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Abstract: Lightning is an important cause of casualties, and of the interruption of power supply and
distribution facilities. Monitoring lightning locations is essential in disaster prevention and mitigation.
Although there are many ways to obtain lightning information, there are still substantial problems in
intelligent lightning monitoring. Deep learning combined with weather radar data and land attribute
data can lay the foundation for future monitoring of lightning locations. Therefore, based on the
residual network, the Lightning Monitoring Residual Network (LM-ResNet) is proposed in this
paper to monitor lightning location. Furthermore, comparisons with GoogLeNet and DenseNet were
also conducted to evaluate the proposed model. The results show that the LM-ResNet model has
significant potential in monitoring lightning locations. In this study, we converted the lightning
monitoring problem into a binary classification problem and then obtained weather radar product
data (including the plan position indicator (PPI), composite reflectance (CR), echo top (ET), vertical
integral liquid water (VIL), and average radial velocity (V)) and land attribute data (including aspect,
slope, land use, and NDVI) to establish a lightning feature dataset. During model training, the focal
loss function was adopted as a loss function to address the constructed imbalanced lightning feature
dataset. Moreover, we conducted stepwise sensitivity analysis and single factor sensitivity analysis.
The results of stepwise sensitivity analysis show that the best performance can be achieved using all
the data, followed by the combination of PPI, CR, ET, and VIL. The single factor sensitivity analysis
results show that the ET radar product data are very important for the monitoring of lightning
locations, and the NDVI land attribute data also make significant contributions.

Keywords: monitoring lightning location; land attribute data; deep learning; sensitivity analysis

1. Introduction

Lightning is a phenomenon of intense electric discharges among clouds, the air, the
ground, or various parts of clouds. Cloud-to-ground (CG) lightning often produces im-
mense destructive effects in an instant. CG is an important cause of casualties, of the
interruption of power supply and distribution facilities and computer information sys-
tems, and of burning or even explosions in storage, oil refineries, and oil fields [1–3]. The
documented number of lightning fatalities worldwide is presently greater than 4000 each
year [4], and the economic loss comprises hundreds of millions of dollars. In addition, fire
hazard studies have shown the risk of lightning-induced fires, which may ultimately cause
tanks to boil over, thus threatening petroleum storage facilities [5]. Moreover, due to the
small spatial scale and short life cycle of lightning, it is difficult to accurately observe and
predict.
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The monitoring of CG lightning mostly uses lightning location systems that measure
the sound, light, and electromagnetic field information of lightning radiation to determine
the spatial position and discharge parameters of lightning discharge [6]. Many lightning
location studies have been carried out. Among these lightning location methods, time of
arrival technology is an approach for determining the location of lightning radiation, which
depends on the different arrival times of the gauging sensor [7]. However, this approach
uses waveform, cross-correlation processing, and complex signal filtering, which requires a
large amount of calculation and slow positioning speeds. Another lighting location method
is direction finding (DF), which is defined as the crossing of messages accepted from at
least three sensors to ascertain the strike spot [8] and to estimate the electric field associated
with the signal to understand its polarity [9]. Time reversal technology is employed for the
three-dimensional positioning of lightning discharges [10]; however, it takes a long time to
optimize the space using the TR method, and it is difficult to locate the entire thunderstorm
process in real time.

Recently, artificial intelligence and machine learning techniques have become increas-
ingly mature. Data mining models, including classification trees, chi-squared automatic
interaction detectors, induction of decision trees and neural network radial basis functions,
multilayer perceptrons, and support vector machines, are used to evaluate and forecast
the probability of lightning occurrence [11,12]. A five-category classification model for the
raw lightning waves in VLF/LF bands was proposed with a deep convolutional neural
network [13]. The striking scope was determined from high-speed videos and currents
were measured in negative CG lightning [9]. The characteristic values of overvoltage are
extracted by wavelet transform and classified by a support vector machine [14]. An original
approach using deep learning, coding feature matching, was proposed, which not only
greatly improves the positioning speed but also has greater precision. The method also has
a strong positioning and anti-interference ability for maintaining high-quality lightning
locations under low signal-to-noise ratio conditions [15]. These studies show that some
nonobvious feature information can be obtained through machine learning. However, it is
difficult to directly predict lightning using the lightning location data obtained through
these methods.

