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Abstract: In the past few decades, the demand for reliable and robust systems capable of monitoring
unmanned aerial vehicles (UAVs) increased significantly due to the security threats from its wide
applications. During UAVs surveillance, birds are a typical confuser target. Therefore, discriminating
UAVs from birds is critical for successful non-cooperative UAVs surveillance. Micro-Doppler signa-
ture (m-DS) reflects the scattering characteristics of micro-motion targets and has been utilized for
many radar automatic target recognition (RATR) tasks. In this paper, the authors deploy local mean
decomposition (LMD) to separate the m-DS of the micro-motion parts from the body returns of the
UAVs and birds. After the separation, rotating parts will be obtained without the interference of the
body components, and the m-DS features can also be revealed more clearly, which is conducive to
feature extraction. What is more, there are some problems in using m-DS only for target classification.
Firstly, extracting only m-DS features makes incomplete use of information in the spectrogram.
Secondly, m-DS can be observed only for metal rotor UAVs, or large UAVs when they are closer to the
radar. Lastly, m-DS cannot be observed when the size of the birds is small, or when it is gliding. The
authors thus propose an algorithm for RATR of UAVs and interfering targets under a new system of
L band staring radar. In this algorithm, to make full use of the information in the spectrogram and
supplement the information in exceptional situations, m-DS, movement, and energy aggregation
features of the target are extracted from the spectrogram. On the benchmark dataset, the proposed
algorithm demonstrates a better performance than the state-of-the-art algorithms. More specifically,
the equal error rate (EER) proposed is 2.56% lower than the existing methods, which demonstrates
the effectiveness of the proposed algorithm.

Keywords: micro-Doppler signature; local mean decomposition; unmanned aerial vehicles; radar
automatic target recognition; staring radar

1. Introduction

Over the past decade, the equipment cost and operational complexity of unmanned
aerial vehicles (UAVs) has been dramatically decreased while the performance has been
increased [1]. Thus, technological advancement fascinates a growing number of civilians.
These platforms are used not only for leisure and filming but also for agricultural appli-
cations and environmental monitoring. Nevertheless, UAVs have been used by criminals
and antisocial groups for unlawful purposes such as violating privacy or transporting
explosives. The security threat has become more prevalent both in the military and civil-
ian spheres. Hence, there is a significant demand for reliable and robust detection and
classification of UAVs.

Radar is widely used in surveillance systems since it provides fast remote sensing
capabilities regardless of weather or lighting conditions. Staring radar provides high
Doppler resolution since it enables longer coherent integration. Therefore, staring radar
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demonstrates more advantages in the scenario of detecting and tracking UAVs with low
radar cross section (RCS) and at relatively low speed and altitude. The birds are a kind of
typical confusing target during UAVs surveillance. Thus, discriminating UAVs and birds
is crucial for non-cooperative UAV surveillance. The discriminating methods are usually
based on micro-Doppler signature (m-DS) which is induced by the UAV’s high-speed
rotating blades and the flapping oscillation of birds’ wings.

The concept of m-DS, which is proposed by V.C Chen [2], has been utilized for radar
automatic target recognition (RATR) tasks [3], such as aircraft classification [4–9], ship classi-
fication [10], human classification [11–19], vehicle classification [20] and other classification
tasks [21–24]. Several researchers have studied the m-DS of UAVs and birds [25–29] and
applied it to the classification tasks. Ren et al. [3] developed a system for classifying UAVs
from other targets by using a 2-D complex spectrum. Oh et al. [30] proposed an automatic
multicategory mini-UAV classification method by the extraction of m-DS features using
empirical mode decomposition (EMD). Some researchers proposed various representations
for m-DS analysis, including spectrograms and cepstrograms [31,32]. However, the insuffi-
ciency of these methods is mainly the performance verifying for measured data in reality.
The local mean decomposition (LMD) is applied to separate the micro-motion parts from
the main body of the UAVs’ and birds’ echoes in this paper. In this way, the signature can
be identified without interference from the body components and the m-DS features are
revealed more clearly. LMD was introduced in [33] as an adaptive nonparametric technique
for Time and Frequency (T-F) analysis. A complex signal can be decomposed into a series
of product functions (PFs) while each one is composed of an envelope signal and a pure
frequency modulated signal [34,35].

Target scattering properties also include RCS modulation and polarization techniques.
RCS modulation resulting from repetitive wing beat patterns or rotor blade flashes is
considered a robust feature for class separation since the RCS is large enough. Detailed
information on RCS modulations in X-band for the classification of small targets can be
found in the most recent report in the literature [25]. Polarimetric parameters are used to
distinguish large birds and UAVs of comparable size in the literature [36]. In addition, the
movement characteristic of the target is also an important feature for classification. An
alternative method of identifying and classifying UAVs from birds in near fields based on
the flight paths and trajectories is presented in the literature [37,38].

