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Abstract: Hurricanes, rapidly increasing in complexity and strength in a warmer world, are one of
the worst natural disasters in the 21st century. Further studies integrating the changing hurricane
features are thus crucial to aid in the prediction of major hurricanes. With this in mind, we present
a new framework based on automated decision tree analysis, which has the capability to identify
the most important cloud structural parameters from GOES imagery as predictors for hurricane
intensification potential in the Atlantic and Pacific oceans. The proposed framework has been proved
effective for predicting major hurricanes with an overall accuracy of 73% from 6 to 54 h in advance
(both regions combined).
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1. Introduction

With rising global temperatures, it is more difficult to gauge complex ocean and
atmospheric interactions, and hence the potential of a tropical cyclone (TC) to become
much stronger in the short term [1–4]. It has been long disputed whether there is a positive
trend in intensity-related studies given the limited quality and temporal length of the data
(e.g., [5]). However, it is becoming increasingly apparent in the literature that a variety of
TC properties have changed over the past 40 years [2]. Moreover, there are particularities
regarding both the shape and levels of strength, depending on the region where they form
(e.g., [2]). Hurricanes are strong TCs that occur in the Atlantic or northeastern (NE) Pacific
oceans and behave differently than other types of storms. In the face of this complexity, it
is a challenging task to disentangle which hurricane-related parameters or combinations of
parameters and pre-existing factors are fundamental in the hurricane’s growth. Advanced
methods should hence be set up to reflect this complexity to improve early prediction
and enhanced decision-making [6]. A wider comprehension of the most robust hurricane
features and precursors to the formation of a hurricane could certainly help us to be better
prepared for future destructive storms. Without a doubt, the impact of an intensified
hurricane can cause catastrophic damage not only to coastlines, but also hundreds of miles
inland in terms of regional economic impacts and human losses [7].

Over the last two decades a number of different approaches have been proposed to pre-
dict hurricane genesis and intensity evolution (https://www.nhc.noaa.gov/modelsummary.
shtml, accessed on 16 November 2022). The dynamical (or numerical), statistical, and the
blended statistical-dynamical models are the most commonly used ones for intensity pre-
diction. For example, dynamical models, such as the hurricane weather research and
forecast (HWRF) system [8,9], which use numerical models to account for the underlying
physical processes governing the atmosphere with all the adjustments and difficulties that
this entails. These models are also computationally expensive and show a limited range of
intensities that can be simulated [10]. In contrast, statistical models like the multiple linear
regression (MLR) forecast model [11] are based on historical linear relationships between
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storm behavior and storm-specific details. Nevertheless, it would be desirable to consider
the possibility of a complex nonlinearity in this context. Finally, the statistical-dynamical
approaches, such as the statistical hurricane intensity prediction scheme (SHIPS) [12] and
others [13], can also provide guidance in the prediction of future events by combining the
strengths of probabilistic forecasts and dynamical models. Even so, these models still have
some limitations, such as incomplete understanding of air-sea interaction processes and
the absence of high-quality observations of the inner core [13]. They also often use fairly
simple statistical methods, such as multiple linear regression, linear discriminant analysis,
and logistic regression [14]. Another drawback is that these models usually fail for cases
where rapid intensification (RI) occurs (i.e., increase in the maximum sustained winds of a
TC of at least 55 km/h in a 24-h period) [15,16]. In addition to this, most of these models
produce a notable high number of false positives (from 17–50% and up to 90–100% in the
Atlantic basin for intensification rates of about 102 km/h in 48 h or larger), frequently
incorrectly forecasting RI [e.g., 14]. This is a critical disadvantage since most major TCs
globally rapidly intensify at some point in their life cycle [17].

The past few years have seen remarkable advances by incorporating machine learning
(ML) [18], from traditional ML algorithms, including neural networks [19–21], to more
advanced deep learning techniques with complex architectures [13,22]. There are also
ensemble learning methods, such as random forests (RF) or random decision forests. for
classification, regression, and other problems [23], which are less tedious than setting up
a neural network. Yet, they can identify the most important features from the training
dataset and learn complex nonlinear patterns of change over time as the number of trees in
the forest grows [24,25]. Fundamentally, each of the outcomes leads to additional nodes
(outputs of those decisions), which branch off into other possibilities with a “treelike
shape” [26]. The more trees a forest contains, the more accurate it is. Therefore, in this
study, we propose to use RF for major hurricane prediction, and treat the predictability
as a supervised classification problem. A further advantage is that RF is less sensitive
to overfitting compared to other classification techniques [25]. This is because with RF
classifiers, the errors stabilize before a large number of trees is achieved. Perhaps the only
downside to this framework is the fact that such a classification approach does not provide
specific wind intensities, but classes that represent main groups of hurricane categories
over their life cycle (each of which corresponds to a range of intensity values).

Regardless of the method, the majority of studies that investigate TC intensity evolu-
tion are focused on the surrounding large-scale environment (either in terms of complicated
dynamic and thermodynamic processes that have not been fully resolved or key phys-
ical variables in the statistical behavior of the storms). Thus far, less progress has been
made towards integrating the anatomy of the storms in the forecast models [27–29]. In
these studies, instead of dealing directly with environmental dynamics, the focus is on
structural properties from satellite image measurements that can indirectly reflect those
environmental changes (e.g., [30]). Ultimately, the environmental processes clearly leave
some fingerprints in the size, shape, and temperature features of the TC cloud. For instance,
some studies have pointed to a connection between the storm/TC size (and other anatom-
ical structural parameters) and the intensity changes [31–35]. The same applies to other
parameters, including the temperature structure of the storm, which could be just as much,
if not more, important to TC intensity growth. In fact, a basis exists for using the brightness
temperature (BT) information (from GOES imagery), estimated in the outer bands and
central features of TCs for each TC intensity category (tropical storm, minor hurricane, and
major hurricane) [36]. But, nonetheless, the forecasting capability of a model based on all
these (temperature and anatomical cloud) structural properties combined together have
not yet been fully explored in terms of categories [37].