A weather radars has high temporal and spatial resolution and is one of the best
apparatuses for thunderstorm observations. Weather radars can provide characteristic
parameters of echoes that characterize the dynamics and microphysics of thunderstorm
clouds during electrification. The calculation of the relationship between lightning fre-
quency and other thundercloud parameters shows that lightning frequency is correlated
with radar reflectivity, precipitation rate, updraft velocity, cloud radius, ice crystal concen-
tration, and shotgun particles [16]. More importantly, significant progress has been made
in radar extrapolation, which can show weather conditions from one to two hours into
the future [17,18]. Lightning location data combined with radar product data can provide
better lightning monitoring and early warning. Furthermore, some studies have shown
that land properties (elevation, slope, land uses, and soil type) also exert a certain influence
on the occurrence of CG lightning [19,20]. It has become possible to utilize deep learning to
detect lightning using multiple data sources (radar product data and land attributes).

In this study, the lightning location monitoring problem is converted into a binary
classification problem. Lightning location data and multiple data are applied to establish a
lightning feature dataset by a sliding window. Subsequently, deep learning is employed
to monitor lightning locations. Based on the residual network, the Lightning Monitoring
Residual Network (LM-ResNet) is proposed in this paper for lightning location monitoring.
To further evaluate these constructed models, the model results were compared with
GoogLeNet and DenseNet. When training the models, we use the focal loss function as the
loss function to address the constructed imbalanced lightning feature dataset. Moreover, the
relative importance of each input variable in monitoring lightning locations was evaluated
based on stepwise and single sensitivity analyses. This work monitors lightning locations
based on multiple data points and carries out a stepwise and single sensitivity analysis.
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This study is anticipated to provide a basis for new exploration to mitigate and prevent
lightning catastrophes, and to lay the foundation for lightning location prediction.

The main contributions of this study are presented as follows:

(1) Multiple datasets (lightning location data, radar product data and land attribute data)
are utilized to construct lightning feature datasets, especially considering the impact
of land attribute data on the results of monitoring lightning locations.

(2) Based on ResNet, LM-ResNet is proposed for lightning location monitoring, and the
model result is compared with GoogLeNet and DenseNet.

(3) The relative significance of each input variable in observing lightning locations is
determined based on stepwise and single sensitivity analyses to provide support for
subsequent practical application.

2. Materials and Methods
2.1. Study Area

The study area is Ningbo, which is a sub-provincial city located in northeastern
Zhejiang Province, as shown in Figure 1. The study area extends from 120◦55′E to 122◦16′E
and from 28◦51′N to 30◦33′N. The modest latitude has a mild and humid subtropical
monsoon climate with four distinct seasons. Its terrain is steep in the southwest and
low in the northeast. The entire administrative area of Ningbo City has a population of
9.4 million (9,404,283). The GDP is approximately CNY 1240 billion; it was ranked 12th
among 300 cities in China. The climate in the study area is complex and changeable with a
high incidence of lightning. In the past five years, more than 480 lightning disasters have
occurred. Direct economic losses amount to millions of dollars every year.

Figure 1. Geographical locations of Ningbo.

2.2. Data
2.2.1. Lightning Location Data

The Ningbo Meteorological Bureau provides lightning location data with ADTD
lightning location systems. The ADTD [21] systems are ground-based advanced time of
arrival and direction systems with CG lightning detection sensors. The detection radius of
an individual station is approximately 300 km [22]. The error is normally from hundreds
of meters to kilometers, and the efficiency ranges between 80% and 90%. The lightning



Remote Sens. 2022, 14, 2200 4 of 18

data include fields denoting the time, polarity effect, location, peak intensity, and other
information of the ground flash return process. In this study, lightning location data with
an intensity of less than 10 KA/m were removed. The lightning data and radar reflectivity
data are spatially matched. If the radar reflectivity is less than 10 dBz, the corresponding
lightning location data are eliminated. After data processing, the lightning location data
are regarded as real lightning observation data.

2.2.2. Weather Radar Data

A weather radar is an efficient instrument for supervising microscale and mesoscale
strong convective systems. Weather radar data not only provide information involving the
position, intensity, and movement of precipitation particles, but also has high spatial and
temporal resolution (1 km/6 min). Many studies [23–25] have shown that the elevation
of the radar echo top and echo intensity have a distinct correlation with the occurrence
of lightning. In this article, the Ningbo Meteorological Bureau provides S-band Doppler
weather radar system scans, generates basic data, and then calculates the radar product data
using a meteorological algorithm that includes the plan position indicator (PPI), composite
reflectance (CR), echo top (ET), vertical integral liquid water (VIL), and average radial
velocity (V).

