. Many introduce physical
priors based on signal fusion, such as introducing normal surface [20–22] and semantic
segmentation [9,23,24]. Moreover, some methods guide the propagation of sparse depth,
according to the correlation of successive pixels on the RGB map [25,26].

However, all of these full-supervised depth completion methods still faces an unavoid-
able problem on practical application: how to obtain ground truth labels. To face with the
lack of ground truth labels, many studies on self-supervised depth completion have been
proposed. The self-supervised network is modelled with the intrinsic consistency within
the images and the aligned point clouds. Different from the supervised networks which are
modelled relying on a large amount of manual labelled ground truths, the proposed self-
supervised network automatically construct a relationship between the multi-modal data
and the dense depth, which makes it more robust and have better generalization ability.

Self-supervised depth completion method can be divided into stereo vision and
monocular vision [7]. Both take the reprojection error as the major constraint. The stereo
method [27,28] converts the depth to parallax and calculates the reprojection error with the
help of a pre-calibrated baseline. Compared with the latter, the stereo method does not need
to consider the influence of external parameters, but it cannot solve the problems caused by
occlusion and cost another camera. The monocular method projected adjacent frames to the
current frame through pose and depth. Ma et al. [6] first designed a self-supervising frame-
work, with photometric loss as depth supervision. This method requires pose estimation to
provide external parameters. To improve the accuracy of the pose estimation, Feng and
Choi et al. [29–31] introduced model-based pose estimation module. Among them, Song
and Wong et al. [5,32] introduced an odometer to improve their pose network. In a word,
existing self-supervised depth completion methods commonly use RGB image reprojection
to establish strong constraints for spatial connections. However, different from the dense
depth ground truth, the reprojection error is evaluated by photometric value without direct
depth supervision. It leads to the difficulty of fusion between image data and the projected
sparse depth map [6]. Therefore, Feng et al. [29] generate pseudo dense representations
before concatenating the image data and the sparse depth map. Wone et al. [31] pool the
sparse depth map while inputting the sparse depth points. It alleviates the problem caused
by the photometric evaluation, but the problem of multi-modal information fusion remains.

At present, the self-supervised depth completion have main problems: (1) The re-
projection constraint assumes that the scene is static and non-occluded, which reduces
the matching success rate of moving objects and occluded regions [6]. Meanwhile, the
reprojection error cannot reflect the depth loss between the predicted value and the ground
truth, especially in the dark, low-texture parts and distant objects. (2) Depth-temporal
information contains a lot of usable information, which should not be discarded in self-
supervision. (3) It is not conducive to the fusion of image data and sparse depth map, when
the photometric evaluation is used as the depth constraint.

To cope with these challenges, a multi-modal spatio-temporal consistency approach is
proposed to help improve the performance of model-based depth completion. We introduce
depth-temporal data to reduce the impact of photometric constraints on depth completion,
such as dark, low-texture parts and distant objects. Meanwhile, we proposed a depth-
temporal consistency constraint to directly supervise depth, so in the whole process of
depth completion, RGB image data can significantly improve the effect of depth completion,
through effective fusion. However, the sparse depth map are sampled from dynamic scenes,
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and the temporal depth after simply stacking cannot be directly used to constrain the depth.
Therefore, we designed a photometric reprojection auto-mask to remove the occlusion
and displace points. Meanwhile, we introduced the photometric-temporal consistency to
provide a global constraint for our depth completion. In addition, multi-modal spatio-
temporal consistency is also introduced into the pose estimation to improve the accuracy.

2. Methods

In this section, our self-supervised depth completion framework is shown in Figure 1,
which takes a single visible image RGBt and a LiDAR image Dt as input and generates a
dense depth map, Pred.

Figure 1. The framework of the proposed self−supervised depth completion network, step 1: spatial
translation for preprocessing; step 2, self−supervised training. Gray rectangles are variables, orange
is the inference network, blue is computational modules (no parameters to learn), and green is the
loss functions.

