
Citation: Wang, Z.; Liu, J.; Li, Y.;

Chen, H.; Peng, M. Adaptive

Subspace Signal Detection in

Structured Interference Plus

Compound Gaussian Sea Clutter.

Remote Sens. 2022, 14, 2274. https://

doi.org/10.3390/rs14092274

Academic Editor: Andrzej Stateczny

Received: 19 March 2022

Accepted: 6 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Communication

Adaptive Subspace Signal Detection in Structured Interference
Plus Compound Gaussian Sea Clutter
Zeyu Wang 1,* , Jun Liu 2, Yachao Li 3 , Hongmeng Chen 4 and Mugen Peng 1

1 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China; pmg@bupt.edu.cn

2 Department of Electronic Engineering and Information Science, University of Science and Technology of
China, Hefei 230027, China; junliu@ustc.edu.cn

3 National Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
ycli@mail.xidian.edu.cn

4 Beijing Institute of Radio Measurement, Beijing 100854, China; chenhongmeng123@163.com
* Correspondence: zeyuwang@bupt.edu.cn

Abstract: This paper discusses the problem of detecting subspace signals in structured interference
plus compound Gaussian sea clutter with persymmetric structure. The sea clutter is represented
by a compound Gaussian process wherein the texture obeys the inverse Gaussian distribution. The
structured interference lies in a known subspace, which is independent with the target signal subspace.
By resorting to the two-step generalized likelihood ratio test, two-step Rao, and two-step Wald design
criteria, three adaptive subspace signal detectors are proposed. Moreover, the constant false-alarm
rate property of the proposed detectors is proved. The experimental results based on IPIX real sea
clutter data and simulated data illustrate that the proposed detectors outperform their counterparts.

Keywords: adaptive radar target detection; interference rejection; compound Gaussian sea clutter;
persymmetric structure

1. Introduction

In recent years, adaptive signal detection has received considerable attention in radar,
sonar, and communications [1,2]. The most representative adaptive radar target detectors
are Kelly’s generalized likelihood ratio test [3] (GLRT) and Robey’s two-step GLRT, which is
also called the adaptive matched filter [4]. In the classical detectors, the signal is assumed as
the product of the unknown amplitude and the completely known steering vector. However,
the signal signature is always uncertain due to the beampointing error, uncalibrated arrays,
sidelobe targets, etc. Subspace model is an effective way to deal with the steering vector
uncertain [5]. In some other applications such as polarimetric detection [6], the signal can
also be formulated by a subspace model.

To detect subspace signals, Kraut [7] derived the adaptive subspace detector in the
partially homogeneous noise wherein the training data can accurately represent the noise
structure but not the noise level. In [8], a new modified Rao test is proposed by introduc-
ing a tunable parameter, and the analytical expressions for the false-alarm and detection
probabilities of the modified Rao test are also given. Kelly’s GLRT and the traditional Rao
test are two special cases of the modified Rao test. Detection of subspace signals in the
presence of the signal-dependent interference wherein the clutter depends on the transmit
signal is considered in [9]. The problem of detecting subspace random signals in the com-
pound Gaussian clutter is discussed in [10], and the optimum Neyman–Pearson detector,
GLRT-based detector, and constant false-alarm rate (CFAR) detector have been proposed.

In practical radar target detection scenarios, besides clutter, radar echoes are often
contaminated by unintentional or intentional interference released by civil broadcasting
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and electronic countermeasure systems [11–14]. Among them, coherent interference can de-
ceive the radar by generating false targets and seriously degrade radar performance [15,16].
When prior information of coherent interference can be obtained by electronic support mea-
sures, etc.; it is also called subspace interference or structured interference. The point-like
signals detection problem in Gaussian clutter and subspace interference was discussed
in [17]. Two Wald-based detectors are designed in homogeneous and partially homoge-
neous environment under the condition that the interference belongs to a subspace with
unknown coordinates. For the detection of distributed targets, one-step and two-step
GLRT decision rules [18] were utilized to design detectors in subspace interference plus
homogeneous and partially homogeneous clutter. In [19], persymmetric property was
exploited to improve detection performance for multi-rank subspace signals detection in
partially homogeneous clutter and structured interference. By modeling the texture as
a random variable, Gao [20] et al. considered distributed targets detection problem in
structured interference and pareto-distributed clutter.