The PPI is a radar product that is derived from different distances to the radar at
different elevations above the ground [26–28]. The PPI starts scanning from the bottom-
most angle and continuously augments the scanning height. Next, nine elevation angle
datapoints are provided on the basis of a particular scanning strategy. A complete body
scan of data is performed every 5–6 min. Every elevation scan forms a cone and outputs
two-dimensional rasters of identical size. All two-dimensional raster data generated at
disparate elevation angles form vertically aligned, PPI raster data. The CR is a product that
projects the maximum reflectivity onto a Cartesian grid in the radar volume scan [29,30].
The strength of the echo can be determined, and the structure of a storm and a strong
snow belt can be determined. Its change over time can be utilized to determine the future
trend of the precipitation echo movement. ET represents the height of the echo top based
on the highest elevation angle and the mean sea level (MSL) as the reference (without
interpolation) when the reflectance factor≥18 dBz (adjustable threshold) is detected [31,32].
The formation of a horizontal, two-dimensional distribution of numerical image products
can be used identify convective storms by locating the highest summit, which is an impor-
tant indicator of the strength of convective weather, and indirectly reflects the strength of
vertical updrafts in a cloud. VIL [16,33] is defined as a suspending perceptible quality in
unit volume over the cloud bottom. VIL is a kind of new product material that is obtained
by processing the radar scanning material to obtain a general distribution of the echo value
from each observing layer by way of radar, from which a three-dimensional distribution of
aqueous material within the radar detection range is obtained by inversion. VIL applies
the Doppler effect as the basic principle to calculate the average radial velocity of the
precipitation target in each volume [34,35]. VIL can determine the wind speed relative
to the ground, detect the atmospheric structure, and define the low-level or middle-level
jet stream according to the change in wind speed with altitude. Moreover, not only can
the wind direction rotating clockwise or counterclockwise with height be determined, but
also the cold and warm advection of each layer, and the storm structure can be detected.
In addition, VIL can be employed to determine the convergence of boundaries (density
discontinuities), such as fronts, trunks, and outflow boundaries.

2.2.3. Land Attributes Data

Many studies [36,37] have shown that land attributes affect the occurrence of CG
lightning. The relationship between lightning activity and landform features shows a
strong correlation between lightning activity and terrain slope. Research on the relationship
among convective weather, vegetation, and lightning activity shows significant differences
in the distribution of CG lightning strokes on various covers of vegetation. Therefore,
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the land attribute data applied in this study were DEM, slope, aspect, land use data, and
normalized vegetation index data (NDVI).

DEM data are derived from the Shuttle Radar Topography Mission (SRTM) data of the
United States space shuttle Endeavour. This dataset is generated based on the latest SRTM
V4.1 data after resampling. The remote sensing monitoring spatial distribution data of
land use (https://www.resdc.cn/ (accessed on 24 July 2021)) are based on the Landsat TM
image achieved by human visual interpretation. The land use data include 6 essential types
and 25 subordinate types of cultivated land, forestland, residential land, grassland, water
area, and unused. NDVI accurately reflects the vegetation coverage on the ground. The
original data were downloaded from SPOT/VEGETATION PROBA-V 1 KM PRODUCTS
(http://www.vito-eodata.be/ (accessed on 24 July 2021)) with a spatial resolution of 1 km.
After mosaic and projection transformation, NDVI data were obtained, which effectively
reflect the distribution and changes in vegetation coverage on a ten-year scale at a spatial
and temporal scale in all regions of the country.

In order to match the weather radar data, the spatial resolution of the data that
we utilized was 1 km, and was strictly reduced to the same size as the weather radar
data. Furthermore, the trimmed DEM data were utilized to extract the slope and aspect
data. The DEM, land use data, and NDVI with a resolution of 1 km that we used were
obtained from RESDC (Resources and Environmental Science and Data Center) (https:
//www.resdc.cn/Default.aspx/ (accessed on 26 July 2021)).

2.3. Methods
2.3.1. Establishing the Dataset

The occurrence of lightning is closely related to the activity of particles in the atmo-
sphere. Radar products around lightning can represent evidence of lightning instance
activity, whereas land attribute data can influence lightning occurrence. There is also a
correlation between lightning activity and terrain, and the distribution of lightning location
varies in different vegetation cover layers. Therefore, lightning location data, radar product
data (PPI, ET, VIL, and V), and land attribute data (DEM, slope, aspect, and NDVI) were
used to construct a lightning feature dataset for Ningbo city in the summer of 2018.

Firstly, the spatio-temporal matching of multi-source data was carried out. A full radar
scan generates one complete set of radar volume data, representing approximately 6 min.
Thus, for a specific complete radar product data source, the lightning data that occur during
the period of the radar data scan are selected. Moreover, those beyond the spatial extent
of the specific radar data are removed to ensure spatial consistency. The land attribute
data is further matched with the lightning and radar data based on the latitude, longitude,
and time information. Finally, lightning data, specific radar data, and land attribute data
form one group in which they are well matched spatially and temporally. As shown in
Figure 2, we set a sliding window to extract lightning feature data, and the specific process
is described as follows:

(1) Set the size of the sliding window M ∗ N (the window size in this article is 5 ∗ 5).
(2) Use the set window to slide the matched data. If the center position of the window

contains lightning location data, the data have lightning features, and the position is
marked as 1. In contrast, data without lightning features are marked as 0.