This methods is divided into two steps: Step 1, spatial translate the depth map of
adjacent frames (Dt−1 and Dt+1) into the current camera field, to generate the D′t−1 and
D′t+1. The pose parameter is provided from AFPR-PnP module. After translation, warped
depth points can be reflected on RGBt. Step 2, self-supervised training procedure based
on multi-modal spatio-temporal consistency (MSC) constraint: It requires a sequence of
RGB-D images for training. In the inference processing, it needs only a pair of RGB-D
images for generating completion depth.

The pose R, Tt+i→t from the current frame RGB−Dt+i to the adjacent frame RGB−Dt
is calculated by the PnP algorithm, where i ∈ {−1,+1}. The depth map of adjacent frames
(Dt−1 and Dt+1) can be translated to the current camera field (D′t−1 and D′t+1) by R, Tt−1→t
and R, Tt+1→t. This is so that a multi-modal spatio-temporal consistency constraint can
be built for the self-supervising framework. At the same time, a photometric reproject
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auto-mask is designed based on the similarity estimation. This automatic mask reduces
the displacement errors caused by the depth-temporal point cloud.

The last, an automatic feature points refinement algorithm, is adopted to improve the
performance of PnP pose estimation.

This self-supervised framework does not rely on additional sensors, manual tagging
efforts, or other learning-based pose estimation algorithms as building blocks. In the
inference, only the current frame is needed as an input to generate depth completion.

2.1. Depth-Temporal Consistency Constraint

This paper proposed a self-supervising constraint method based on depth-temporal
consistency. The method only needs to obtain synchronous RGB−D image sequences from
monocular cameras and LiDAR. The point clouds of the adjacent frames can be transfered
to the current frame to constrain depth completion, as shown in Figure 1-step 1.

As is shown in Figure 2, multi-modal spatio-temporal consistency constraint contains
two parts, depth-temporal consistency constraint (LossDepth) and photometric similarity
evaluation (PSE). The photometric reproject auto-mask generated by PSE was used to assist
the depth-temporal consistency constraint on the current frame.

Figure 2. Multi−modal spatio−temporal consistency constraint.

2.1.1. Spatial Translation

We take RGB−Dt at time t, and the adjacent frame as RGB−Dt+i, where i ∈ {−1, 1}.
Pose parameters are estimated with RGB− Dt and RGB− Dt+i , containing two groups of
the rotation matrix and translation (R, Tt+i→t). The detail of pose estimation is introduced
in Section 2.3.

The external parameter matrix can be expressed as:

Tt+i→t =

[
Rt+i Tt+i
03 1

]
, Tt→t+i =

[
R−1

t+i −Tt+i
03 1

]
. (1)

The information of the LiDAR points at time t + i can be transferred to the camera co-
ordinate system at time t through external parameters, and the process can be expressed as:[

x′t+i y′t+i z′t+i 1
]T

= Tt+i→t ·
[
xt+i yt+1 zt+1 1

]T , (2)
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where D′t+i = z′t+i. The translated depth map can be calculated by internal parameters:

D′t+i
[
u v 1

]T
= K ·

[
x′t+i y′t+i z′t+i 1

]T . (3)

We can obtain the sparse depth map D′t+i under the camera coordinate system at the
time of t.

2.1.2. Depth-Temporal Consistency Module

Sequential frames contain a lot of spatial structure information. For example, adjacent
RGB images have most of the same scenes as the current frame, as do depth images. Differ-
ent from the point cloud of the current frame (Dt), it provides a lot of depth information in
the blank block. However, it cannot be used directly until it is transferred to the current
camera field.