Most of the above works assume that the clutter is Gaussian. The assumption is invalid
for sea clutter especially when grazing angles are low, or high-resolution radars are used.
The compound Gaussian clutter model is a popular model to describe sea clutter and has
been demonstrated by experimental data and theoretical arguments. In [21], the authors
discussed detection problem of radar targets in compound Gaussian with inverse Gaussian
texture (CG-IG) clutter and showed that CG-IG can fit sea clutter better in some cases than
pareto-distribution and K-distribution clutter. However, detectors in [21] were designed
without taking into account the interference. Since there is no uniformly most powerful
invariant test for the detection problem at hand, the GLRT may not be the best decision
rule. In addition to GLRT, Rao and Wald tests only need to estimate unknown parameters
under hypothesis H0 or H1, which usually has a smaller computational cost.

Thus, in this paper, we propose three adaptive subspace detectors for radar target
detection by resorting to the two-step Rao test, two-step Wald test, and two-step GLRT
decision rules in structured interference plus CG-IG clutter. In nonhomogeneous sce-
narios, sufficient training data that are independent and identically distributed with the
primary data are difficult to obtain [22–25]. To reduce the requirement of training data,
the persymmetric structure of the clutter covariance matrix (CM) is exploited in this paper.
The persymmetric property holds if the radar array is symmetrically distributed about
the phase center, or equally spaced pulse trains are utilized [26,27]. We also analyze the
CFAR property of the proposed detectors. Experimental results illustrate that the proposed
detectors can effectively suppress interference and exhibit good detection performance in
the training-limited cases.

We organize the reminder of the paper as follows: In Section 2, we give the formula
of the considered detection problem. We design three new subspace signal detectors in
Section 3. In Section 4, we carry out experiments based on real data and simulated data
to test the detection performance of the new detectors. We draw some conclusions in
Section 5.

Notations: Matrices (vectors) are denoted by uppercase (lowercase) bold letters. CA×B

denotes the A× B dimensional complex matrix. Superscripts (·)H , (·)T , (·)∗, and (·)−1

denote conjugate transpose, transpose, conjugate, and inverse. real(·) is the real part of a
complex matrix. CN(m, R) denotes the circularly symmetric complex normal distribution
with mean m and covariance matrix R.

Table 1 gives a list of acronyms used throughout the paper.
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Table 1. Acronyms of the paper.

Acronym Definition

CFAR Constant false-alarm rate
CG-IG Compound Gaussian with inverse Gaussian texture
CM Covariance matrix
GLRT Generalized likelihood ratio test
ICR Interference to clutter ratio
MLE Maximum likelihood estimate
PDF Probability density function
PFP Persymmetric fixed point
PMF Persymmetric matched filter

PS-GLRT-CG-I Persymmetric GLRT in the compound Gaussian clutter
plus deterministic interference

PS-Rao-CG-I Persymmetric Rao test in the compound Gaussian
clutter plus deterministic interference

PS-Wald-CG-I Persymmetric Wald test in the compound Gaussian
clutter plus deterministic interference

ROC Receiver operating characteristic
SCR Signal to clutter ratio

2. Problem Formula

Assume that radar echoes are acquired from N spatial or/and temporal channels. The
primary data are denoted as an N-dimensional column vector z0. The training data, which
contain the disturbance only [16,20], are denoted by zk ∈ CN×1, k = 1, . . . , K. We want to
decide whether the received data contain the target signal or not. We express the detection
problem to be solved as the binary hypothesis testing as follows:

H0 :
{

z0 = Jϕ+ n0,
zk = nk, k = 1, . . . , K

H1 :
{

z0 = Hφ + Jϕ+ n0,
zk = nk, k = 1, . . . , K

(1)

where Hφ and Jϕ are the useful target signal and the interference. The interference and
target signal belong to two linearly independent subspaces J ∈ CN×Q and H ∈ CN×p,
p + q ≤ N. H and J are both known full-column-rank matrices [11,17–20], φ is unknown
signal coordinate, and ϕ is unknown interference coordinate.

The clutter n0 and nk follow the compound Gaussian distribution: nl =
√

τlg′,
l = 0, . . . , K. The speckle component g′ satisfies: g′ ∼ CN(0, R). Since the CG-IG
clutter can describe sea clutter well and provide better fit than the K distribution or the
pareto distribution for the sea clutter in some situations, we assume that τl obeys the inverse
Gaussian distribution:

f (τl) =

√
vl
2π

τ−3/2
l exp

[
−vl(τl − ul)

2

2u2
l τl

]
, l = 0, . . . , K (2)

where ul and vl are scale and shape parameters.
According to Proposition 1 in [28], we constructed a unitary matrix T to exploit the

persymmetric structure. The unitary matrix T is defined as

T =


1√
2

(
IN/2 DN/2
jIN/2 −jDN/2

)
f or N even

1√
2

 I(N−1)/2 0 D(N−1)/2
0

√
2 0

jI(N−1)/2 0 −jD(N−1)/2

 f or N odd
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where IN is an N-dimensional identity matrix; D is a permute matrix whose antidiagonal
elements are 1, and the other elements are 0. Multiplying by the unitary matrix T, the
detection problem (1) can be reformulated as