(3) Combining the obtained data, we obtain N lightning feature datasets with size M ∗ N.

Finally, we collected 30,447 samples marked 1 and 7,742,979 samples marked 0 for a
total of 7,773,426 samples from July to September 2018. The extracted data was significantly
imbalanced because the number of samples marked 0 was much larger than that of sample 1.
Therefore, the under-sampling method was selected to enhance the data for the 0 samples.
The data having label 0 were randomly discarded 10 times. In this way, the data was
balanced to a certain extent while saving computing resources. In fact, we did not balance
the data completely. The data were processed randomly and disordered, and we split the
dataset according to the ratio 6:2:2 to obtain a training set, test set, and validation set.

https://www.resdc.cn/
http://www.vito-eodata.be/
https://www.resdc.cn/Default.aspx/
https://www.resdc.cn/Default.aspx/
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Figure 2. Extraction of feature data with lightning.

2.3.2. Focal Loss

Imbalanced datasets can negatively impact the overall performance of classification
problems. The focal loss function has been applied to a variety of imbalanced classification
problems, such as electrocardiogram heartbeats and lung nodules [38,39]. Using the focus
loss function can improve the classification accuracy. Initially, the purpose of the focal loss
function was to solve the issue of the lack of balance between the foreground class and the
background class in object detection scenes [40]. Focal loss considers the dedication per
sample to the loss grounded on the classification mistake. Utilizing this function, the loss
is reduced when a sample is properly classified, and the classification imbalance problem
is addressed by ensuring that the loss indirectly focuses on the challenging classes. In
this study, the focal loss function was used to increase the importance of sample 1 with
lightning features.

The starting point for focal loss is the cross-entropy loss function for binary classifica-
tion, which is determined as follows:

CE(p, y) =
{
− log(p), i f y = 1,
− log(1− p), otherwise

(1)

y∈ {±1} is lightning location or no lightning location, and p ∈ [0, 1] refers to the model
being evaluated for the lightning location possibility with the label y = 1. More concisely,
pt is expressed as follows:

pt =

{
p, i f y = 1,

1− p, otherwise
(2)

To balance the significance of positive and negative samples, that is, the significance
of the presence or absence of a lightning location, a weighting α ∈ factor [0, 1] is presented
in a similar notation:

αt =

{
α, if α = 1,

1− α, otherwise
(3)

There are many easy-to-distinguish samples that do not have a lightning location;
the entire training process revolves around these samples, which in turn overwhelms
the lightning location samples, resulting in greater losses. Thus, a regulatory factor γ is
introduced here, where γ ≥ 0. This is used to focus on samples that are difficult to classify,
that is, samples with a lightning location:

m = (1− pt)
γ (4)
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Taking into account these two new factors in Equation (1), the presented focal loss
function is:

FL(pt) = −αt(1− pt)
γ log(pt) (5)

Note that α and γ are two parameters that indicate how sensitive the function is to the
easily classified samples.

2.3.3. Deep Learning Classification Algorithm

In this study, the problem of monitoring lightning locations was first transformed
into a binary classification problem. Based on ResNet, a deep learning model named
LM-ResNet was designed to monitor lightning locations. GoogLeNet and DenseNet are
very successful classification models. GoogLeNet adopts the inception structure, which not
only extends the depth, but also extends the width of the network to obtain more features.
DenseNet is a relatively novel deep learning classification model. It goes beyond the fixed
thinking of deepening the number of network layers and widening the network structure
to improve network performance. To compare the performance of the constructed LSM-
ResNet model, we used GoogLeNet and DenseNet for comparison. A concise presentation
of these methods is provided here.

ResNet has accomplished great success in the field of image classification [41]. The
characteristic of ResNet is that it is simple to optimize and to increase accuracy by adding
a crucial depth. An internal residual block is set by a jump connection to moderate the
issue of gradient disappearance generated by building depth in a deep neural network. As
shown in Figure 3, the residual learning unit constitutes the mapping relationship between
x and F(x), and then x is acquired rapidly with identity mapping. When the residual F(x) is
0, the residual learning unit is equivalent to processing ordinary identity mapping, which
does not weaken the network performance. Nonetheless, the residual F(x) is not 0, so the
residual learning unit can obtain new ground characteristics as inputs and upgrade the
network performance.

Figure 3. Residual learning unit.