From this perspective, here, we present a novel ML framework to determine an optimal
set of TC cloud properties to assess the hurricane’s growth to a major hurricane. ML is
capable of adapting and making (not always obvious) nonlinear connections between what
it sees in the TC satellite information and the severity categories (based on the maximum
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intensity that the TC attained during its lifetime). To establish this complex relationship,
we use an RF classification model trained to accurately predict classes and categorize the
output into different groups, according to changes in the temperature and anatomical
characteristics of the TC cloud for different lead-times (defined as the time to maximum
development from when the computation is initiated). The classifiers are intrinsically
designed to be trained and simultaneously tested for its accuracy against an actual portion
of the dataset to improve prediction of the classes. Since our intent is to predict major
hurricanes only, to simplify analyses, we have only considered two classes: tropical storms
that remained just below hurricane category 1 status (TSs herein) and TSs that developed
to major hurricane (MH) strength (i.e., hurricanes with category 3, 4 or 5). A detailed
description of the approach can be found in the Materials and Methods section.

This is the first study that explores a unique combination of satellite cloud properties
for major hurricane prediction, and one of the few focused on the use of an RF approach
to this intent. This approach provides a powerful complementary assessment tool for
forecasters, especially when intensification is more dramatic, such as when a tropical
storm becomes a high-intensity TC. It also allows inclusion of additional parameters and
(environmental or other) conditions for additional investigations in the future.

2. Materials and Methods
2.1. Data Products

The International Best Track Archive for Climate Stewardship (IBTrACS) provided
by NOAA [38] was used to obtain the (location and intensity) information of the TCs,
which is available every 3 h. The composite GOES series satellites, such as the infrared
band 4 GOES-8-15 and band 13 GOES-16-17 imagery (https://www.avl.class.noaa.gov/
saa/products/welcome, accessed on 16 November 2022), were converted to brightness
temperature [39,40] to obtain temperature information of the TC cloud’s system at 15 or
30 min intervals. Then, the IBTrACS data was interpolated to the same time resolution
as the one of the satellite images. The period of train/test was set from 1995 (when the
first significantly improved series of GOES was operational) to 2019. The data from 2020
onwards was reserved to explore additional cases of TCs that underwent RI beyond the
period of analysis. The regions of study are the North Atlantic Ocean (from −110◦ to 0◦E
and from 5◦ to 50◦N) and the NE Pacific Ocean (from −180◦ to −75◦E and from 5◦ to 50◦N),
based on the typical TC formation regions (https://www.nhc.noaa.gov/climo/, accessed
on 16 November 2022).

2.2. Model Construction and Evaluation Metrics

For each lead-time, a classification prediction model was built on the ensemble of RF,
performed via 5-fold randomized cross-validation as discussed in this paper (see Figure 1).
Alternatively, other non-parametric supervised methods, such as support vector machine
or k-nearest neighbors, were also explored. However, the best-compromise between bias
and variance [41] was found with our proposed model, according to the output metrics of
the model (also discussed next).

We focus on Cohen’s kappa (k) and precision (pMH) for the model evaluation [42]. The
first metric, defined as k = 2 × (TP × TN − FN × FP)/[(TP + FP) × (FP + TN) + (TP + FN)
× (FN + TN)], is a measure of the observed non-chance agreement between all classifiers (to
categorize the events) divided by the possible amount of non-chance agreement. Note that
a true positive (negative), or TP (TN), is an outcome where the model correctly predicts the
positive (negative) class, i.e., a MH (TS) event (using the MATLAB confusionmat function).
Similarly, a false positive (negative), or FP (FN), indicates that the model incorrectly predicts
the positive (negative) class. The resulting k estimates are interpretable as probabilities of
agreement [43]. The higher the k value, the better the model correctly classifies the events
into the two classes, within its range of [−1, +1]. In addition, the precision or positive
predictive value, defined as pMH = (TP)/(TP + FP), was computed to assess the probability
that an event predicted as positive is positive, as we prioritize the prediction of MHs.