It is evident that the m-DS can be used for target classification, however, there are
some problems if using m-DS only. First, m-DS can be observed only for metal rotor UAVs,
or large UAVs when they are close to the radar. Moreover, m-DS cannot be observed when
the size of the bird is small, or when it is gliding. At the same time, the radar can observe
characteristics such as the intensity, position and speed of the echo. Regarding the issues
above, an algorithm that extracts m-DS, movement and energy aggregation features from
spectrogram to enhance the classification performance is proposed in this paper. Different
from the current work, the data collection is obtained by a new staring radar system. It uses
8 × 8 transmitter arrays in azimuth and elevation respectively. Furthermore, the receiver
array is arranged in a vertical pattern of 8 × 1. This fixed arrangement of beams allows
the radar to continuously stare in all directions to process echoes by forming simultaneous
beams covering the entire search area. Through long and controllable dwell times, it
induces fine Doppler resolution, which contributes to the long-range and high-precision
classification of targets. In addition, for the received target echo spectrogram, the situation
that the m-DS may not be observed in reality is also be considered while analyzing and
studying the m-DS. Therefore, the movement and energy aggregation features reflected in
the spectrogram are extracted to supplement the information in exceptional situations. At
the same time, it realizes the full mining of the effective information in the spectrogram,
which contributes to more accurate classification of UAVs and birds target.

The main contribution of this paper is as follows:

(1) LMD is applied to perform m-DS analysis and feature extraction on a single frame
sample in the spectrogram. Compared with the currently widely used EMD method,
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the proposed algorithm can achieve a better m-DS separation rate and higher decom-
position efficiency;

(2) An RATR algorithm of UAVs and interfering targets is proposed under a new system
of L band staring radar. In this algorithm, the m-DS, movement, and energy aggrega-
tion features of the target are extracted from the spectrogram to make full use of the
information in the radar echo spectrogram and supplement the information in special
situations;

(3) Singular value decomposition (SVD) is used to remove ground clutter and noise on
the spectrogram for the first time and complete the signal preprocessing part.

This paper is organized as follows. Section 2 introduces the materials and the pro-
posed UAVs and birds classification algorithm. Section 3 presents the experiment results
and performance analysis of the proposed algorithm based on measured data. Section 4
describes an experimental summary and prospects for future research. Finally, conclusions
are made in Section 5.

2. Materials and Methods
2.1. Spectrogram Characteristic Analysis of Measured Data

Spectrograms are often used as a T-F representation of measurement data, which
provides useful information for operators in determining the difference between UAVs
and birds. Based on Figure 1, it can be seen that staring radar returned signals from
UAVs and birds consists of the m-DS caused by micro-motion induced by UAVs rotating
blades or birds flapping wings as well as the body Doppler caused by body movement. In
addition, the movement and energy aggregation characteristic over time can be observed in
spectrogram. An understanding of the m-DS, movement, and energy aggregation signature
is therefore essential for performing a high-quality classification.

(a) (b) (c)

(d) (e) (f)

Figure 1. Spectrograms of UAVs and birds. (a) Inspire2 UAV. (b) Inspire2 UAV moves towards the
radar from far to near. (c) MAVIC Air2 UAV. (d) a bird. (e) a small bird. (f) a group of birds.

This section examines staring radar returned signals from UAVs and birds in terms
of the m-DS, movement, and energy aggregation signature. Considering that the target
remains in the same resolution cell, hence the received returned signals becomes a 1-D
time series s(t), and the s(t) is segmented into M overlapping frames {x0, x1, . . . , xM−1},
where each frame xi = {xi[k], k = 0, 1, . . . , K− 1} is a column vector consisting of K
elements, K = 4096. Then, the N = 512 dot discrete Fourier transform(DFT) is performed
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on xi to obtain fi = [ fi,0, fi,1, . . . , fi,N−1], where the discrete Fourier transform is denoted
fi = F{xi}. The DFT calculation formula is shown in (1).

fi,n =
K−1

∑
k=0

xi[k]exp
{
−j2π

kn
K

}
, n = 0, 1, . . . , N − 1. (1)

M frame returns are stacked together after DFT to form the spectrogram S =
{ fi,n, i = 0, 1, . . . , M− 1, n = 0, 1, . . . , N − 1}. To enhance the weak m-DS and reduce
the noise, the most common taking a logarithm and using regularization of the spectro-
gram. The spectrogram modified to S = {log{ fi + Ci}, i = 0, 1, . . . , M− 1}, Where Ci is
a constant.

Within the following subsections, we will analyze the characteristics of UAV and bird
spectrograms, laying the groundwork for accurate feature extraction.

2.1.1. Characteristic 1: Micro-Doppler Signature
In the General Condition

The m-DS spreading pattern— Based on earlier research [9,15,18,19], it has been
observed that the m-DS are visible both on the left and right of the body Doppler as the
rotating blades approach and move away from the radar. Specifically, the spectrogram of
Inspire2 UAV shown in Figure 1a reveals a linear distribution of m-DS along the velocity
axis centered on the body Doppler. The spreading pattern is caused by the fact that the
returned signals are superimposed on the rotor speed based on the body speed, and the
short dwell time of the staring radar leads to under-sampling. The m-DS are induced
by flapping wings the same way that UAVs are. Figure 1d shows the m-DS caused by
flapping wings at both ends of the body. The bandwidth of Doppler spread is mainly
depending on the wing flapping rate and the distance from the bird body center to the tip
of the arm. Researchers have observed and reported Doppler spread of flapping wings for
birds [25,28,29,37].