Since the size of the multidimensional lightning feature dataset that we constructed
in this study was small, the structure of ResNet was reduced to build the LM-ResNet
network. The LM-ResNet includes an input layer, convolutional layer, pooling layer, fully
connected layer, and output layer. Figure 4 shows the LM-ResNet model structure. The
LSM-ResNet model contains 17 layers. The first layer is the input layer, which inputs the
constructed lightning feature dataset. The input data shape is (N, K, 5, 5). N is the number



Remote Sens. 2022, 14, 2200 8 of 18

of multidimensional characteristic lightning data sources input into model, and K is the
type of lightning feature data. The default K of the current model is 19, including weather
radar and land attribute data. The model channel can be changed according to the input
lightning feature type to adapt to multi-dimensional lightning feature data. The number
5 in the data shape is the size of the dataset. The second layer is the convolution layer;
the size of the kernel is 3 × 3, and the number of channels is set to 32, which is used to
obtain multidimensional spatial data features. The third and fourth layers connected by the
blue curve form a residual block; the LSM-ResNet network has a total of 6 residual blocks.
Because the input of the residual F(x) and x is calculated by adding the channel dimension
to the residual unit, two residual blocks of different structures are deployed in the LSM-
ResNet network, corresponding to the blue solid line and the dotted line in the figure. Each
residual block consists of two convolutional layers, and the size of the kernel is 3 × 3. The
input of the residual block is connected to the output. As the network continues to learn
new features, the number of corresponding network channels also increases. Since the
model has expanded channels in the third residual block from 32 to 64, feature data output
by the second residual block are subjected to a 1 × 1 convolution to increase the channel
dimension. Similarly, the fifth residual block also increases the grid channel dimension
through a 1 × 1 convolution operation. Following the residual block is the pooling layer,
which reduces the dimension of the lightning feature data learned by the model through
the average pooling pair and reduces the amount of data computation. The next layer of
the pooling layer is a fully connected layer, which outputs the probability of a there being a
lightning location through the fully connected layer.

Figure 4. LM-ResNet model structure.

In Figure 4, each residual block contains BN, Relu, and weight layers. The BN layer
permits a higher learning rate, markedly enhances the speed of training, and, in particular,
prevents gradient vanishing or divergence. To train LSM-ResNet, a Relu activation function
neural network is used. Weight layers perform the convolution operation. Furthermore,
the solid line and the dashed line correspond to two different residual blocks. In the solid
line, the block is the same as the number of channels in the previous connection layer, and
the residual calculation is directly executed.
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In the figure, xi is the input of the residual block and xi+1 is the output of the residual
block. xi performs two convolution operations Wi; then, the residual function is F(xi, Wi):

xi+1 = F(xi, Wi) + xi (6)

Due to changes in data size and the number of channels in the dotted line block, the
residual calculation needs to be performed after linear transformation. xi needs to perform
an operation with a convolution kernel size of 1 × 1 to increase the number of network
channels, because the final F(xi, Wi) and xi need to perform an addition operation, that is:

xi+1 = F(xi, Wi) + Wsxi (7)

GoogLeNet is a deep learning structure developed by Google in 2014 [42]. To address
overfitting, gradient disappearance, and gradient explosion resulting from the improve-
ment in the number of network layers, GoogLeNet adopts a new inception structure, which
can more efficiently use computing resources and retrieve further information by an equal
number of computations to enhance the training results. Under this structure, the lightning
feature data pass through the convolutional layer, maximum pooling layer, and inception
layer to extract the implicit lightning features. The feature map is compressed into a one-
dimensional vector and classified by the softmax function to obtain the probability of the
output monitoring the location of the lightning.

DenseNet was proposed in 2017 and won the best paper award of CVPR in that year,
is one of the best depth models [43]. DenseNet is a densely connected convolutional neural
network that surpasses the fixed thinking of deepening the number of network layers
and widening the network structure to enhance network performance. DenseNet not
only greatly reduces the number of network parameters through feature reuse and bypass
settings, but also alleviates the generation of vanishing gradient problems to a certain
extent. Furthermore, any two layers of DenseNet are directly connected, and the input of
each subsequent layer of the network, which is the union of the outputs of all the former
layers, passes its consistent feature map to all subsequent layers. These short connections
between two layers near the input and output allow the previous features to be effectively
passed to the back for automatic feature reuse. Therefore, this structure can be employed to
extract more global and critical features, and is more precise and efficient to train.