https://www.avl.class.noaa.gov/saa/products/welcome
https://www.avl.class.noaa.gov/saa/products/welcome
https://www.nhc.noaa.gov/climo/
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Furthermore, to improve the computational efficiency of our RF models, the main
hyper-parameter (the number of iterations, aka trees) was tuned by establishing a stopping
criterion based on the mean k score. The general strategy is to update the RF with a
new tree, for each iteration, until there is little-to-no change. This is when each model
reaches “performance saturation” (i.e., the model does not improve significantly in terms
of predictive power). Here, we consider that the accuracy stabilizes when the k metric
has a value just above, and relative to, the mean value for a number of five consecutive
iterations. We find that, although the k scores initially fluctuate over the iterations, the RF
generally saturates no later than with 100 trees. On this account, the number of iterations
was initialized randomly and assessed in increments of 5 trees until it reached 100 iterations.
Throughout these iterations, the algorithm chooses the best k-value over the 100 iterations
meeting that saturation condition. This prior analysis eliminates an arbitrary selection of
the maximum number of iterations, and yields improvements in terms of computational
efficiency as the learning times are reduced.
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relative importance of each predictor (see Figure 2) and 2-way class probabilities (TSs and MHs). 
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Figure 1. RF model architecture to forecast storm intensification to major hurricane. The model
consists of an ensemble of trained decision trees with a feature importance function and a k-fold
iterator. The input parameters are fed into the model, which outputs the feature importance vector
about the relative importance of each predictor (see Figure 2) and 2-way class probabilities (TSs and
MHs). The model performance is evaluated using Cohen’s kappa (k) and precision (pMH) metrics.
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Figure 2. Exemplification of our hybrid ML approach. After all the GOES images are converted to BT,
some hurricane-related parameters are extracted using a k-means clustering method. Then, the most
important parameters, according to our RF classifier, are used to predict the intensification of a TS to
MH status. Among all considered parameters, the most relevant ones are the following: the area, or A,
estimated from the shape (displayed as white contour line); the temperature difference between the
inner core and outer part of the storm cloud, or ∆T; and the morphology (circularity, or C; eccentricity,
or ε). This ML framework sets the basis for the classification-oriented categorization of hurricanes
based on key criteria (related to the anatomical and temperature features of a TC, in this study). The
ability of ML in dealing with different types of ever-shifting TC features and with missing knowledge
is highly important under the impact of climate change. The image (on the left side) corresponds to
Hurricane Mitch (26 October 1998, at 14:45 UTC) in the Atlantic. The variable-importance plots (on
the bottom) are for several lead-times (in colors) before the TCs reach their maximum intensity in
the Atlantic and NE Pacific oceans. C3, C4, C5 stand for category 3, 4, 5 hurricanes, respectively, and
make up the MH class.

3. Results and Discussion
3.1. Optimal Combination of Key Structural Parameters Linked to Tropical Storm Intensification

To determine whether the TC severity categories have a positive association with
the anatomical and temperature behavior of the cloud system, we analyzed their size,
shape, and inner-outer core temperature evolution every 6 h (going backwards in time
starting from the time of maximum intensity peak). Analysis for a range of lead-times is
given in the following subsection. Here, we discuss the methods for extracting the cloud
parameters from GOES measurements and the relative importance of the parameters role
for predicting MHs. The following parameters were considered (see Figure 2): (1) the area
of the associated cloud; (2) the temperature difference between the inner eye and outer
edges of the cloud; (3) the morphological features (circularity and eccentricity).

The boundary map depicting the spatial pattern of the TC cloud was first generated
using a standard unsupervised k-means clustering method [44] applied to GOES BT images
from 1995 (see Materials and Methods), by assuming that the TC is in the region with the
most cloud cover (as in the following Matlab demo: https://blogs.mathworks.com/loren/
2011/01/20/tracking-a-hurricane-using-web-map-service-wms/, accessed on 16 Novem-
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ber 2022). Then, the area parameter was calculated from the specified boundary (using
the MATLAB areaint function). In this way, there is no compelling need to conform to any
predetermined definition or criteria for storm size [45–49].

Next, the difference between the median temperature within the internal (eye) region
and at the external boundary was calculated. For the internal region of the TC cloud,
a 0.6◦ × 0.6◦ (0.7◦ × 0.7◦) window was selected in its center, given by IBTrACS (see
Materials and Methods). This optimal window size in between the internal-to-external
temperature bands was identified after processing all images, and we noted that similar or
slightly bigger windows can still capture the greatest temperature changes between these
contrasting regions. Other parameters representing temperature change within the TCs,
such as the temperature gradient, were compared and also yielded similar results.

Lastly, the morphological aspects of the system tied to the external boundary were
measured (with the MATLAB regionprops function), as it is already known that storms tend
to gain symmetry and a circular structure as they intensify [37,49]. Mainly, we examined
the circularity (“roundness”) and eccentricity (deviation from a perfect circle), individually
and together. These are standard parameters, defined as (4*Area*pi)/(Perimeter2) and the
ratio of the distance between the foci of the ellipse and its major axis length, respectively.
Both parameters range between 0 and 1.

We observed that, while the satellite portrait of a TS or MH is unmistakable (see
Figure 3), the shape and radial profiles of BT temperature for a hurricane are less recogniz-
able before it reaches category 3 and higher. This reinforces the idea of examining only two
classes (as discussed in the introduction), as opposed to all possible groups of categories,
as a way to distinguish simple TSs from those that can potentially become devastating
hurricanes within days (if not hours). Moreover, this binary classification of events [23,50],
often used in the detection of extreme rare events [51], makes the training easier.
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Figure 3. Overview of the main features common to most tropical storms. The images show the
typical shape, dimension, and BT distribution for a TS and MH at their intensity peak over the Atlantic
and the NE Pacific oceans. All figures shown are for illustration purposes only and correspond to:
(a) TS Chantal (1995); (b) category 5 Hurricane Mitch (1998), (c) TS Elida (1996); and (d) category
5 Hurricane Patricia (2015). Units in degrees Celsius.
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All the TC cloud features were then integrated into our RF models together with the
intensity information of the TC using (the MATLAB fitensemble function with) a novel
configuration (see Materials and Methods), which we implemented in an automated
manner to predict the two classes, TSs and MHs. First, due to some imbalance between the
two classes, we resample the data into an equal percentage of samples for each class (and
lead-time). Primarily, we undersampled the majority class (TS) by randomly removing
samples, thereby increasing the presence of the minority class of the samples (MH) in the
training set [52]. The total number of samples for each case are shown in Tables 1–3.