H0 :
{

x0 = Qϕ+ c0,
xk = ck, k = 1, . . . , K

H1 :
{

x0 = Sφ + Qϕ+ c0,
xk = ck, k = 1, . . . , K

(3)

where x0 = Tz0, xk = Tzk, c0 = Tn0, ck = Tnk, g = Tg′, S = TH, Q = TJ, and Σ = TRTH .
From above definitions, the probability density functions (PDFs) of the primary data x0 is

f (x0|τ0, φ,ϕ, Σ, Hσ) =
1

πN τN
0 det(Σ)

exp
[
− 1

τ0
(x0 − σSφ−Qϕ)HΣ−1(x0 − σSφ−Qϕ)

]
, (4)

where σ = 0 denotes null hypothesis H0, and σ = 1 denotes alternative hypothesis H1.

3. Adaptive Persymmetric Detectors Design

Since it is mathematically intractable to derive one-step detectors in compound Gaus-
sian clutter when the texture is random [29], we resort to the two-step Rao test, two-step
Wald test, and two-step GLRT to detect targets.

3.1. Adaptive Two-Step Persymmetric GLRT

The GLRT based on the primary data with known speckle CM Σ is

max
φ,ϕ

∫
f (x0|τ0, φ,ϕ, Σ, H1) f (τ0)dτ0

max
ϕ

∫
f (x0|τ0,ϕ, Σ, H0) f (τ0)dτ0

H1
>
<
H0

η (5)

Plugging (2) and (4) into (5), we have the integration terms in the denominator:∫
f (x0|τ0,ϕ, Σ, H0) f (τ0)dτ0

= (πu0)
−N− 1

2 |Σ|−1 exp
(

v0
u0

)√
2v0

(
1 + 2T0

v0

)(− N
2 −

1
4 )
(

1
2

)(N+3/2)
(

v2
0+2v0T0

u2
0

)( N
2 + 1

4 )

×
∫ ( v0τ0

2u2
0

)−(N+3/2)
exp

{
− v0τ0

2u2
0
− (v0 + 2T0)/2τ0

}
d
(

v0τ0
2u2

0

)
∝
(

1 + 2T0
v0

)− N
2 −

1
4 KN+ 1

2

(
v0
u0

√
1 + 2T0/v0

)
(6)

where T0 = (x0 −Qϕ)HΣ−1(x0 −Qϕ), Kn(·) is the modified Bessel function of the second
kind with order n. We get the integration results under H1 in a similar way:

∫
f (x0|τ0, φ,ϕ, Σ, H1) f (τ0)dτ0 ∝

(
1 +

2T1

v0

)− N
2 −

1
4
KN+ 1

2

(
v0

u0

√
1 + 2T1/v0

)
(7)

where T1 = (x0 −Wψ)HΣ−1(x0 −Wψ), ψ =
[
φT ,ϕT]T , and W = [S, Q].

We obtain the maximum likelihood estimates (MLEs) of ϕ and ψ by taking the
derivative of (6) and (7) with respect to ϕ and ψ and setting the results to zero. Let
y1 = v0

u0

√
1 + 2T1/v0, y0 = v0

u0

√
1 + 2T0/v0. According to the property of the modified

Bessel function of the second kind [30], we have

dϕ(y0)
−(N+ 1

2 )KN+ 1
2
(y0) = −(y0)

−(N+ 1
2 )KN+ 1

2+1(y0)dϕ(y0) (8)
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After some calculation, we can obtain the MLEs of ϕ and ψ

ϕ̂ =
(

QHΣ−1Q
)−1

QHΣ−1x0 (9)

ψ̂ =
(

WHΣ−1W
)−1

WHΣ−1x0 (10)

In the compound Gaussian clutter, the estimate of the unknown speckle CM with
persymmetric structure is persymmetric fixed point (PFP) CM Σ̂PFP. We obtain the fully
adaptive persymmetric GLRT in the compound Gaussian clutter plus deterministic inter-
ference (PS-GLRT-CG-I) by inserting (6), (7), (9) and (10), and Σ̂PFP into (5):