Blade flash pattern—As shown in Figure 1a, a blade flash pattern can be observed.
This occurs when the rotation blades exhibit the largest cross-section area relative to the
radar, when the blade has the strongest electromagnetic reflectivity [10]. The time interval
of the flash pattern is periodic, and the length of this period depends on the rotational
speed of the rotor. Since the bird’s wings are flapping and sweeping, there is a difference
from the rotor’s rotation. The m-DS of the birds is continuously distributed on both sides of
the body Doppler, as shown in Figure 1d. The bird group in Figure 1d consists of multiple
birds, so its echoes occupy a wide frequency range in the spectrogram, and m-DS signals
are mixed with body returned signals.

Strength of the m-DS—According to [19], the material and target distance from the
radar play a crucial role in determining the strength of the m-DS. The Inspir2 UAV is made
of carbon fiber, which has stronger electromagnetic reflection ability than the polycarbonate
(PC) material of the MAVIC Air2 UAV. When the target is near the staring radar or the
material has an excellent electromagnetic reflection capability, we can observe the m-DS.

In the Exceptional Condition

If the target size is small and the radar is far away, or if the bird is in a gliding condition,
the m-DS is not visible in the spectrogram. As a result of the measurement distance of 0.3
to 10 km between target and radar, the m-DS from the rotor blades are masked by the noise,
so that only the body Doppler is observed in the spectrogram, Figure 1b shows the Inspire2
UAV is close to the radar. Figure 1c,e show the condition of only body Doppler is visible
when the targets is far away or when its size is small. As shown in Figure 1d, birds in the
gliding state cannot observe the m-DS.

2.1.2. Characteristic 2: Movement Signature

The MAVIC Air2 UAV flight speed reaches 26 m/s and the Inspire2 UAV flight speed
reaches 19 m/s. UAVs usually fly smoothly, or there are sharp turns under manual control.
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The flight speed range of birds is roughly the same as that of UAVs, with the difference
that the flight speed of birds fluctuates more. Only the flight speed of birds such as larger
seabirds or migratory birds is relatively smoother.

2.1.3. Characteristic 3: Energy Aggregation Signature

The size of UAVs is more significant compared to birds, and their size varies depending
on the category. Usually, the larger the size, the higher the energy aggregation of the radar
returned signals. The smaller the size, the lower the energy aggregation of the radar
returned signals. Target energy aggregation is influenced by the radar angle of view.
During continuous observation, the energy aggregation varies with the movement state of
the target. Typically, the flight state of the UAVs is more smooth, so the energy aggregation
period changes slower. However, the birds are more unstable, so their energy aggregation
period varies faster.

2.2. Proposed UAVs and Birds Classification System

This section presents the proposed UAVs and birds classification system for L band
staring radar. Unlike the existing UAVs and birds classification techniques [18,19], this
paper proposes a classification algorithm based on feature extraction that is promising to
be efficient and effective in all cases, in order to exploit to the full extent the information
contained in the spectrogram, as shown in Figure 2. As for m-DS feature extraction, in
contrast to the widely used EMD [30,39,40], LMD is proposed to perform m-DS analysis
and feature extraction to achieve a better m-DS separation rate and higher decomposition
efficiency. SVD is used to complete the signal preprocessing part the first time for ground
clutter and noise removal on the spectrogram.

Figure 2. Proposed UAVs and birds classification system for L band staring radar. SVD is used to
complete the signal preprocessing part. Subsequently, LMD is offered to perform m-DS analysis and
feature extraction to achieve a better m-DS separation rate and higher decomposition efficiency. In
addition, movement and energy aggregation features are extracted as a compliment.

2.2.1. Preprocessing of Ground Clutter and Enviroment Noise Removal

According to Figure 1, the spectrograms contain ground clutter lying in zero Doppler,
with the maximum energy generated by static clutter such as trees and buildings, that will
deteriorate the changing patterns in the spectrogram. Hence, if the features are extracted
directly, they will be distorted by noise and ground clutter, and a great deal of detail will be
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lost. Thus, it is necessary to use signal processing algorithms to remove noise and clutter
before obtaining features to enhance the accuracy of feature extraction.

SVD is an important matrix decomposition algorithm with significant applications in
digital signal processing. SVD is used to remove ground clutter and noise from signals by
setting the singular value of the signal component representing them to zero. After this,
the inverse operation is applied to SVD to remove interference.

The matrix of spectrogram can be expressed as follows:

S =


f0,0 f0,1 · · · f0,N−1
f1,1 f1,2 · · · f1,N−1
...

...
. . .

...
fM−1,1 fM−1,2 · · · fM−1,N−1

 (2)

Performing SVD on matrix according to (3)

SM×N = UM×M × SM×N ×VT
N×N (3)

Matrix U and V are singular matrices for matrix S, where U is an M×M matrix and
V is an N × N matrix. Matrix S is an M× N matrix, in which the singular values of the
diagonal elements are included as λi(i = 1, 2, · · · , N; λ1 ≥ λ2 ≥ · · · ≥ λN), while the rest
of the elements are zero. Singular value λi is positively correlated with energy of signal
component represented by it. Energy of clutter is usually the most prominent element in a
signal, energy of the target is second, and energy of noise is the least significant element.
Setting the most significant singular value to 0 and the smaller singular value to 0 and
performing inverse processing. Through this process, the target signal is obtained that
suppresses ground clutter and noise.