Table 1. Performance metrics of our classification model for each lead-time (in hours, h) in the
Atlantic Ocean. The positive and negative predictive power of the model for both classes (TSs and
MHs) has been assessed using Cohen’s kappa statistic (k). The model precision (pMH) reflects the
accuracy for predicting the MH class. The values for each metric report the mean result across all
folds from all runs. The number of trees (# Trees) corresponds to the number of trees when the
“performance saturation” condition is met. The number of samples (# Samples) is the total number of
events (50% were TSs and 50% MHs).

Time (h) 6 12 18 24 30 36 42 48 54

# Samples 122 128 128 134 126 114 118 100 80
# Trees 29.80 34.20 35.00 27.60 22.20 34.20 12.60 54.00 28.60

pMH (%) 72.10 75.65 84.38 76.78 80.58 76.09 92.67 76.22 77.12
k 0.47 0.50 0.69 0.55 0.64 0.58 0.71 0.58 0.48

Table 2. As in Table 1, but for the NE Pacific Ocean.

Time (h) 6 12 18 24 30 36 42 48 54

# Samples 188 190 192 192 182 170 148 136 106
# Trees 39.20 39.80 37.80 18.40 17.20 48.20 14.60 48.40 15.80

pMH (%) 66.78 70.55 67.72 74.55 72.31 79.79 77.88 70.54 81.79
k 0.34 0.40 0.35 0.49 0.46 0.57 0.59 0.40 0.53

Table 3. As in Table 1, but for the Atlantic and NE Pacific oceans combined.

Time (h) 6 12 18 24 30 36 42 48 54

# Samples 310 318 320 326 308 284 276 236 186
# Trees 32.60 36.40 46.20 47.00 71.80 36.00 22.40 51.20 51.00

pMH (%) 69.12 70.94 72.54 73.71 71.94 71.01 77.49 74.58 73.14
k 0.40 0.42 0.46 0.49 0.46 0.45 0.57 0.47 0.44

The next step was to perform the train-test procedure on an 80/20 split (the best of
all tested splits), where 80% of the dataset is held for training and 20% for testing with no
overlapping cases. Given that the dataset available is relatively small, it was deemed not
appropriate to split the training part again into validation and train to re-test the model
configuration. Nonetheless, our RF classifier consists of many decision trees, and it uses
bootstrap aggregation (or bagging) and feature randomness, a method to randomly select
subsets from the original training set when building each tree to combine the predictions
from all models, which reduces the variance of the performance while maintaining the low
bias of decision trees. The optimal number of trees (or iterations) was established based on
Cohen’s kappa (k) metric (also described in Materials and Methods section).

From the combination of ensemble predictions, a measure of variable importance was
computed (using the MATLAB predictorImportance function). We identified that the most
important predictor variables are the temperature features, the area, and the morphology of
the TC system (in order of importance, see Figure 2). We also determined that the dramatic
differences in the shape of the cloud were slightly better captured by combining both the



Remote Sens. 2023, 15, 119 8 of 15

circularity and eccentricity, rather than with either one of them individually (not shown).
The highest performance was achieved with all the grouped variables in the models as it
helps “balance” every feature of the TC.

For further robustness, the stochastic nature of our models was evaluated using a
cross-validation iterator, such as k-fold, for the Atlantic Ocean, NE Pacific Ocean, and both
regions combined. This resampling procedure divides the data into k random groups of
samples, called folds [41]. As our data was set to k = 5, the 80/20 split for training and
testing data was repeated 5 times, each time with a different subset (using the MATLAB
cvpartition function). All analysis led to the same conclusions above.

3.2. Anticipating Major Hurricane Events

In-depth analysis of the capability of our RF models to predict MHs is given below for
several forecasting lead-times. Considering that generally the average ‘maturity time’ of
a developing major TC event is no more than 2–3 days [53,54], tests were run to deliver
predictions (running backwards) from the maximum sustained wind speed (referred to as
0 h) up to 54 h using a time step of 6 h. A lead-time of, for example, 18 h means that the
prediction of MH is done based on the TC features at 18 h ahead of the time of peak.

Test statistics for MH prediction show that the precision (pMH) ranged between 72%
and 93% (67% and 82%) in the Atlantic (NE Pacific) Ocean, and between 69% and 77% with
both basins combined over the entire forecasting window (see Tables 1–3). The k-values
were (also respectively) 0.58 (and 0.46) on average, meaning overall substantial (moderate)
agreement between each model prediction and the actual class values for both TSs and MHs.
The total number of events goes from 114 (Atlantic) to 192 (Pacific) up to 42 h, but, beyond
this time frame, the numbers are somewhat reduced (with 80 events as the lowest-case
scenario for 54 h in the Atlantic region). As a result, the model forecasting performance is
slightly compromised in these cases. Lastly, close to the (first) maximum intensity peak (up
to 6 h), although the number of cases is relatively large, the TC cloud shows mixed or less
distinct traits, a limiting factor that also affects the learning process of the models to some
extent. Nevertheless, in this case, the forecast accuracy is still fairly high with precision
values of 72% and 67% for the Atlantic and NE Pacific regions, respectively. Combining
datasets from both regions (see Table 3) helps overcome the small dataset problem and
leads to more generalized models, but a somewhat lower forecast precision is found when
applying the resulting models to Atlantic hurricanes (not shown). These results reveal
some differences among regions, despite tropical cyclones having several traits in common,
as described in the present study.