2.3.4. Sensitivity Analysis

Sensitivity analysis is an uncertainty analysis technique for determining the degree of
influence of certain key indices or groups of key indicators when a certain change occurs
in the relevant factors from the perspective of quantitative analysis [44]. We conducted
stepwise and single factor sensitivity analyses based on the deep learning model to analyze
the relative significance of each input variable for monitoring the location of lightning.
Stepwise sensitivity analysis rejects one input variable at a time from the constructed
lightning feature dataset and observes the impact on the monitoring results. When a
variable does not play a vital role in the outcome, a high correlation remains in the model
after the variable is omitted. Utilizing single factor analysis, a set of input variables is fixed
as a benchmark and kept unchanged, and then different variables are input each time to
analyze the influence of different variables on the results of monitoring lightning locations.

3. Results and Analysis
3.1. Performance Criteria

We used the contingency table method to assess the results of lightning monitoring
because it is regularly employed by the weather forecasting community. The probability of
detection (POD), false positive rate (FPR), false negative rate (FNR), and equitable threat
score (ETS) were calculated. The POD is the ability of the classifier to monitor lightning. The
FNR is the proportion of positive samples that are predicted to be negative samples, to the
total number of positive samples, and is the probability of lightning being underreported.
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The FPR is the proportion of negative samples that are predicted to be positive samples
to the total number of negative samples, and is the probability of lightning being falsely
reported. For unfamiliar events, such as severe weather warnings, the ETS is the better
choice because it measures the skill of a forecast relative to chance. In addition, we also
calculated the F-measure and area under the curve (AUC) to evaluate the model. The
lower FNR and FPR, the better the performance of the models. In addition, the higher the
performance, the better the model.

All the metrics were computed on the basis of the confusion matrix, which consists
of true positives, false positives, true negatives, and false negatives. The formulas of the
metrics are shown here:

Accuracy =
TP + TN

TP + FN + FP + TN
(8)

POD = Recall =
TP

TP + FN
(9)

FPR =
FP

FP + TP
(10)

F−measure = 2 ∗ precision ∗ recall
precision + recall

(11)

where TP, FP, TN, and FN refer to true positives, false positives, true negatives, and false
negatives, respectively.

3.2. Results Analysis

In this study, we developed comparative experiments with the constructed multidi-
mensional lightning dataset. The training set is used for model training, the validation set
adjusts the model, and the test set verifies the monitoring lightning location results. The
deep learning models involved were built using the Python programming language based
on the PyTorch 1.7.1 + cu110 framework and employing a GPU to improve the calculation.
The hardware environment included a Core i9-10900 CPU, and the graphics card was a
RTX3080. In our research, each network was set with 20 epochs, and each epoch contained
3360 iterations. The premier learning rate of the model was 0.1. In terms of optimization,
the SGD optimizer was utilized to train the network with a batch size of 64. Momentum
and weight attenuation were set to 0.9 and 0.0004, respectively, to accelerate the learning
process of the network and avoid overfitting.

The loss function was utilized to describe the disparity between the monitoring value
and the observation lightning, and to estimate the adaptive capacity of networks. A
cross-entropy loss function and focal loss function were used to conduct a comparative
experiment based on the LM-ResNet model. Figure 5 shows the results of training using
the LM-ResNet model, including the loss value of the cross entropy and focality, and their
corresponding accuracy. The result shows that both loss functions were trained for five
batches and started to converge. The overall verification set accuracy of focal loss is higher
than that of the cross-loss entropy function. The model accuracy after training with the
focal loss function is 0.946, whereas that of the cross-loss entropy function is 0.945. These
results show that focal loss is more suitable for our data. In subsequent experiments, the
focal loss function was applied.

We utilized the constructed lightning dataset for comparison experiments, including
GoogLeNet, LM-ResNet, DenseNet. Accuracy, POD, FNR, FPR, F-measure, AUC, and
ETS, which were employed as evaluation indicators to compare models. These evaluation
indicators are only FAR and FNR; the smaller the better, and the larger the better, respec-
tively. Table 1 shows the comparison results. The accuracies of the three deep learning
methods are not significantly different, and are approximately 0.945. The highest accuracy
is 0.9456 for LM-ResNet, 0.9447 for DenseNet, and 0.9445 for GoogLeNet. This finding
indicates that the monitoring of lightning locations has a certain effect. However, the
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indicators of the GoogLeNet model are worse overall. For example, the POD of GoogLeNet
is only 0.636; the POD of the other models is approximately 0.727; and the results of the
F-measure, AUC, and ETS are inferior to those of the other models. The POD and FNP
indicators of LM-ResNet and DenseNet are relatively close; that of POD is approximately
0.727 and that of FNR is 0.273. The FRP of DenseNet is 0.333 higher than that of LM-ResNet,
and the F-measure, AUC, and ETS are slightly lower than that of LM-ResNet, at 0.696,
0.853, and 0.511, respectively. The LM-ResNet performs best. We applied LM-ResNet for
subsequent experiments.