The depth-temporal consistency loss function (LossDepth) is built with D′t+i and Pred.
To ground the predictions to a metric scale, we minimize the L2 difference between pre-
dictions pred and the sparse warped depth map D′t−1 and D′t+1 over its domain (Ωt−1
and Ωt+1):

LossDepth =
1

|Ωt−1| ∑
x∈Ωt−1

||D′t−1(x)− pred(x)||2

+
1

|Ωt+1| ∑
x∈Ωt+1

||D′t+1(x)− pred(x)||2.
(4)

2.2. Photometric-Temporal Consistency Constraint

Because of the object movement and occlusion, D′t+i contains many displaced depth
points affecting the accuracy of the constraint. Inspired by Godard et al. [33], we select the
most similar part of the pixel structure to retain the depth points of this part. The similarity
of warped images (RGB′t+i and RGBt) can be used to select the minimum value points in
Eph|t+i as the automatic photometric reprojection mask (maskt+i).

We multiply maskt+i times D′t+i, and combine their results as a new depth map D′t.

2.2.1. Pixal Warp

Similarly with Section 2.1.1, RGB images RGBt+i will be mapped to the camera coordi-
nate system at t through the pose and predicted depth, as shown in Figure 3. Take the pixel
point of the predicted depth image Pred at (u, v), then the pixel point coordinates after the
predicted depth can be expressed as:[

u′ v′ 1
]T

= Pred(u, v)K−1[u v 1
]T . (5)

The sampling function of the warped RGB image RGB′t+i at (u, v) can be expressed as:

RGB′t+i(u, v) = (RGBt+i(KTt→t+i)
[
u′ v′ 1

]
)T . (6)

Finally, we can obtain the RGB image RGB′t+i under the camera coordinate system at
the time of t.
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Figure 3. Warp RGBt+i to RGB′t+i with pose (R, Tt+i→t) and completion depth (Pred), then generate
the automatic photometric reprojection mask.

2.2.2. Photometric Reproject Auto-Mask

We map the adjacent RGB images to the current RGB image for similarity evaluation
by referring to the current predicted depth. The evaluation function Eph contains L1 loss
and pixel structure loss.

The photometric error of RGBt and RGB′t+i can be represented as:

Eph|t+i =
ω

2
(1− SSIM(RGB′t+i, RGBt))

+(1−ω)‖RGB′t+i, RGBt‖1,
(7)

where ω is the weight between 0 and 1 , and the t is time.
We select the adjacent depth point based on the minimum photometric error. Specifi-

cally, we took the minimum value of Eph as photometric loss Lossph. This photometric loss
can overcome the effects of partial occlusion and displacement [33].

It can be expressed as:

Lossph = Min{Eph|t−1, Eph|t+1}, (8)

and the photometric loss function is:

Losspe =
1
|Ω| ∑

(x,y)∈Ω
Lossph(x, y). (9)

Among them, Lossph generated by selecting the minimum value from Eph(RGB′t+1, RGBt)
and Eph(RGB′t−1, RGBt), which means the selected region is the unobstructed part.

The photometric reproject auto-mask according to this characteristics, which represents
the most similar part of the warped adjacent RGB images, as shown in Figure 3.

The auto-mask can be represented as:

maskt+i(x, y) =
{

1 if Lossph(x, y) = Eph|t+i(x, y)
0 otherwise.

(10)

The auto-mask also represents the most similar part of the depth when it overlaps
with the depth image. For the occluded part in a adjacent depth, the auto-mask will have a
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higher response in another adjacent depth image, to complementing the occluded depth.
In the selection of adjacent depths, the auto-mask can provide an available reference. The
stitched depth still works on moving objects, unlike photometric errors.

The stitched depth D′t is shown in Figure 4, represented as:

D′t =
−1,1

∑
i
(D′t+i ∗maskt+i). (11)

The sequence depth loss function can be represented as:

LossDepth =
1
|Ω| ∑

x∈Ω
||D′t(x)− pred(x)||2, (12)

where Ω is the domain of depth map D′t.

Figure 4. D′t is generated by splicing high similarity points in D′t+i (visual process in the bottom). D′t
participates in the loss function LossDepth.

Our multi-modal spatio-temporal consistency constraints include depth-temporal
consistency constraint (DC) and photometric-temporal consistency constraint (PC). We
implement both constraints with LossDepth and Losspe.