The suppressed singular values λk(k ∈ [a, b], 1 ≤ a ≤ b ≤ N) are selected. In general,
a = 2, since the first singular value corresponds to ground clutter. b is the corresponding
sequence number of the maximum value of the singular value difference spectrum greater
than a threshold 0.08×noise energy, where 0.08 is the empirical value. The trajectory matrix
can be reconstructed as Equation (4).

Sr = U(:, :)S(:, a : b)V(:, a : b)T (4)

In the given matrix, U(:, :) represents the entire matrix. S(:, a : b) and V(:, a : b) are
the a-th to b-th columns. The spectrogram in Figure 3. illustrates the results of removing
ground clutter and noise from Figure 1.

2.2.2. Extraction Features from Spectrogram

In this subsection, an algorithm is proposed to extract and utilize such unique in-
formation from spectrogram for UAVs and birds classification to extract m-DS features,
movement features, and energy aggregation features.

M-DS Feature Extraction

LMD is used to decompose a frame signal for the m-DS feature extraction in the
spectrograms. Using LMD, the primary purpose is to separate the signals generated by
the main and micro-motions since the specific information between the UAVs and birds
is mainly contained in the micro-motion. Then extracting features from the micro-motion
components for classification. A frame signal in the spectrogram is shown in Figure 3. The
spectrogram of the measured data, i.e., Sr can be see in the middle subfigure. A frame
signal in the spectrogram, i.e., fk(k = 1, · · · , M), is shown in the top subfigure, where M
indicates the frame number in the spectrogram.

In recent years, LMD has emerged as a new adaptive method of decomposing multi-
component AM and FM signals into a limited number of single-component AM and FM
signals according to the characteristics of the signal. Afterwards, the instantaneous fre-
quency (IF) and the instantaneous amplitude (IA) are obtained and combined to produce
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the complete time-frequency distribution of the original signal [35]. By comparing this algo-
rithm with the EMD, it offers improvements in terms of end effects, spurious components,
and over or under envelope issues. In LMD, the time domain signal v , i.e., a frame signal
fk inverse Fourier transform, can be calculated by summing the PFs and residual, which is
product of envelope and purely FM signal.

v =
L

∑
i=1

PFi + u =
L

∑
i=1

ai(t)si(t) + u(t) (5)

where ai(t) is the envelope signal, si(t) is the purely FM signal and u(t) is the residual.
Observe that the filtering scheme is applied from high to low frequency of the signal,

and thus the LMD decomposition is utilized as a filter bank with different frequency
passbands.

(a) (b)

(c) (d)

Figure 3. Movement and m-DS feature extraction of UAVs and birds from spectrogram. Spectrogram
can be seen in the middle subfigure. A frame signal in the spectrogram is shown in the top subfigure
for m-DS feature extraction. The subfigure on the left represents the change of the target movement
speed over time, which can be used for movement feature extraction. (a) Inspire2 UAV. (b) MAVIC
Air2 UAV. (c) a bird. (d) a group of birds.

After applying LMD, the m-DS is present in the first L-1 PFs. Define P1 and Pr as
follows:

P1 =
L−1

∑
i=1

PFi (6)
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Pr = PFL (7)

Figure 4 highlights some differences in the m-DS modulation in the PF1 component of
the signal containing the high-frequency micro-motion decomposed by the LMD algorithm.

The Doppler spectrum of the original signal, FFT|P1|, and FFT|Pr| of the target are
shown in Figure 4, where FFT|·| denotes fast Fourier transformation(FFT).

The decomposition results indicate that the LMD successfully separates the m-DS
component from the body component. Among them, P1 captures some differences in the
micro-motion modulation in the high-frequency m-DS component of the LMD decom-
position, while the main element is contained in Pr. The following five features of the
spectrogram of the target describe the differences in m-DS signatures.

(a) (b)

(c) (d)

Figure 4. LMD decomposes a frame signal and then reconstructs its PF1 and PFm components. PF1
represents the main component, and PFm represents the m-DS component. (a) Inspire2 UAV. (b)
MAVIC Air2 UAV. (c) A bird. (d) A group of birds.

Feature1: number of zero crossing feature F11.

F11 =
N

∑
n=2
|sign[P1(n)]− sign[P1(n− 1)]| (8)

With sign[P1(n)] = 1 , if P1(n) ≥ 0 , otherwise 1. F11 reflects the signal frequency. The
higher the frequency, the higher the number of zero-crossing points.

Feature2: normalized signal energy feature F12. The normalized signal energy of

P1 and Pr can be expressd as E1
E and Er

E , respectively. Which E1 = ∑N
n=1|P1(n)|

2
is the

signal energy of P1, Er = ∑N
n=1|Pr(n)|

2
is the signal energy of Pr, E = E1 + Er . Feature2 is

as below
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F12 =

[
E1

E
,

Er

E

]T
(9)

There are some differences in the micro-motion part and body energy generated by
different targets.