Figure 5. Results of training with cross entropy and focal loss by the LM-ResNet model.

Table 1. The results are shown in different models.

Accuracy POD FNR FPR F-Measure AUC ETS

GoogLeNet 0.9445 0.636 0.364 0.301 0.714 0.809 0.487

LM-ResNet 0.9456 0.728 0.272 0.272 0.728 0.855 0.551

DenseNet 0.9447 0.727 0.273 0.333 0.696 0.853 0.511

3.3. Case Study

To further verify the LM-ResNet model, we used a period of lightning observation
data to perform a comparison with the monitored lightning location results. The China Me-
teorological Service Centre issued thunderstorm warnings on 20 September 2018. Affected
by drastic convective cloud clusters, violent lightning activity occurred in Ningbo. Radar
products around lightning can represent the evidence of lightning instance activity, and
land attribute data have an influence on lightning occurrence. We selected radar data (PPI,
CR, ET, VIL, and V) and corresponding land attribute data (DEM, slope, aspect, land use,
and NDVI) from 10:36 to 11:06 for monitoring. Under normal circumstances, lightning is
not very stable, and there is some drift during the discharge process. According to previous
studies [45], it is believed that the lightning location within 1 km around the monitor is
efficient. POD, FPR, and FNR were utilized to analyze the model results.

Figure 6 shows the observation of lightning data and model monitoring results at six
times from 10:36 to 11:06. The left half of the figure is the observed lightning location. The
right half of the figure is the lightning location monitored by the model that corresponds to
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each time, including the POD, FPR, and FNR. Red represents properly detected lightning
(Hit_lightning); blue represents false alarm lightning (False_lightning); and gray represents
miss lightning (Miss_lightning). According to the figure, the model can roughly monitor
the distribution of lightning positions. Overall, the probability that the model correctly
monitored lightning is about 0.75, that is, POD is about 0.75. In some cases of dense
lightning distribution, the probability of correct monitoring can exceed 0.8, such as the
situation corresponding to 10:54. The FPR is roughly distributed at approximately 0.25,
indicating that the false alarm probability of the model is approximately 0.25 and that
the optimal distribution of lightning can be 0.18. The FNR is approximately 0.26, which
is similar to the trend of the FPR. In addition, when the lightning is dissipating, the hit
rate of the model decreases, and the false alarm rate and miss rate increase, such as at
11:06:00. This shows that the model needs to strengthen the recognition of many pairs of
weak lightning.

Figure 6. Cont.
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Figure 6. Results of observations of lightning data and model monitoring results.

3.4. Sensitivity Analysis of LM-ResNet Model Accuracy

To explore the impact of different characteristic factors on the lightning monitoring
results, stepwise sensitivity analysis was employed to evaluate the significance of various
input variables on the lightning monitoring results. The data in the abovementioned case
ware applied to verify the results of all our experiments. In the experiment, we paid
attention to POD, FNR, and FPR. We list the data employed by each group in Table 2,
including PPI, CR, ET, VIL, V, DEM, aspect, slope, land use, and NDVI. We reduce the
input to one data source per experiment.
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Table 2. Data are shown in different groups.

Group Data

1 PPI, CR, ET, VIL, V, DEM, aspect, slope, land
use, NDVI

2 PPI, CR, ET, VIL, V, DEM, aspect, slope, land
use

3 PPI, CR, ET, VIL, V, DEM, aspect, slope

4 PPI, CR, ET, VIL, V, DEM, aspect

5 PPI, CR, ET, VIL, V, DEM

6 PPI, CR, ET, VIL, V

7 PPI, CR, ET, VIL

8 PPI, CR, ET

9 PPI, CR

10 PPI

Figure 7 shows the lightning monitoring results of different groups. Group 1, using
all data, has the highest POD and the lowest FNR and FPR. Following Group 7 (PPI, CR,
ET, VIL), the result was very similar to that of Group 1. The POD of Group 8 (PPI, CR, ET)
was lower than that of Group 1, but the FRP and FNR were higher than those of Group 1.
The results of the remaining groups were not large, but they were better than the results
of Groups 9 (PPI, CR) and 10 (PPI). This finding shows that ET data may have a greater
impact on the lightning monitoring results.

Figure 7. The results are shown in different groups.