Predictions made with our RF models were also examined for individual cases that
achieved RI. We include here seven examples (see Figures 4–10): category 4 Iota (2020),
category 4 Laura (2020), category 5 Emily (2005), and category 4 Ian (2022) for the Atlantic,
and category 5 Willa (2018), category 4 Odile (2014), and category 5 Patricia (2015) for
the NE Pacific region. Emily and Patricia were of special interest as they were difficult
to forecast by numerical weather prediction models [15,43]. Notably, Patricia, a MH that
rapidly intensified at a rare rate, was the strongest hurricane on record in the NE Pacific
and North Atlantic basins. At least 80% of our models were able to predict a MH (up to
48 h ahead). Emily, the earliest-forming category 5 hurricane on record in the Atlantic basin,
which went through two RI stages, was predicted by 100% of our models (up to 54 h ahead).
All of our RF models also predicted that the MH status would remain as such throughout
its maximum development. Odile is another example of RI that was not anticipated by the
official forecasts because of the poor organization of the cyclone’s inner core and the large
size of the cyclone, but that was predicted again by at least 80% of our models (66 h ahead).
Willa was predicted by 100% of our models (up to 18 h ahead). Another interesting aspect is
that from 60% to 100% of our models anticipated MH status even when applying them on
new data beyond the training period (1995–2019), like in the case of Iota and Laura in 2020
(up to 42 h) or Ian in 2022 (up to 60 h in advance). Note that these three cases, some of the
most devastating hurricanes in U.S. history, underwent RI within 24 h. In all studied cases
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here, the predictive ability of our models was tested outside the range of typical lead-times
(6–54 h). As expected, the RF models are less reliable when the number of trained/tested
data cases decreases (i.e., for lead-times higher than 54 h).

Finally, it is also worth highlighting that our models have a relatively low computa-
tional cost, as a full run (100 trees with 5-fold cross-validation and 9 lead-times) takes about
20 min in the Atlantic (and about 2 min for a specific lead-time).
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Figure 4. Analysis of the hit ratio (HR) for the different prediction models for hurricane Iota (Atlantic
Ocean, 13–18 November 2018). The image shows the track of the TC under consideration for each
lead time since the TS was formed (13 November 2020, at 21:00 UTC) until it reached its maximum
intensity peak, or wind speed (Max WS) (16 November 2020, at 12:00 UTC). The arrow indicates the
rapid increase in scale category as the TC progressed. The table shows the hit ratio (the number of
times that a correct prediction was made out of the total number of predictions) of our RF classifier
for each lead time (as in Tables 1–3). TS and C1-5 stand for tropical storm and category 1–5 hurricanes,
respectively.
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4. Summary and Conclusions

In summary, this study presents some innovations regarding the definition of the
hurricane features, related to the anatomy (size, shape) and temperature (change between
the outer edges and inner-core) of the cloud’s system, obtained using a k-means clustering
algorithm applied to GOES data. Furthermore, these parameters were optimally combined
and linked to the maximum intensity of the TC system in a nonlinear fashion using a novel
random forest algorithm (trained in a 5-fold cross-validation) to predict major hurricanes
events in advance. The final prediction precision is 79% (74%) in the Atlantic (NE Pacific)
Ocean on average for up to 54 h in advance. Thus, our findings demonstrate that the
integration of the prominent cloud features of an incipient tropical cyclone, including the
anatomy and temperature, in a machine learning approach is suitable as a benchmark for
diagnosing a possible transition into a major hurricane. The proposed assessment procedure
also enables the integration of other candidate features or factors (to be progressively
explored). Thus far, there is not enough cases in different seasons for model training
and testing. However, when more data is available in the future, analysis can also be
performed to study the effects of environmental variations, such as seasonality. Moreover,
this design could help towards a decision support system beyond its usefulness regarding
major hurricanes.

Author Contributions: Conceptualization, V.N.; methodology, V.N.; investigation, V.N., J.M-A.
and C.R.; analysis, validation, and data curation, J.M.-A. and C.R.; visualization, J.M.-A. and V.N.;
writing—original draft preparation, J.M.-A. and C.R.; writing—review and editing, V.N.; supervision,
V.N.; funding acquisition, resources, and project administration, V.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is jointly supported by the European Space Agency (contract 4000134529/21/
NL/GLC/my) and Ministry of Culture, Education, and Science of the Generalitat Valenciana (grant
CIDEGENT/2019/055).

Data Availability Statement: All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supporting Information. Additional data related to this paper supporting the
findings of this study is available at https://github.com/AI4OCEANS/, accessed on 16 November 2022.

Acknowledgments: We thank T. Girona for discussions on classification methods.

https://github.com/AI4OCEANS/


Remote Sens. 2023, 15, 119 13 of 15

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bhatia, K.T.; Vecchi, G.A.; Knutson, T.R.; Murakami, H.; Kossin, J.; Dixon, K.W.; Whitlock, C.E. Recent increases in tropical cyclone

intensification rates. Nat. Commun. 2019, 10, 635. [CrossRef] [PubMed]
2. Seneviratne, S.I.; Zhang, X.; Adnan, M.; Badi, W.; Dereczynski, C.; Di Luca, A.; Ghosh, S.; Iskandar, I.; Kossin, J.; Lewis, S.; et al.