Feature3: standard deviation F13. The standard deviation of P1 and Pr can be record as

std(P1) =

√
∑N

n=1(P1(n)−P1)
2

N and std(Pr) =

√
∑N

n=1(Pr(n)−Pr)
2

N . Feature3 is as below

F13 = [std(P1), std(Pr)]
T (10)

Feature4: entropy feature F14. The entropy of P1 and Pr can be record as En1 =

−∑N
n=1

[
|P1(n)|

∑N
n=1|P1(n)|

]
· log2

[
|P1(n)|

∑N
n=1|P1(n)|

]
and Enr = −∑N

n=1

[
|Pr(n)|

∑N
n=1|Pr(n)|

]
· log2

[
|Pr(n)|

∑N
n=1|Pr(n)|

]
.

Feature4 can be expressed as

F14 = [En1, Enr] (11)

Entropy is a measure of how uniformly energy is distributed in space. Entropy
increases with uniform energy distribution, and vice versa.

Feature5: peaks related feature F15. The feature extracted related to peaks is the
distance between two frequency peaks and the number of peaks in this paper. Distance

between two frequency peaks is defined as D =
|argmax(F)− N

2 |×2
N , with F = ∑∞

f=−∞

∣∣∣P1( f )2
∣∣∣,

Number of peaks is defined as N = ∑m
i=1 p(i), with p= findpeaks(P1( f )) > T , where T is

the threshold determined by the constant false alarm rate (CFAR). So peaks related feature
F15 can be expressed as

F15 = [D, N] (12)

The number of peaks and the bandwidth reflect the speed of movement and the length
of the micro-motion parts.

The extracted five feature vectors are subsequently concatenated F1 = [F11, F12, F13,
F14, F15 ]

T ∈ R9×1.

Movement Feature Extraction

In a spectrogram, the main velocity component is caused by the overall motion of
the target. Generally, the target’s body will reflect the strongest electromagnetic emitted
by the radar, while the ability of the micro-motion parts to reflect will be relatively weak.
The velocity corresponding to the maximum amplitude point as the main frequency ve-
locity and assume that the velocity variation with time extracted from the spectrogram is
v = [v1, v2, . . . .vM].

In radar systems, radial velocity assists in distinguishing between targets moving at
different speeds. Due to the same radial velocity range of UAVs and birds, radial velocity
cannot be used to distinguish UAVs from birds. Additionally, the radial velocity changes
according to the target’s movement relative to the radar, so it is not a robust feature. Figure 3
shows the velocity trajectory variation with time extracted from the spectrogram shown
in the left subfigure. It is demonstrated that the UAV’s velocity is relatively flat while the
bird’s velocity fluctuates more. Therefore, the acceleration a = [a1, a2, . . . , aM−1], which
represents the fluctuation of velocity, can be extracted as the distinguishing feature. In order
to describe the velocity fluctuations of various targets, these two characteristics are used.

Feature6: acceleration mean value F21.

F21 =
1

M− 1

M−1

∑
i=1

ai (13)
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The mean value of acceleration indicates the average acceleration of the target, and
the greater the velocity fluctuation, the greater the average acceleration.

Feature7: acceleration variance F22 .

F22 =
1

M− 1

M−1

∑
i=1

(
ai −

1
M− 1

M−1

∑
i=1

ai

)2
 (14)

The acceleration variance indicates the degree of velocity fluctuation. The UAV velocity
is smooth, so the degree of acceleration fluctuation is small, and the bird velocity fluctuates
more, so the degree of acceleration fluctuation is larger.

The extracted two features are subsequently concatenated F2 = [F21, F22]
T ∈ R2×1.

Energy Aggregation Feature Extraction

For class separation, RCS modulation provides a robust option as long as the mod-
ulation is large enough. Generally, UAVs have a higher RCS than birds, but it is not a
robust feature. According to observations, RCS levels fluctuate significantly according to
aspect angle and radar frequency. Since the difference in size and flight status of UAVs
and birds leads to different aggregation of energy and changes with flight status. In this
subsection, the energy aggregation over time features is extracted to characterize this
difference. Suppose sk,nc(nc ∈ 1, . . . , N) is the maximum value of sk. Record the main
component [sk,nc−num1, . . . , sk,nc−num2] with sk,nc as the center, so sk,nc

sk,nc−num1+...+sk,nc−num2
is the

energy aggregation degree of the main component, denoted as Pk. The energy aggregation
of each frame in the spectrogram is then extracted and the energy aggregation over time is
Pt, t = [0, 1 ∗ ∆t, . . . , (M− 1) ∗ ∆t], ∆t = 0.8196s. The extraction process of energy concen-
tration with time is shown in Figure 5. In the spectrograms of the targets, here are the four
features that are used to represent the differences in the signatures of energy aggregation.

Figure 5. Energy aggregation feature extraction process demonstration.

Feature8: energy aggregation mean feature F31.

F31 =
1
M

M

∑
m=1

Pm (15)

F31 represents the average energy aggregation.
Feature9: energy aggregation variance feature F32.

F32 =
1
M

M

∑
m=1

(
Pm −

1
M

M

∑
m=1

Pm

)2

(16)
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F32 represents the fluctuating degree of energy aggregation. The smoother the flight,
the smaller the fluctuation, and vice versa.