(
v0 + 2T̃1

)− N
2 −

1
4 KN+ 1

2

(
v0
u0

√
1 + 2T̃1/v0

)/[(
v0 + 2T̃0

)− N
2 −

1
4 KN+ 1

2

(
v0
u0

√
1 + 2T̃0/v0

)] H1
>
<
H0

η (11)

where T̃0 = x̃H
0 P⊥

Q̃
x̃0, T̃1 = x̃H

0 P⊥
W̃

x̃0, x̃0 = Σ̂
− 1

2
PFPx0, Q̃ = Σ̂

− 1
2

PFPQ, P⊥
Q̃
= I− Q̃

(
Q̃

H
Q̃
)−1

Q̃
H

,

W̃ = Σ̂
− 1

2
PFPW, P⊥

W̃
= I − W̃

(
W̃

H
W̃
)−1

W̃
H

, Σ̂PFP = real
(
TΣ̂FPTH), Σ̂FP = N

K

K
Σ

k=1

ckcH
k

ckΣ̂
−1
FP cH

k

,

Σ̂FP(0) = N
K

K
Σ

k=1

ckcH
k

cH
k ck

.

3.2. Adaptive Two-Step Persymmetric Rao Test

Different from [21], we treat the complex-valued variable in the Rao test and Wald test
as a single one to avoid the time-consuming problem of dividing it into real and imaginary
parts. Since the interference can be nulled more effectively by setting the relative parameter
to contain both the signal and interference coordinates [11], we set the relative parameter
θr in the Rao test and Wald test as θr =

[
φT ,ϕT]T

= ψ.
The Rao test for complex-valued signals based on the primary data with known

speckle CM is

∂ ln f (x0|θ, Σ, H1)

∂θr

∣∣∣∣T
θ=θ̂0

[
J−1(θ̂0

)]
θr ,θr
× ∂ ln f (x0|θ, Σ, H1)

∂θr∗

∣∣∣∣
θ=θ̂0

H1
>
<
H0

ε (12)

where θr =
[
φT ,ϕT]T is a (p + q)-dimensional vector; θs = τ0, θ =

[
θT

r , θT
s
]T is a

(p + q + 1)-dimensional vector. θ̂0 is the MLE of θ under H0. J(θ) is Fisher informa-
tion matrix, which can be partitioned as four block matrices Jθr ,θr (θ), Jθr ,θs(θ), Jθs ,θr (θ), and
Jθs ,θs(θ).

After some calculation, we obtain the following results

∂ ln f (x0|θ, Σ, H1)

∂θr∗
=

1
τ0

WHΣ−1(x0 −Wψ) (13)

∂ ln f (x0|θ, Σ, H1)

∂θT
r

=
1
τ0
(x0 −Wψ)HΣ−1W (14)

Jθr ,θr (θ) =
1
τ2

0
WHΣ−1E

[
(x0 −Wψ)(x0 −Wψ)H

]
Σ−1W =

1
τ0

WHΣ−1W (15)

Jθr ,θs(θ) = 0(p+q)×1 (16)

{[
J−1(θ)

]
θr ,θr

}−1
= Jθr ,θr (θ)− Jθr ,θs(θ)J

−1
θs ,θs

(θ)Jθs ,θr (θ) = Jθr ,θr (θ) =

[
τ0

(
WHΣ−1W

)−1
]−1

(17)
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The estimates of the unknown parameters are also needed. We obtain the ML estimate
of ϕ by setting the derivative of (4) with respect to ϕ to zero.

ϕ̂0 =
(

QHΣ−1Q
)−1

QHΣ−1x0 (18)

Since the equation φ0 = 0p×1 holds under H0, the ML estimate of θr is θ̂r,0 =
[
0T ,ϕ̂T

0
]T .

In the second step, we estimate the texture and speckle CM. The MAP estimate of the
texture is

τ̂0 = arg max
τ0

f (x0|τ0,ϕ̂0, Σ, H0) f (τ0) =
u2

0
v0

[√(
N + 3

2
)2

+ 2v0
u2

0

(
xH

0 P⊥
Q

x0 +
v0
2

)
−
(

N + 3
2
)]

(19)

where x0 = Σ−
1
2 x0, Q = Σ−

1
2 Q, P⊥

Q
= I −Q

(
QHQ

)−1
QH

. By substituting (13)–(19)
and PFP CM into (12) and ignoring the constants, the two-step persymmetric Rao test in
compound Gaussian clutter plus deterministic interference (PS-Rao-CG-I) is

v0x̃H
0 P⊥

Q̃
PW̃P⊥

Q̃
x̃0

/{
u2

0

[√(
N + 3

2
)2

+ 2v0

(
x̃H

0 P⊥
Q̃

x̃0 +
v0
2

)
/u2

0 −
(

N + 3
2
)]} H1

>
<
H0

ε (20)

where PW̃ = W̃
(

W̃
H

W̃
)−1

W̃
H

.