Weather and Climate Extreme Events in a Changing Climate. In Climate Change 2021: The Physical Science Basis. Contribution of
Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani,
A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press:
Cambridge, UK; New York, NY, USA, 2021; pp. 1513–1766. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/
report/IPCC_AR6_WGI_Chapter11.pdf (accessed on 16 November 2022).

3. Knutson, T.; Camargo, S.J.; Chan, J.C.L.; Emanuel, K.; Ho, C.-H.; Kossin, J.; Mohapatra, M.; Satoh, M.; Sugi, M.; Walsh, K.;
et al. Tropical Cyclones and Climate Change Assessment: Part I: Detection and Attribution. Bull. Amer. Meteor. Soc. 2019, 100,
1987–2007. [CrossRef]

4. Reed, K.A.; Stansfield, A.M.; Wehner, M.F.; Zarzycki, C.M. Forecasted attribution of the human influence on Hurricane Florence.
Sci. Adv. 2020, 6, eaaw9253. [CrossRef]

5. Landsea, C.W. Comments on “Monitoring and Understanding Trends in Extreme Storms: State of Knowledge”. Bull. Am. Meteorol.
Soc. 2015, 96, 1175–1176. [CrossRef]

6. Alley, R.B.; Emanuel, K.A.; Zhang, F. Advances in weather prediction. Science 2019, 363, 342–344. [CrossRef] [PubMed]
7. Coch, N.K. Inland damage from hurricanes. J. Coast. Res. 2020, 36, 1093–1105. [CrossRef]
8. Tallapragada, V.; Bernardet, L.; Biswas, M.K.; Gopalakrishnan, S.; Kwon, Y.; Liu, Q.; Zhang, X. Hurricane Weather Research and

Forecasting (HWRF) Model: 2013 Scientific Documentation; Developmental Testbed Center: Boulder, CO, USA, 2014. Available online:
http://www.emc.ncep.noaa.gov/gc_wmb/vxt/pubs/HWRFScientificDocumentation2013.pdf (accessed on 16 November 2022).

9. Biswas, M.K.; Bernardet, L.; Abarca, S.; Ginis, I.; Grell, E.; Kalina, E.; Kwon, Y.; Liu, B.; Liu, Q.; Marchok, T.; et al. 2017: Hurricane
Weather Research and Forecasting (HWRF) Model: 2017 Scientific Documentation. In NCAR Technical Note NCAR/TN-544+STR;
Developmental Testbed Center: Boulder, CO, USA, 2018. [CrossRef]

10. Kieu, C.; Keshavamurthy, K.; Tallapragada, V.; Gopalakrishnan, S.; Trahan, S. On the growth of intensity forecast errors in the
operational hurricane weather research and forecasting (HWRF) model. Q J R Meteorol. Soc. 2018, 144, 1803–1819. [CrossRef]

11. Lee, C.Y.; Tippett, M.K.; Camargo, S.J.; Sobel, A.H. Probabilistic Multiple Linear Regression Modeling for Tropical Cyclone
Intensity. Mon. Weather Rev. 2015, 143, 933–954. [CrossRef]

12. DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further improvements to the Statistical Hurricane Intensity Prediction
Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [CrossRef]

13. Xu, W.; Balaguru, K.; August, A.; Lalo, N.; Hodas, N.; DeMaria, M.; Judi, D. Deep Learning Experiments for Tropical Cyclone
Intensity Forecasts. Weather Forecast. 2021, 36, 1453–1470. [CrossRef]

14. DeMaria, M.; Franklin, J.L.; Onderlinde, M.J.; Kaplan, J. Operational Forecasting of Tropical Cyclone Rapid Intensification at the
National Hurricane Center. Atmosphere 2021, 12, 683. [CrossRef]

15. Nystrom, R.G.; Zhang, F. Practical Uncertainties in the Limited Predictability of the Record-Breaking Intensification of Hurricane
Patricia (2015). Mon. Weather Rev. 2019, 147, 3535–3556. [CrossRef]

16. Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone
Intensity Forecasting at the National Hurricane Center. Weather 2020, 35, 1913–1922. [CrossRef]

17. Lee, C.Y.; Tippett, M.; Sobel, A.; Camargo, S.J. Rapid intensification and the bimodal distribution of tropical cyclone intensity. Nat.
Commun. 2016, 7, 10625. [CrossRef]

18. Chen, R.; Zhang, W.; Wang, X. Machine Learning in Tropical Cyclone Forecast Modeling: A Review. Atmosphere 2020, 11, 676.
[CrossRef]

19. Pradhan, R.; Aygun, R.; Maskey, M.; Ramachandran, R.; Cecil, D. Tropical cyclone intensity estimation using a deep convolutional
neural network. IEEE Trans. Image Process. 2018, 27, 692–702. [CrossRef]

20. Lee, J.; Im, J.; Cha, D.-H.; Park, H.; Sim, S. Tropical Cyclone Intensity Estimation Using Multi-Dimensional Convolutional Neural
Networks from Geostationary Satellite Data. Remote Sens. 2020, 12, 108. [CrossRef]

21. Maskey, M.; Ramachandran, R.; Ramasubramanian, M.; Gurung, I.; Freitag, B.; Kaulfus, A.; Bollinger, D.; Cecil, D.J.; Miller, J.
Deepti: Deep-Learning-Based Tropical Cyclone Intensity Estimation System. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020,
13, 4271–4281. [CrossRef]

22. Chen, R.; Wang, X.; Zhang, W.; Zhu, X.; Li, A.; Yang, C. A hybrid CNN-LSTM model for typhoon formation forecasting.
Geoinformatica 2019, 23, 375–396. [CrossRef]