The energy aggregation extracted from the spectrogram is Variable in time. As the
result of the different flight states of the target during the flight, the fluctuation frequency
of the energy concentration varies with time. Discrete Fourier transform is usually used for
frequency domain analysis of signals, but discrete cosine transform (DCT) has better energy
compression, so this section uses DCT to analyze signals whose energy concentration varies
with time. DCT on Pt is expressed:

F(u) = c(t)
(M−1)∗∆t

∑
t=0

p(t) cos
[
(t + 0.5)π

N
u
]

,

u = 0, c(u) =
√

1
N

others, c(u) =
√

2
N

(17)

Record F1 as the maximum value and F2 as the second largest value of F(u). Locs2 is
the frequency position that corresponds to the second largest value F2 . Then the periodic
energy ratio feature and the undulation cycle energy proportion feature can be extracted
from F(u).

Feature10: periodic energy ratio feature F33.

F33 =
F2
F1

(18)

The ratio of the maximum periodic component energy to the second largest periodic
component energy, the larger the ratio the greater, the fluctuation of the flight state.

Feature11: undulation cycle energy proportion feature F34.

F34 =
Locs2

M
(19)

Feature F34 reflects the frequency of energy accumulation over time. The greater the
frequency, the faster the energy concentration changes, and the greater the flight state
changes.

The extracted four features are subsequently concatenated a vector, denoted as F3 =

[F31, F32, F33, F34]
T ∈ R4×1.

2.2.3. Feature-Level Confusion

Assume Si, i = 1, . . . , M, be denoted as the ith sample. M is the number of samples that
have been trained. Extracted m-DS feature F1, movement feature F2, and energy aggregation
feature F3 from the preprocessed spectrogram, and the details of the extracted features and
methods are described in Section 2.2. The eight feature vectors are extracted from ith frame
signal, which subsequently concatenated Fi = [Fi,11 Fi,12 Fi,13 Fi,14 Fi,15 Fi,21 Fi,22 Fi,31 Fi,32 Fi,33
Fi,34]

T ∈ R15×1 and then stacked into a matrix form FMag = [F1, F2, · · · , FM] ∈ R15×M.

2.2.4. Random Forest Classification

A random forest classifier is then trained using the feature matrix FMag, which inte-
grates multiple decision trees with the ID3 algorithm. Random forests use multiple trees
to train and predict the samples, and the output class is determined by the plurality of
the output classes of individual trees. Random forests can handle high dimensional data
without feature selection, and after training, random forests can indicate which features are
more important.

3. Results

The primary purpose of Section 3 is to evaluate the effectiveness of the proposed
classification system for UAVs and birds under L-band staring radar. Firstly, the data
collection and division processing are described. Then, the performance of LMD applied to
m-DS feature extraction is compared with that of the widely used EMD algorithm [30,39,40].
Thirdly, the classification performance is evaluated of the proposed classification system
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in the general condition and in the unobservable m-DS exceptional condition. Finally,
the accuracy of the proposed method is compared to state-of-the-art UAVs and birds
classification techniques [3,30,41]. The Sections 3.1–3.4 provide detailed descriptions of the
data set and the experimental results. All experiments were performed on a PC with an
Intel(R) Core (TM) i7-9750H 2.6 GHz CPU.

3.1. Collecting and Processing Data
3.1.1. Review of the Staring Radar System

The system used for data collection in this experimental is an L band staring radar
designed to achieve staring detection of ‘low, slow and small’ targets because it utilizes full
time domain, full frequency domain, full airspace domain, and multi-target information
acquisition and integrated processing technology, the operating parameters of staring radar
are listed in Table 1. The Doppler resolution of staring radar returns signal improves
with a longer integration time, which in turn improves the accuracy of classification. The
high Doppler resolution and increased signal-to-noise ratio (SNR) achieved by coherently
integrating the returned signals lead to greater detail in the m-DS than hypothetical returns
signal from a 2-D scanning radar [1]. Figure 6 depicts the starting radar detection in the
field and the trajectory of the tracking target. Figure 6b illustrates the UAV trajectory, with
the global positioning system (GPS) track displayed in white. Figure 6c illustrates the bird
trajectory, with the GPS track displayed in red. Additionally, the purple curves in both
figures show the radar tracks of UAVs and non-UAV targets [42].

Table 1. Operating parameters of staring radar.

Parameter Value

Frequency L band
Bandwidth 2 MHz

Transmit Power 1 kW
Pulse Repetition Frequency 5 kHz

Pulse length 2× 10−6 s
Blind zone 0.3 km

(a) (b) (c)

Figure 6. Images showing a detect and track by staring radar. (a) Staring radar field detection scene.
(b) UAV trajectory (white). (c) A bird trajectory (red).

3.1.2. Collecting Staring Radar Data

The experimental data presented in this paper were collected at nine radar test sites in
China using staring radar. Experimenters flew up UAVs to 0.3–10 km away from the staring
radar during the field trials in various states. The experimenters were only able to collect
data from two types of UAVs—the Inspire2 and MAVIC Air2—due to limited experimental
conditions. A variety of bird species are contained in the collected data, which is due to
bird species varying with the time of day, season, and region. The experimental data are
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also collected in different seasons and at different times of the day at major airports across
the country.