2.3. Automatic Feature Points Refinement

In this method, the stitched depth comes from the translated adjacent depth. The pose
estimation network gives constantly adjusted poses, which will bring a heavy calculation to
the preprocessing. Therefore, we made the preprocessing dataset with the PnP algorithm,
which including the sparse depth after obtaining the fixed pose and translated depth.

Since there are many moving objects in the traffic scene, the feature points from fast-
moving objects will affect the estimation in previous PnP algorithms. The automatic feature
points refinement proposed as shown in Figure 5, on the left side, the blue point is the
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matched pair of feature points, the gray point is the camera coordinate system position of
feature points (each pair of feature points maps to the same gray point), and the red point
is the fast displacement point in the two imaging. On the right side, we line the matched
feature points, the green line is the point pair successfully selected, and the red line is the
point pair filtered by AFPR-PnP algorithm (the left column is the PnP algorithm designed
by Ma, and the right column is ours).

Figure 5. Automatic feature points’ refinement (AFPR).

Our method adopt the evaluation of moving distance in 3d space to remove interfer-
ence points. For mismatched points, some of these pairs can be filtered in 2D space, while
others are indistinguishable in 2D space, as shown in Figure 5. And such problems can be
improved by converting to 3D space coordinate. Assuming that the coordinate of point
pt on the visible image is (u, v), and the depth at here is d, the 3D space position can be
expressed as pst:

pst = K−1 · d ·
[
u v 1

]T . (13)

Transform the feature points into 3D space position coordinates, and calculate their
pixel distance Dpixel and space distance Dspace.

Dpixel = ||pt − pt+i||2, (14)

Dspace = ||pst − pst+i||2. (15)

We removed the point pairs whose pixel distance Dpixel exceeded thd2 and space
coordinate distance Dspace exceeded thd3.

3. Experimental Evaluation
3.1. Datasets and Setup

This chapter briefly describes the preprocessing of datasets and design experiments to
verify the validity of model.

Datasets: We used KITTI https://www.cvlibs.net/datasets/kitti/raw_data.php
(accessed on 21 November 2022) as our data set. In the data pre-processing, we deleted
the data of the static scene and the camera on the right. It reduces duplicate scenes and
detection points. There are 85,342 training sets. For the test, we selected 1000 test set images
for comparison.

Before training, we preprocess the data set. We calculate the Pose parameter through
the PnP algorithm, translate the point cloud of the adjacent frame to the current camera
coordinate system by parameter, and then splice the translated point cloud according to
Formula (11) to generate D′t. Since the PnP algorithm we use is unchanged for each frame,
the input results can be reused after saving, thus reducing a lot of training pressure.

Our preprocessing is given in the following Algorithm 1 flow chart:

https://www.cvlibs.net/datasets/kitti/raw_data.php
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Algorithm 1 Data set preprocessing

INPUT: RGB images and Lidar data set Itrain
For each episode(RGBt, Dt, RGBt+i, Dt+i) ∈ Itrain ,where i ∈ {−1, 1} do:

1. Calculate the Rtt+i→t from RGB− Dt+i to RGB− Dt, through the AFPR-PnP.
2. We transferred the Dt+i to the same coordinate system as Dt through Rtt+i→t and

internal parameters, then obtained D′t+i from Equation (3).
3. The generated D′t+i and Rtt+i are saved as the pre-preprocessing set Dtrain|i.

Setup: We used PyTorch to train the model and cropped the input image to 352*1216.
In the pre-processing stage, color correction and noise superposition are performed on
the visible light data. We have a learning rate of 10−5. Set the batch size to 4, learn
30 epochs, and train the model with an NVIDIA TITAN RTX. We tested the validity of
proposed module in three test directions. Our depth completion network adopts the
network structure of sparse− to− dense, and the ResNet18 network experiment verifies
the superiority of LossDepth and PnP algorithms. ResNet34 is used to verify the validity of
the deep information mining module. Finally, in comparison with other methods, we also
use resnet34.