3.3. Adaptive Two-Step Persymmetric Wald Test

In this part, two-step design procedure is utilized to derive the Wald test. We first
derive the Wald test with known θ, Σ and then replace them with their estimates. The Wald
test for complex-valued signals is

(
θ̂H

r,1 − θH
r,0

)([
J−1(θ̂1

)]
θr ,θr

)−1(
θ̂r,1 − θr,0

) H1
>
<
H0

ζ (21)

where θH
r,0 is the true value of θr under H0, θ̂H

r,1 denotes the MLE of θr under H1, and θ̂1
denotes the MLE of θ under H1.

Substituting (17) into (21), we obtain the Wald test with known θ, Σ:

1
τ0

[
φH , 0H

]
WHΣ−1W

 φ

0

 H1
>
<
H0

ζ (22)

In the second step, we estimate θ, Σ under H1. We take the derivative of (4) with
respect to ψ and set the result to zero to obtain the MLE of ψ under H1.

ψ̂1 =
[
φ̂T

1 ,ϕ̂T
1

]T
=
(

WHΣ−1W
)−1

WHΣ−1x0 (23)

We substitute W = [S, Q] to (23) and obtain the MLE of φ under H1 according to the
partitioned matrix inversion lemma [31]

φ̂1 =
(

SHP⊥QS
)−1

SHP⊥Qx0 (24)

where S = Σ−
1
2 S. The MAP estimate of τ under H1 can be calculated as

τ̂0 = arg max
τ0

f
(
x0
∣∣τ0, ψ̂1, Σ, H1

)
f (τ0) =

u2
0

v0

[√(
N + 3

2
)2

+ 2v0
u2

0

(
xH

0 P⊥Wx0 +
v0
2

)
−
(

N + 3
2
)]

(25)
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where W = Σ−
1
2 W, P⊥W = I −W

(
WHW

)−1
WH .

Plugging (23)–(25) and the PFP CM Σ̂PFP into (22), we obtain the adaptive two-step
persymmetric Wald test in compound Gaussian clutter plus deterministic interference
(PS-Wald-CG-I):

v0 x̃H
0 PH

S̃|Q̃PS̃|Q̃ x̃0/
{

u2
0

[√(
N + 3

2
)2

+ 2v0

(
x̃H

0 P⊥
W̃

x̃0 +
v0
2

)
/u2

0 −
(

N + 3
2
)]} H1

>
<
H0

ζ (26)

where S̃ = Σ̂
− 1

2
PFPS, P⊥

W̃
= I−PW̃, PS̃|Q̃ = S̃

(
S̃

H
P⊥

Q̃
S̃
)−1

S̃
H

P⊥
Q̃

, PQ̃|S̃ = Q̃
(

Q̃
H

P⊥
S̃

Q̃
)−1

Q̃
H

P⊥
S̃

.
All the three proposed detectors have been proven to have the CFAR property. We

give the detailed proof in the Appendix A.

4. Performance Assessment

The detection performance of the proposed detectors is assessed by utilizing Monte
Carlo simulations in this section. We resort to 100/Pf a independent trials to compute
the thresholds and detection probabilities. The (i, j) element of speckle CM R is
R(i, j) = ρ|i−j|, ρ = 0.9. Unless otherwise specified, we set H =

[
h( f1), . . . , h

(
fp
)]

, h( fs) =[
1, e−j2π fs , . . . , e−j2π fs(N−1)

]T
, J =

[
j( f1), . . . , j

(
fq
)]

, j( fm) =
[
1, e−J2π fm , . . . , e−J2π fm(N−1)

]T
,

fs = 0.2s, s = 1, . . . , p, m = 1, . . . , q, and fm = −0.2 + 0.01m. Other parameters of the simu-
lated data are shown in Table 2. The interference to clutter ratio (ICR) and signal to clutter
ratio (SCR) are defined as ICR = trace

(
ϕHJHJϕ

)
/Nu and SCR = trace

(
φH HH Hφ

)
/Nu.

Table 2. Parameters of the simulated data.