3.1.3. Data Preprocessing and Partitioning

The data collected from the staring radar are manually examined, and the errors are
minimized using signal processing so that errors caused by the detecting and tracking
functions of the radar can be minimized. Table 2 shows that the dataset includes four types
of targets, including two types of commercial UAVs and two types of birds. The two types
of UAVs in the dataset are the Inspire2 UAV and the MAVIC Air2 UAV. The two types of
birds mainly include a single bird and a group of birds, and the bird data contain a variety
of species due to the bird species varying with time of day, season, and region. For the
division of the dataset, 60% of the data are divided into training samples, and the remaining
40% of the data are divided into test samples for performance evaluation. The following
table provides the number of samples for each type of target after the dataset has been
divided in the experiment.

Table 2. Dataset specifications.

NO. Target Name Target Type Num of Training
Sample

Num of Testing
Sample

1 Inspire2 UAV
UAVs

689 460

2 MAVIC Air2
UAV 681 488

3 A bird
birds

546 365

4 A group of
birds 601 401

3.2. Performance Evaluation of the LMD Algorithm Applied in m-DS Components Separation

Effective separation of the m-DS components is crucial to perform accurate feature
extraction. This section compares the improvement in separation performance caused
by the LMD algorithm to the EMD [30] algorithm compared to separation ratio and time
consumed. Separation ratio of the m-DS components is also analyzed quantitatively, and
can be defined as follows:

Msupp =
∑n Eextr(n)
∑n Eorig(n)

. (20)

Eorig is the original signal energy, Eextr is the m-DS components energy. The quantita-
tive analysis of the separation ratio of m-DS components is presented in Table 3.

Table 3. Separation ratio of the m-DS components.

Method
Separation Ratio

Inspire2
UAV

MAVIC Air2
UAV A Bird A Group

of Birds

LMD 0.966 0.931 0.944 0.893
EMD 0.973 0.871 0.919 0.836

The time consumption of a frame signal using LMD and EMD for each of the four
target categories is presented in Table 4.
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Table 4. Time consumed by m-DS components separation.

Method
Consuming Time

Inspire2
UAV

MAVIC Air2
UAV A Bird A Group of

Birds

LMD 0.16 s 0.12 s 0.17 s 0.16 s
EMD 4.45 s 3.82 s 4.35 s 4.12 s

Both LMD and EMD can separate the m-DS components from the original signal.
According to the quantitative analysis, LMD has a higher separation ratio than EMD.
Additionally, LMD consumes much less time than EMD. Since LMD has fewer iterations,
the consumption time is shorter. In order to obtain IMF, EMD must be continuously sifting,
so that a large number of iterations is required, which results in a lengthy processing
time. Considering the above analysis, it can be concluded that LMD performs better in the
separation of m-DS components than EMD.

3.3. Performance Evaluation of the Proposed Classification System

The present section presents the classification results under general conditions and
under exceptional conditions in which no m-DS is observed in order to evaluate the
performance of the classification system presented in this paper.

3.3.1. In the General Condition

This experiment evaluates the accuracy of the proposed algorithm in classifying
UAVs and birds. During the classification process, the random forest is a classifier that is
composed of multiple decision trees, and the voting mechanism of the multiple decision
trees is used to improve the decision performance. More precisely, the random forest is a
powerful classifier that is formed by combining multiple weak classifiers. A random forest’s
classification performance is affected by the number of decision trees. This section uses the
equal error rate (EER) and the false acceptance rate (FAR) with 1% false rejection rate (FRR)
(FARFRR=1%) as evaluation indicators. FAR represents the percentage of false acceptances.
Specifically, it can be defined as the percentage of non-target samples being falsely classified
as the target. FRR represents the percentage of false rejection. Specifically, it can be defined
as the percentage of the target samples being falsely classified as non-target. When these
two error rates are equal, it is referred to as an EER. This article reports the performance in
terms of these two criteria because: (1) the EER is commonly used for various verification
tasks; (2) the system performs is evaluated at a low missing classification rate that FRR = 1%
and hence reports FARFRR=1%. A random forest consisting of between 1 and 3000 decision
trees was tested to determine the number of trees that gave the best performance. The
classification accuracy, EER, and FARFRR=1% vs. a different number of decision trees are
shown in Figure 7. In terms of both error rates and classification accuracy, the proposed
algorithm achieves its best performance at 500 decision trees.

(a) (b) (c)

Figure 7. Performance of the proposed algorithm when using EER and FARFRR=1% for different
decision trees. (a) Classification accuracy. (b) EER. (c) FAR.
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In the latter experiment, the random forest classifier consists of 500 decision trees,
where the decision trees with the ID3 algorithm. The confusion matrix in Table 5 shows
the results obtained by the algorithm presented in this article. Results indicate that the
proposed algorithm can achieve high classification accuracy for the four target classes.

The performance of the proposed method is evaluated with EER and FARFRR=1% are
both 0.71 and 0.42, it is evident that the proposed method is highly effective.

Table 5. Confusion matrix (%) of the ‘Proposed’.