To further discuss the impact of different characteristic factors on the lightning mon-
itoring results, we performed single factor analysis to evaluate the impact of each input
variable on the lightning monitoring results. POD, as an important indicator that represents
the occurrence of lightning, was utilized for the next analysis. Based on PPI data, CR, ET,
VIL, V, DEM, aspect, slope, land use, and NDVI were applied as single factor variables
for grouping experiments. Figure 8 shows the results of the experiment. We found that
the combination of PPI and ET has the greatest impact on the hit rate of lightning moni-
toring. Their POD is 0.774, indicating that ET and lightning are closely related. Lightning
activity was positively correlated with changes in ET. When the echo tops in a cloud region
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increase, so does the lightning activity [46]. Empirical evidence has shown that weak
updrafts cannot produce the intense electrification needed to generate lightning [47]. In
addition, NDVI’s POD of 0.734 also has a large impact on the monitoring results of the
model, indicating that vegetation may affect the location of lightning. There are significant
differences in the distribution of lightning strike location on different vegetation cover
layers. The undulations of the terrain affect the lightning strike. Within a certain elevation,
the greater the altitude, slope, and aspect, the denser the lightning [48]. Moreover, the
lightning monitoring results have a certain relationship with the DEM, slope, and aspect.
The topography may affect the lightning location. The lightning activity was found to be
positively correlated with the elevation slope. CR can monitor the structure of storms, and
V can determine the wind relative to the ground and detect the structure of the atmosphere.
All of these factors contribute to our model. Although the POD of V is less than 0.71, it is
still an important factor in a real environment. It seems that the influence of land use on
POD is not particularly large. We drew a stacked graph of POD and FNR in Figure 9 and
found that ET and VIL have the greatest impact on the lightning monitoring model.

Figure 8. Single factor sensitivity analysis by the LM-ResNet model.

Figure 9. POD and FNR results of different data sources.
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4. Conclusions and Discussion

In this study, we utilized multiple data sources combined with deep learning methods
to carry out lightning monitoring research. First, the lightning monitoring problem was
converted to a binary classification problem. Radar product data (PPI, CR, ET, and V) and
land attribute data (DEM, aspect, slope, land use, and NDVI) were employed to construct
a multisource lightning feature dataset, and the focal loss function was applied as the
loss function during model training. Subsequently, based on the residual network model,
the LM-ResNet was proposed for lightning location monitoring. In a comparison of the
three deep learning methods of GoogLeNet, LM-ResNet, and DenseNet, we found that
all methods have some benefits for lightning monitoring. However, the performance of
GoogLeNet is inferior to that of LM-ResNet and DenseNet. The best model is LM-ResNet.
The LM-ResNet model effectively performs monitoring of lightning locations. This may be
because of the small size of our data, which is only 5 ∗ 5. A relatively simple model is more
suitable for this small size. In addition, we also conducted a stepwise sensitivity analysis
and single factor analysis. During the stepwise sensitivity analysis, all radar product data
and land attribute data were divided into 10 groups, and one type of data was removed
each time. Group 1 applies all radar product data and land attribute data to achieve the best
performance. Simultaneously, Group 7 (PPI, CR, ET, and VIL) performed very well, with
excellent POD and the lowest FNR and FPR. Based on the results of stepwise sensitivity
analysis, ET data may have an important role in lightning monitoring. In single factor
analysis, PPI data were employed as the basis and the remaining data (CR, ET, V, DEM,
aspect, slope, land use, and NDVI) were combined as a single factor variable for the model
input. The results show that only employing PPI and ET data as input variables can yield
the best POD of 0.774, illustrating that the echo peak height information obtained by ET
data is primarily related to the occurrence of lightning. Furthermore, PPI and NDVI also
yield better results as inputs, having a POD of 0.734, indicating that vegetation may affect
lightning locations. Other data also contribute to the model. This research is anticipated to
provide a basis for new exploration for mitigating and preventing lightning disasters, and
laying the foundation for forecasting of lightning locations.

Compared with previous studies [45], the LM-ResNet constructed in this paper has a
certain effect on the monitoring of lightning locations. However, the results of lightning
location recognition for discrete distributions are not optimal. Notably, when the lightning
is dissipating, the hit rate of the model decreases, and the false alarm rate and miss rate
increase. It must be admitted that the error of ADTD is usually from hundreds of meters
to kilometers, and the efficiency ranges between 80% and 90%. In particular, some weak
lightning may be missed, which will also reduce the hit rate of lightning to a certain extent.
Monitoring and predicting the location of lightning strikes is still a particularly complex
task; in particular, discretely distributed lightning is currently difficult to identify and
predict. We hope to resolve this issue in future research. In addition, although we used
stepwise sensitivity analysis and one-factor sensitivity analysis to analyze the data used in
the model training, the interpretation of the correlation analysis between the actual physical
variables and lightning is not clear enough. The interoperability of the LM-ResNet model
still needs to be strengthened.
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