Parameters Values

Shape parameter 0.5
Scale parameter 1

False-alarm probability 10−3

N 8
p 1
q 3

4.1. Simulated Data Results

Figure 1 shows false-alarm probabilities of the proposed persymmetric detectors (PS-
Rao-CG-I, PS-Wald-CG-I, and PS-GLRT-CG-I) versus correlation coefficients when K = 2N.
The detection threshold is obtained by setting ρ = 0.4. The figure shows that probabilities
of false alarm remain almost the same under different correlation coefficients. Thus, both
theoretical analysis and simulation results verify that the PS-Rao-CG-I, PS-Wald-CG-I, and
PS-GLRT-CG-I are CFAR detectors.
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In Figure 2a,b, we present probabilities of detection of the proposed PS-Rao-CG-I,
PS-Wald-CG-I, and PS-GLRT-CG-I as a function of SCR for different K. For comparison, we
give the performance of the PS-GLRT-I [19] proposed in partially homogeneous clutter plus
subspace interference. The performance of the PS-GLRT-CG, PS-Rao-CG, PS-Wald-CG [21],
and the GLRT-ML-CG [29], which are proposed in the compound Gaussian clutter but
without considering the interference, is also given. Moreover, the performance of the
persymmetric matched filter (PMF), which is derived with known covariance matrix R, is
given just as a benchmark since R is unknown in real applications [32,33].
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Figure 2a,b indicate that the proposed PS-Rao-CG-I, PS-Wald-CG-I, and PS-GLRT-
CG-I achieve better detection performance than the conventional detectors. The proposed
detectors achieve about 14 dB and 6 dB performance gains compared to the PS-GLRT-
CG, PS-Rao-CG, and PS-Wald-CG for K = N and K = 4N, respectively. The proposed
detectors achieve about 2 dB performance gain at Pd = 0.9 compared to the PS-GLRT-I.
When K = 4N, the performance of the proposed detectors approaches that of the PMF. This
can be attributed to the reason that the proposed detectors exploit both the persymmetric
structure of the speckle CM and prior distribution of the texture, while the PS-GLRT-I
exploits persymmetric property of the speckle CM but assumes that the texture is a constant.
Meanwhile, the PS-GLRT-CG, PS-Rao-CG, PS-Wald-CG, and GLRT-ML-CG do not consider
the presence of the interference.

In Figure 3a,b, the receiver operating characteristic (ROC) of the detectors for SCR = − 5 dB,
K = 2N and SCR = 5 dB, K = 2N are displayed. The figures indicate that the proposed
detectors are superior to conventional methods in a wide range of Pf a.
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The detection performance of the PS-Rao-CG-I, PS-Wald-CG-I, and PS-GLRT-CG-I
under different ICRs is analyzed in Figure 4. We can see that the detection probabilities of
the three proposed detectors remain almost the same under different ICRs. The detection
performance does not vary with ICR.
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To see the detection performance of the PS-Rao-CG-I, PS-Wald-CG-I, and
PS-GLRT-CG-I in the mismatched signal cases, we define mismatch angle as

cos2 φ =
∣∣∣tr(HHΣ−1H0

)∣∣∣2/
[
tr
(

HHΣ−1H
)

tr
(

H0Σ−1H0

)]
, where H and H0 denote

the nominal and actual target subspaces. The smaller cos2 φ, the more serious the
mismatch between the nominal target subspaces and actual one. The SCR becomes
SCR = Trace

(
φHHH

0 H0φ
)
/Nu. It can be seen from Figure 5 that when SCR is small,

PS-Rao-CG-I is the most selective when the signal mismatch occurs. As SCR increases, the
PS-Wald-CG-I is the most sensitive to mismatched signals, while the PS-Rao-CG-I is more
robust than PS-Rao-CG-I and PS-GLRT-CG-I.

Remote Sens. 2022, 14, 2274 10 of 14 
 

 

To see the detection performance of the PS-Rao-CG-I, PS-Wald-CG-I, and PS-GLRT-

CG-I in the mismatched signal cases, we define mismatch angle as 

( ) ( ) ( )
2

2 1 1 1

0 0 0cos tr tr trH H − − − =
 

H H H H H H   , where H  and 0H  denote the 

nominal and actual target subspaces. The smaller 2cos  , the more serious the mismatch 

between the nominal target subspaces and actual one. The SCR becomes 

( )0 0SCR trace H H Nu= H H  . It can be seen from Figure 5 that when SCR is small, PS-Rao-

CG-I is the most selective when the signal mismatch occurs. As SCR increases, the PS-

Wald-CG-I is the most sensitive to mismatched signals, while the PS-Rao-CG-I is more 

robust than PS-Rao-CG-I and PS-GLRT-CG-I. 

 

(a) (b) 

Figure 5. Contours of const 
dP  for the proposed detectors: (a) K N= ; (b) 4K N= . 

4.2. Real Data Results 

For purpose of further demonstrating the effectiveness of the proposed PS-Rao-CG-

I, PS-Wald-CG-I, and PS-GLRT-CG-I, real sea clutter data measured with IPIX radar in 

1998 [34] are used to test the performance of the detectors. The selected data are dataset 

85 in VV polarization. Table 3 shows the main parameters of the real sea data. 

Table 3. Parameters of the real data. 