The final loss function:

Loss = ω0LossDepth + ω1LossSmooth + ω2Losspe (16)

where ω0, ω1 and ω2 are respectively weights of LossDepth (Function (12)), LossSmooth, and
Losspe (Function (9)).

During the training, the semi-dense depth labels provided by KITTI were not involved
in the calculation. We use the KITTI2012 prediction set https://www.cvlibs.net/datasets/
kitti/raw_data.php (accessed on 21 November 2022) and our output results to calculate
RMSE error as a standard to evaluate the depth completion accuracy because it is the most
representative indicator. RMSE can be expressed as:

RMSE = (
1
|Ω| ∑

x∈Ω
|ẑ(x)− zgt(x)|2)

1
2 , (17)

ẑ denotes the completed depth; zgt denotes the ground-truth depth.
Our training process is given in the following Algorithm 2 flow chart:

Algorithm 2 Flow chart of self-supervised sequence depth constraint training algorithm.

INPUT: RGB images and Lidar data set Itrain, the pre-preprocessing set Dtrain|i
For each episode(RGBt, Dt, RGBt+i, Dt+i) ∈ Itrain and (D′t+i, Rtt+i) ∈ Dtrain|i do:

1. Input RGBt, Dt into network, predict outputPred.
2. By outputting depth Pred, the PnP algorithm estimates pose Rtt+i and camera

internal parameters and maps RGBt+i to the camera coordinate system of RGBt to
calculate photometric loss Eph(RGB′t+i). The formula is given by (7).

3. he photometric loss Eph(RGB′t+i) is used to select and splice Dt+i to obtain D′t, and
the relation is given by (11).

4. Calculate the total loss Function (16).
For each episode(RGBt, Dt, Gtt) ∈ Itest do:

1. Input RGBt, Dt into network, predict outputPred.
2. Calculate the RMSE errors of A with B by the error Formula (17).

https://www.cvlibs.net/datasets/kitti/raw_data.php
https://www.cvlibs.net/datasets/kitti/raw_data.php
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3.2. Results of The Ablation Experiments

Our multi-modal spatio-temporal consistency (MSC) constraint is embodied in using
the consistency of sequence multi-modal information to constrain.

In this section, we compare three self-supervised methods: depth-temporal consistency
(DC) constraint, photometric-temporal consistency(PC) constraint, and multi-modal spatio-
temporal consistency (MSC) constraint.

As shown in Table 1, the depth completion network can converge smoothly with
stitched depth D′t participation in the constraint. As seen in Figure 4, mask comes from
the part of the minimum photometric loss, which is multiplied by D′t+i to filter out most
of the wrong displacement points of D′t. This further demonstrates the effectiveness of
DC constraints.

Table 1. Comparison of self-supervised methods for different sequence modality constraints. The
bold numbers are the best.

Method Network Auto− Mask LossDepth LossSmooth Losspe Layers RMSE

s2d− DC s2dNet
√

0.010 0.1 18 4885.72
s2d− PC s2dNet 0.1 1.0 18 2299.49
s2d18−MSC s2dNet x 0.010 0.1 1.0 18 1379.70
s2d18−MSC− auto s2dNet

√
0.010 0.1 1.0 18 1316.93

s2d34−MSC s2dNet x 0.010 0.1 1.0 34 1241.58
s2d34−MSC− auto s2dNet

√
0.010 0.1 1.0 34 1212.69

kb−MSC kbNet x 0.010 0.1 1.0 1527.37
kb−MSC− auto kbNet

√
0.010 0.1 1.0 1289.67

s2d18−MSC 1 s2dNet
√

0.001 0.1 1.0 18 1503.27
s2d18−MSC 2 s2dNet

√
0.010 0.1 0.1 18 1577.12

Since RGB and depth data values in different range, and we only regularized RGB images,
and the values of LossDepth and LossSmooth are different from Losspe in scale. We tested different
values of ω0 and ω2. There is much space for optimization in the adjusting parameters.