23. Kim, S.-H.; Moon, I.-J.; Won, S.-H.; Kang, H.-W.; Kang, S.K. Decision-Tree-Based Classification of Lifetime Maximum Intensity of
Tropical Cyclones in the Tropical Western North Pacific. Atmosphere 2021, 12, 802. [CrossRef]

24. Auret, L.; Aldrich, C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng.
2012, 35, 27–42. [CrossRef]

25. Belgiu, M.; Drăguţ, L. Random Forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

http://doi.org/10.1038/s41467-019-08471-z
http://www.ncbi.nlm.nih.gov/pubmed/30733439
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter11.pdf
http://doi.org/10.1175/BAMS-D-18-0189.1
http://doi.org/10.1126/sciadv.aaw9253
http://doi.org/10.1175/BAMS-D-13-00211.1
http://doi.org/10.1126/science.aav7274
http://www.ncbi.nlm.nih.gov/pubmed/30679358
http://doi.org/10.2112/JCOASTRES-D-20A-00002.1
http://www.emc.ncep.noaa.gov/gc_wmb/vxt/pubs/HWRFScientificDocumentation2013.pdf
http://doi.org/10.5065/D6MK6BPR
http://doi.org/10.1002/qj.3344
http://doi.org/10.1175/MWR-D-14-00171.1
http://doi.org/10.1175/WAF862.1
http://doi.org/10.1175/WAF-D-20-0104.1
http://doi.org/10.3390/atmos12060683
http://doi.org/10.1175/MWR-D-18-0450.1
http://doi.org/10.1175/WAF-D-20-0059.1
http://doi.org/10.1038/ncomms10625
http://doi.org/10.3390/atmos11070676
http://doi.org/10.1109/TIP.2017.2766358
http://doi.org/10.3390/rs12010108
http://doi.org/10.1109/JSTARS.2020.3011907
http://doi.org/10.1007/s10707-019-00355-0
http://doi.org/10.3390/atmos12070802
http://doi.org/10.1016/j.mineng.2012.05.008
http://doi.org/10.1016/j.isprsjprs.2016.01.011


Remote Sens. 2023, 15, 119 14 of 15

26. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
27. Carrasco, C.A.; Landsea, C. W.; Lin, Y.-L. The influence of tropical cyclone size on its intensification. Weather Forecast. 2014, 29,

582–590. [CrossRef]
28. Bender, M.A.; Marchok, T.P.; Sampson, C.R.; Knaff, J.A.; Morin, M.J. Impact of Storm Size on Prediction of Storm Track and

Intensity Using the 2016 Operational GFDL Hurricane Model. Weather Forecast. 2017, 32, 1491–1508. [CrossRef]
29. Chen, B.-F.; Chen, B.; Lin, H.-T.; Elsberry, R.L. Estimating tropical cyclone intensity by satellite imagery utilizing convolutional

neural networks. Weather Forecast. 2019, 34, 447–465. [CrossRef]
30. Zehr, R.M. Environmental Vertical Wind Shear with Hurricane Bertha (1996). Weather. Forecast. 2003, 18, 345–356. [CrossRef]
31. Wu, L.; Tian, W.; Liu, Q.; Cao, J.; Knaff, J.A. Implications of the observed relationship between tropical cyclone size and intensity

over the western North Pacific. J. Clim. 2015, 28, 9501–9506. [CrossRef]
32. Guo, X.; Tan, Z.-M. Tropical cyclone fullness: A new concept for interpreting storm intensity. Geophys. Res. Lett. 2017, 44,

4324–4331. [CrossRef]
33. Xu, J.; Wang, Y. Dependence of Tropical Cyclone Intensification Rate on Sea Surface Temperature, Storm Intensity, and Size in the

Western North Pacific. Weather Forecast. 2018, 33, 523–537. [CrossRef]
34. Song, J.; Duan, Y.; Klotzbach, P.J. Revisiting the relationship between tropical cyclone size and intensity over the western North

Pacific. Geophys. Res. Lett. 2020, 47, e2020GL088217. [CrossRef]
35. Chen, K.; Chen, G.; Rao, C.; Wang, Z. Relationship of tropical cyclone size change rate with size and intensity over the western

North Pacific. Atmos. Ocean. Sci. Lett. 2021, 14, 100040. [CrossRef]
36. Knaff, J.A.; Longmore, S.P.; Molenear, D.A. An Objective Satellite-Based Tropical Cyclone Size Climatology. J. Clim. 2014, 27,

455–476. [CrossRef]
37. Asif, A.; Dawood, M.; Jan, B.; Khurshid, J.; DeMaria, M.; Minhas, F.A.A. PHURIE: Hurricane intensity estimation from infrared

satellite imagery using machine learning. Neural Comput. Appl. 2020, 32, 4821–4834. [CrossRef]
38. Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate

Stewardship (IBTrACS): Unifying tropical cyclone best track data. Bull. Amer. Meteor. Soc. 2010, 91, 363–376. [CrossRef]
39. Yang, C.; Liu, Z.; Gao, F.; Childs, P.P.; Min, J. Impact of assimilating GOES imager clear-sky radiance with a rapid refresh

assimilation system for convection-permitting forecast over Mexico. J. Geophys. Res. Atmos. 2017, 122, 5472–5490. [CrossRef]
40. Product Definition and User’s Guide (PUG), Volume 5: Level 2+ Products, DCN 7035538, GOES-R/Code 416 (NOAA, 2019).