Range Resolution Range Cells Range 

15 m 34 3501–3996 m 

The simulated target signal and interference signal are added in the 16th range bin 

wherein the data are chosen as the primary data. The training data are chosen from the 

data in range bins adjacent to the primary data. Figure 6a gives the amplitudes of the 

chosen primary data. The amplitude PDF of the real data is analyzed in Figure 6b. The 

results show that the real sea clutter can be fitted well with the inverse Gaussian distribu-

tion. 

  

Figure 5. Contours of const Pd for the proposed detectors: (a) K = N; (b) K = 4N.

4.2. Real Data Results

For purpose of further demonstrating the effectiveness of the proposed PS-Rao-CG-
I, PS-Wald-CG-I, and PS-GLRT-CG-I, real sea clutter data measured with IPIX radar in
1998 [34] are used to test the performance of the detectors. The selected data are dataset 85
in VV polarization. Table 3 shows the main parameters of the real sea data.

Table 3. Parameters of the real data.

Range Resolution Range Cells Range

15 m 34 3501–3996 m
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The simulated target signal and interference signal are added in the 16th range bin
wherein the data are chosen as the primary data. The training data are chosen from the data
in range bins adjacent to the primary data. Figure 6a gives the amplitudes of the chosen
primary data. The amplitude PDF of the real data is analyzed in Figure 6b. The results
show that the real sea clutter can be fitted well with the inverse Gaussian distribution.
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Figure 6. Clutter amplitude and amplitude probability density function for VV polarizations, 16th
range cell, dataset 85: (a) clutter amplitude; (b) amplitude probability density function.

Since the amount of real data is limited, we set N = 6. The detection probability versus
SCR for N = 6 and various K is displayed in Figure 7. The figure shows that the proposed
detectors achieve more than 2 dB detection performance gain compared to the PS-GLRT-I
and more than 10 dB detection performance gain compared to the PS-GLRT-CG, PS-Rao-CG,
and PS-Wald-CG. Thus, both the real data and simulated data results demonstrate that
compared with conventional detectors, the proposed PS-GLRT-CG-I, PS-Rao-CG-I, and
PS-Wald-CG-I can achieve better detection performance in deterministic interference plus
compound Gaussian sea clutter environment.
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5. Conclusions

The problem of adaptive subspace signal detection in compound Gaussian clutter plus
deterministic interference were herein considered. The texture is random and follows the
inverse Gaussian distribution. The target signal and interference occupy two independent
known subspaces. Three new CFAR detectors, i.e., PS-Rao-CG-I, PS-Wald-CG-I, and PS-
GLRT-CG-I, were proposed by utilizing the persymmetric structure of the clutter CM. Real
sea clutter data and simulated data results have demonstrated that the proposed detectors
can effectively suppress interference and exhibit good detection performance in complex
environments. Since the PS-Rao-CG-I, PS-Wald-CG-I, and PS-GLRT-CG-I are proposed
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when the subspaces occupied by the target signal and interference are independent, future
research may focus on the situation when the two subspaces overlap each other. Moreover,
it would be interesting to investigate and design detectors based on other design criteria,
such as gradient and Durbin tests.

Author Contributions: The research presented in this manuscript was accomplished in collaboration
with all of the authors. Conceptualization, Z.W. and J.L.; methodology, Z.W. and J.L.; software, Z.W.
and Y.L.; validation, Y.L. and H.C.; formal analysis, H.C.; investigation, Z.W. and Y.L.; resources, Z.W.;
data curation, Z.W.; writing—original draft preparation, Z.W.; writing—review and editing, J.L. and
H.C.; visualization, Y.L.; supervision, M.P.; project administration, M.P. and J.L.; funding acquisition,
J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China, grant number
61871469 and 61771442, Youth Innovation Promotion Association CAS, grant number CX2100060053,
Key Research Program of the Frontier Sciences, CAS, grant number QYZDY-SSW-JSC035.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the anonymous reviewers and the associate
editor for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

From the proposed PS-Rao-CG-I (20), PS-Wald-CG-I (26), and PS-GLRT-CG-I (11),
we can see that the test statistics are functions of x̃H