MSC constraint: As can be observed from Table 1, the MSC method has obvious
advantages over single-modal constraint in stable convergence: the lack of any modal
constraint (LossDepth or Losspe) will crimp the network performance.

(1) Depth-temporal consistency constraint (DC): Many works involve the input depth
map in training so that the network will not lose too much depth information. How-
ever, due to the displacement between the RGB camera and LiDAR, some of the
background depth and the foreground depth are mixed in the same occluded area. Re-
taining input depth means retaining these erroneous background depth. Our method
improved this practice and the stitched sequence depth to replace the current depth.

(2) Photometric-temporal consistency constraint (PC): The sequence depth constraint
is too sparse to provide the global constraint. Thus, we introduce the sequence
photometric constraint. As shown in the Table 1, the sequence photometric constraint
is also indispensable, and the superiority of the sequence multi-modal constraint is
also proved. In the DC constraint, this temporal depth data cannot constrain depth
completion directly; it contains displaces depth points. This points can affect the
performance of depth completion, which was also shown in subsequent experiments.
Therefore, we introduce photometric reproject auto-mask to remove these error points,
and the experiment proves that this auto-mask is useful.

(3) Multi-modal spatio-temporal consistency constraint (MSC): The MSC constraint con-
tains DC and PC, containing three loss functions. We tested the effect of their weights
on the two network structure, S2D [6] and KBNet [31]. As can be observed in the
Table 1, the network has the best performance when ω0 = 0.01, ω1 = 0.1, and ω2 = 1.
We tested several weight ratios of LossDepth and Losspe and finally took ω0 = 0.01,
ω1 = 0.1, and ω2 = 1 as the value of the following experiment.
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In addition, we change the input for the experiment, which further verifies that the
network can not only mine spatial information but also learn the depth completion from
RGB information. As shown in the Table 2, input RGB or Gray images can assist depth
completion to generate more accurate depth than input depth only.

Table 2. Experiment and result comparison of spatial information matching mask. The bold numbers
are the best.

Method Input LossDepth LossSmooth Losspe Layers RMSE

1 RGB + Depth 0.01 0.1 1 34 1212.69
2 Depth 0.01 0.1 1 34 1264.01
3 Gray + Depth 0.01 0.1 1 34 1255.51

AFPR-PnP: In this experiment, we demonstrate the reliability of the PnP algorithm
based on automatic feature point refinement. Since S2D [6] have the same pose estimation
method (PnP algorithm) with ours. We preprocess the same dataset with the PnP algorithm
proposed by Ma et al. , train the network in the same way, and compare it with our method.
As shown in Figure 5, our PnP algorithm filtered error points, including points on moving
cars and different objects with repeating textures.

Specifically, we set thd2 = 100(pixel), thd2 = 3(meter).
As shown in Table 3, we performed ablation experiments with S2D [6] and KBNet [31],

the performance for depth completion is enhanced with these methods.

Table 3. Experiment and result comparison of AFPR-PnP algorithms. The bold numbers are the best.

Method Network Depth Constraint Auto− Mask Pose RMSE

s2d s2dNet Dt x PnP(Ma) 1476.76
s2d + DC s2dNet D′t−1 + D′t+1 x PnP(Ma) 1379.70
s2d + DC + PC s2dNet D′t

√
PnP(Ma) 1322.37

s2d + MSC + AFPR s2dNet D′t
√

PnP(AFPR) 1316.93

kbnet kbNet Dt x PnP(Ma) 1495.51
kbnet + DC kbNet D′t−1 + D′t+1 x PnP(Ma) 1361.9
kbnet + DC + PC kbNet D′t

√
PnP(Ma) 1311.12

kbnet + MSC + AFPR kbNet D′t
√

PnP(AFPR) 1289.67

Discussion: In Figure 6, we compare the performance of model-based depth comple-
tion with and without MSC constraint (S2D+MSC(ours) and S2D(Ma)) in detail:

(1) Experiments show that the performance of dark, low-texture parts and distant object
is significantly improved( 1© 2© 3© 4©).