Available online: https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf (accessed on 16 November 2022).
41. James, G.; Witten, D.; Hastie, T.; Tibshirami, R. Resampling Methods. In An Introduction to Statistical Learning, 2nd ed.; Springer

Texts in Statistics: New York, NY, USA, 2013; p. 181. Available online: https://link.springer.com/content/pdf/10.1007/978-1-07
16-1418-1_5.pdf (accessed on 16 November 2022).

42. Landis, J.; Koch, G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]
43. Pu, Z.; Li, X.; Zipser, E.J. Diagnosis of the Initial and Forecast Errors in the Numerical Simulation of the Rapid Intensification of

Hurricane Emily (2005). Weather Forecast. 2009, 24, 1236–1251. [CrossRef]
44. Gupta, U.; Jitkajornwanich, K.; Elmasri, R.; Fegaras, L. Adapting K-means clustering to identify spatial patterns in storms. In

Proceedings of the 2016 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 5–8 December 2016;
pp. 2646–2654.

45. Wang, Y.; Rosowsky, D. Joint distribution model for prediction of hurricane wind speed and size. Struct. Saf. 2012, 35, 40–51.
[CrossRef]

46. Drake, L. Scientific prerequisites to comprehension of the tropical cyclone forecast, intensity, track, and size. Weather Forecast.
2012, 27, 462–472. [CrossRef]

47. Chan, K.T.F.; Chan, J.C.L. Global climatology of tropical cyclone size as inferred from QuikSCAT data. Int. J. Climatol. 2015, 35,
4843–4848. [CrossRef]

48. Dolling, K.; Ritchie, E.; Tyo, J. The use of the deviation angle variance technique on geostationary satellite imagery to estimate
tropical cyclone size parameters. Weather Forecast. 2016, 31, 1625–1642. [CrossRef]

49. Zhang, G.; Perrie, W.; Zhang, B.; Yang, J.; He, Y. Monitoring of tropical cyclone structures in ten years of RADARSAT-2 SAR
images. Remote Sens. Environ. 2020, 236, 111449. [CrossRef]

50. Wei, Y.; Yang, R. An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the
SHIPS Database. Atmosphere 2021, 12, 484. [CrossRef]

51. Jiang, J.; Huang, Z.G.; Grebogi, C.; Lai, Y.C. Predicting extreme events from data using deep machine learning: When and where.
Phys. Rev. Res. 2020, 4, 023028. [CrossRef]

52. Chawla, N.V. C4.5 and Imbalanced Datasets: Investigating the Effect of Sampling Method Probabilistic Estimate and Decision
tree Structure. In Proceedings of the International Conference on Machine Learning, Workshop on Learning from Imbalanced
Datasets, Washington, DC, USA, 21 August 2003; pp. 1–8. Available online: https://www3.nd.edu/~{}dial/publications/
chawla2003c45.pdf (accessed on 16 November 2022).

http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1175/WAF-D-13-00092.1
http://doi.org/10.1175/WAF-D-16-0220.1
http://doi.org/10.1175/WAF-D-18-0136.1
http://doi.org/10.1175/1520-0434(2003)018&lt;0345:EVWSWH&gt;2.0.CO;2
http://doi.org/10.1175/JCLI-D-15-0628.1
http://doi.org/10.1002/2017GL073680
http://doi.org/10.1175/WAF-D-17-0095.1
http://doi.org/10.1029/2020GL088217
http://doi.org/10.1016/j.aosl.2021.100040
http://doi.org/10.1175/JCLI-D-13-00096.1
http://doi.org/10.1007/s00521-018-3874-6
http://doi.org/10.1175/2009BAMS2755.1
http://doi.org/10.1002/2016JD026436
https://www.goes-r.gov/products/docs/PUG-L2+-vol5.pdf
https://link.springer.com/content/pdf/10.1007/978-1-0716-1418-1_5.pdf
https://link.springer.com/content/pdf/10.1007/978-1-0716-1418-1_5.pdf
http://doi.org/10.2307/2529310
http://doi.org/10.1175/2009WAF2222195.1
http://doi.org/10.1016/j.strusafe.2011.12.001
http://doi.org/10.1175/WAF-D-11-00041.1
http://doi.org/10.1002/joc.4307
http://doi.org/10.1175/WAF-D-16-0056.1
http://doi.org/10.1016/j.rse.2019.111449
http://doi.org/10.3390/atmos12040484
http://doi.org/10.1103/PhysRevResearch.4.023028
https://www3.nd.edu/~{}dial/publications/chawla2003c45.pdf
https://www3.nd.edu/~{}dial/publications/chawla2003c45.pdf


Remote Sens. 2023, 15, 119 15 of 15

53. Gu, Y.; Wu, L.; Zhan, R. Climatology of developing and nondeveloping disturbances for tropical cyclone genesis over the western
North Pacific. Terr. Atmos. Ocean. Sci. 2022, 33, 13. [CrossRef]

54. Kishtawal, C.M.; Jaiswal, N.; Singh, R.; Niyogi, D. Tropical cyclone intensification trends during satellite era (1986–2010). Geophys.
Res. Lett. 2012, 39, L10810. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s44195-022-00012-4
http://doi.org/10.1029/2012GL051700

	Introduction 
	Materials and Methods 
	Data Products 
	Model Construction and Evaluation Metrics 

	Results and Discussion 
	Optimal Combination of Key Structural Parameters Linked to Tropical Storm Intensification 
	Anticipating Major Hurricane Events 

	Summary and Conclusions 
	References