0 P⊥
Q̃

PW̃P⊥
Q̃

x̃0, x̃H
0 P⊥

W̃
x̃0, x̃H

0 P⊥
Q̃

x̃0, and

x̃H
0 PH

S̃|Q̃PS̃|Q̃x̃0. We rewrite the numerator of the PS-Rao-CG-I as

x̃H
0 P⊥

Q̃
PW̃P⊥

Q̃
x̃0

= x̃H
0 P⊥

Q̃

[
PQ̃ + P⊥

Q̃
S̃
(

S̃
H

P⊥
Q̃

S̃
)−1

S̃
H

P⊥
Q̃

]
P⊥

Q̃
x̃0

= x̃H
0 P⊥

Q̃
S̃
(

S̃
H

P⊥
Q̃

S̃
)−1

S̃
H

P⊥
Q̃

x̃0

= x̃H
0

(
PW̃ − PQ̃

)
x̃0

(A1)

where g̃0 = Σ̂
− 1

2
PFPg0. We define

^
g 0 = Σ−

1
2 g0,

^
W = Σ−

1
2 W = W,

^
Q = Σ−

1
2 Q = Q, and

^
Σ = Σ−

1
2 Σ̂PFPΣ−

1
2 . Using the matrix

^
Q, we construct an N × N dimensional unitary

matrix U = [U1, U2], which satisfies U1 =
^
Q
(
^
Q

H^
Q
)− 1

2

, UH
1 U1 = IQ, UH

2 U2 = IN−q, and

UH
2 U1 = 0(N−q)×q. Let gU = UH^

g 0, QU = UH
^
Q = E1

(
^
Q

H^
Q
) 1

2

, and ΣU = UH
^
ΣU. Then,

the expression x̃H
0 PQ̃x̃0 becomes

x̃H
0 PQ̃x̃0 = xH

0 Σ̂
−1
PFPQ

(
QHΣ̂

−1
PFPQ

)−1
QHΣ̂

−1
PFPx0

= τ0
^
g

H
0

^
Σ
−1^

Q
(
^
Q

H^
Σ
−1^

Q
)−1^

Q
H^

Σ
−1^

g 0

= τ0gH
U Σ−1

U EQ

(
EH

QΣ−1
U EQ

)−1
EH

QΣ−1
U gU

(A2)

where EQ =
[

IT
q 0T

(N−q)×q

]T
. It can be verified that

^
g 0 ∼ CN(0, IN); gU ∼ CN(0, IN).

Meanwhile, as is shown in [28], ΣU is the fixed point estimator of the identity matrix.
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Moreover, the texture τ0 is independent of the speckle CM. Thus, x̃H
0 PQ̃x̃0 is independent

of Σ.
According to the above derivation, we simplify x̃H

0 P⊥
Q̃

x̃0 as

x̃H
0 P⊥

Q̃
x̃0 = x̃H

0 x̃0 − x̃H
0 PQ̃x̃0

= τ0gH
U Σ−1

U gU − τ0gH
U Σ−1

U EQ

(
EH

QΣ−1
U EQ

)−1
EH

QΣ−1
U gU

(A3)

It is not difficult to find that x̃H
0 P⊥

Q̃
x̃0 is independent of Σ. In a similar way, we can

verify that x̃H
0 PW̃x̃0 and x̃H

0 P⊥
W̃

x̃0 are independent of Σ.
The numerator of the PS-Wald-CG-I (26) can be recast as

x̃H
0 PH

S̃|Q̃PS̃|Q̃x̃0

= x̃H
0 P⊥
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S̃
(
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Q̃

x̃0

=
(

x̃H
0 S̃− x̃H

0 PQ̃S̃
)(
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H

S̃− S̃
H
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S̃
H

S̃
(

S̃
H

S̃− S̃
H
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)−1(
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H

x̃0 − S̃
H
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)
= τ0gH

U BUSU

(
SH

U BUSU

)−1
SH

U Σ−1
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(
SH

U BUSU
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SH

U BUgU

= τ0gH
V BVSV

(
SH

V BVSV

)−1
SH

V Σ−1
V SV

(
SH

V BVSV

)−1
SH

V BVgV

= τ0gH
V BVEp

(
EH

p BVEp

)−1
EH

p Σ−1
V Ep

(
EH

p BVEp

)−1
EH

p BVgV

(A4)

where BU = Σ−1
U − Σ−1

U Eq

(
EH

q Σ−1
U Eq

)−1
EH

q Σ−1
U , V = [V1, V2] is a unitary matrix that we

construct by using SU , V1 = SU
(
SU

HSU
)− 1

2 , VH
1 V1 = Ip, VH

2 V2 = IN−p, VH
2 V1 = 0(N−p)×p,

BV = VHBU , SU = UH
^
S ,

^
S = Σ−

1
2 S = S, ΣV = VHΣUV, SV = VHSU = Ep

(
SH

U SU

) 1
2 , and

Ep =
[

IT
p 0T

(N−p)×p

]T
.

Since gV ∼ CN(0, IN), and ΣU is independent of Σ hold, x̃H
0 PH

S̃|Q̃PS̃|Q̃x̃0 is independent

of Σ. According to the above proof results (27)–(30), it is concluded that the three new
persymmetric detectors exhibit the CFAR property with respect to the speckle CM Σ.
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