(2) Sequence depth replaces the input depth as a constraint, so the network does not fully
preserve the input depth with its error points. In addition, our photometric similarity
estimation module filters out the occlusion points in adjacent depth. Compared with
the scheme without MSC constraints, our method reduces the influence of displace
points of sparse depth input on depth completion ( 5© 6©).

(3) For dynamic targets ( 4© 7©), our method has better adaptability.
(4) Our method enhances the fusion ability of the network for multi-modal information, so

there will not be a large number of residual sparse points in the image( 1© 2© 5© 6© 7©).
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3.3. Results of The Comparative Experiments

As shown in Table 4, we compared the sequence multi-modal constrain self-supervised
algorithm with other algorithms on the validation dataset and test set of KITTI2012, and
the lower the indicator, the better. We selected DepthComp [5], VOICED [32], SelfDeco [30]
and ddp [27] network pose estimation methods to compare with Ma and other PnP pose
estimation methods. At the same time, we compare different SLAM acquisition methods.
It can be observed that our PnP position estimation method even exceeds the performance
of the pose estimation network methods. The stereo images self-supervised method [28]
avoids the effect of pose translation with the cost of one more camera, which exceeds the
self-supervised scheme of the partial pose estimation network. But our method still has an
advantage over it with only a single camera.

PnP has the advantages of scene generalization and no training but at the cost of
reducing accuracy [5]. However, we still obtain good results with AFPR-PnP algorithm.
Additionally, we classify existing constraint methods into multi-modal spatio-temporal
consistency constraint (MSC) and photometric-temporal constraint (PC). It can be observed
that our MSC constraint method contained DC and PC is more advantageous than only PC.

Discussion: From the comparison (Figure 7) of the output results, our depth com-
pletion is better for the interior of the object, while for the edge of the object, our depth
completion has fewer wrong completions.

Table 4. The experimental results compared with other methods. The bold numbers are the best.

Method SLAM PC/MSC RMSE

Kitti2012 Depth Completion Validation Dataset

S2D [6] PnP PC 1342.33
DepthComp [5] PnP PC 1330.88
DepthComp PoseNet PC 1282.81
SelfDeco [30] PoseNet PC 1212.89
KBNet(withPnP) PnP PC 1289.67
our PnP MSC 1212.69

Kitti2012 Depth Completion Test Dataset

S2D PnP PC 1299.85
IP-Basic [34] PnP PC 1288.46
KBNet(with PnP) PnP PC 1223.59
DFuseNet [28] Stereo / 1206.66
DDP [27] PoseNet PC 1263.19
DepthComp PoseNet PC 1216.26
VOICED(VGG8) [32] PoseNet PC 1164.58
VOICED(VGG11) PoseNet PC 1169.97
ours PnP MSC 1156.78

By synthesizing all the completion results, it can be observed that the self-supervised
completion still has the completion ability for the areas not detected by LiDAR. Compared
with the supervised depth completion, it does not rely on manual labelled ground truths
and has a better application prospect.
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Figure 6. Results of our self-supervised depth completion on the prediction dataset.
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Figure 7. The results of our self-supervised depth completion compared with others.

4. Conclusions

To sum up, this paper completed the design of self-supervised depth completion
without the ground truth. Among the self-supervised depth completion algorithms, our
method is the only one that exploits the MSC constraint. The unique advantage of this
method is that it can improve the performance of depth completion on moving objects
and occluded/dark light/low texture parts, making the use of the multi-modal spatio-
temporal information to the greatest extent. Our experiment demonstrates the effectiveness
of our method, even surpassing many supervised methods. However, our method still has
much room for improvement. In future work, we will put forward more improvement
schemes for the point cloud denoising of sequence LiDAR. Besides, a pose estimation for
real-time spatial translation needs to be proposed, and we will focus on improving its
estimation accuracy. On this basis, we can still observe the great potential for this kind of
self-supervision framework.
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