Predicted Classes

Inspire2
UAV

MAVIC Air2
UAV A Bird A Group of

Birds

Inspire2 UAV 98.75 0.51 0 0

MAVIC Air2
UAV 0.42 98.21 0 2.30

True classes A bird 0 0 100 0

A group of
birds 0.83 1.28 0 97.70

After evaluating the performance of the proposed algorithm, the next step is to test
whether extracting m-DS features in conjunction with movement and energy aggregation
features can achieve a complementary effect. In Figure 8, the classification accuracy is
shown for different combinations of features, where each feature contains uncorrelated
information. An accuracy of 90.46% can be achieved when only m-DS features are extracted.
The classification accuracy can reach 99.10% when both movement and energy aggregation
features are combined with m-DS features. As a consequence, higher classification accuracy
can be achieved by combining the features of movement and energy aggregation.

Figure 8. Impact of the classification accuracy for different combinations of features.

3.3.2. In the Exceptional Condition

In the exceptional condition, the spectrogram of the Inspire2 UAV and a bird is shown
in Figure 1b and Figure 1e, respectively. The experimental take out a frame signal after
amplitude normalization, as shown in Figure 9, which shows that only the body energy
can be observed. It is impossible to classify the targets by extracting the m-DS features, so
it is necessary to classify them by extraction movement and energy aggregation features. In
addition, UAVs can mimic certain bird flight patterns to some extent. When the trajectories
of UAVs and birds are similar, they can be classified by features such as flight speed range
and energy concentration. Additionally, photoelectric sensors may also be utilized for
auxiliary recognition.
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(a) (b) (c)

Figure 9. Magnitude normalized single frame signal. (a) Inspire2 UAV. (b) MAVIC Air2 UAV.
(c) A bird.

The confusion matrix is shown in Table 6; the proposed method has achieved promis-
ing classification accuracy. It can be concluded that the classification method by extraction
m-DS features fails when the UAVs is far from the radar or in the exceptional condition of
bird gliding, as this time, the algorithm proposed is also capable of combining movement
and energy aggregation features that contribute to a highly classification accuracy.

Table 6. Confusion matrix (%) of the ‘Proposed’.

Predicted Classes

Inspire2
UAV

MAVIC Air2
UAV A Bird A Group of

Birds

Inspire2 UAV 92.52 8.42 0 2.65

MAVIC Air2
UAV 3.74 86.73 0 2.65

True classes A bird 0 0 100 0

A group of
birds 3.74 4.85 0 94.70

3.4. Comparison with State-of-the-Arts

This experiment compares the proposed algorithm to that of EMD [30] and SVD [41] for
signal decomposition, SRA [3] for subspace analysis in terms of test EER and FARFRR=1%.
Table 7 summarizes the classification results obtained by the proposed algorithm in this
paper as compared with the state-of-the-art, and the reasons for the differences can be
deduced. EMD requires multiple iterations in the decomposition process, which leads
to a long time consuming, which mainly carries out time frequency analysis and feature
extraction for fretting. SVD projects the spectrogram into a vector and extracts features,
but it cannot avoid the interference of body energy, resulting in low classification accuracy.
The algorithm of SRA projects the signal into the subspace, which is more dependent on
the accurate selection of the projection direction. When there is an outlier, it will lead to
inaccurate projection, thus affecting the classification effect. Among them, log-Fourier
transforms combined with the SRA can achieve the lowest error rate such that EER = 3.27%,
and a better performance is provided by the proposed algorithm than by reducing the EER
by 2.56% compared to log-Fourier transform combined the SRA. In conclusion, based on
the above analysis, the algorithm proposed in this paper achieves the optimal performance
for the classification of UAVs and birds.
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Table 7. Comparison of the proposed method with state-of-the-arts in terms of EER and FARFRR=1%.

Method EER (%) FAR (%)

Proposed 0.71 0.42
EMD [30] 4.25 8.64

Log Spectrogram + SVD [41] 4.83 10.12
Spectrogram + PCA 8.90 29.80

Log Spectrogram + PCA [3] 7.71 35.26
Log Spectrogram + SRA [3] 3.27 3.89

4. Discussion

This section summarizes the experimental and prospects for future work from the
above chapters that have verified and analyzed the theoretical and measured data of the
UAVs and birds’ classification system proposed in this paper.

4.1. Summary of the Experimental

As summarized in the following paragraphs, the main observations in this paper can
be summed up as follows.

(1) LMD algorithm is proposed to perform m-DS analysis and feature extraction on a
frame signal in the spectrogram. Compared with the currently widely used EMD,
LMD can achieve a better m-DS separation ratio and higher decomposition efficiency;

(2) The proposed algorithm has achieved promising classification performance, which ex-
tracted the movement and energy aggregation features to supplement the information
of the m-DS features reflected in the spectrogram;

(3) The classification algorithm by extraction m-DS features fails when the targets are far
away from the radar or in the exceptional case of bird gliding, while the algorithm in
this paper proposed can also extract movement and energy aggregation features and
can achieve an outstanding classification performance;

(4) Different from the current work, this paper is to use a new system of L band staring
radar, which achieve long range and high precision classification of targets. Accord-
ing to the performance of the proposed model, it outperforms all other compared
techniques in terms of classification accuracy.

4.2. Prospects

This paper discusses a limited range of topics, and future research may focus on one
or more of the following four aspects.

(1) The refined processing of radar returns improves the detection and classification
the prerequisites for performance. With the increasingly complex environment and
targets, it is necessary to carry out refined analysis and processing from the targets
and backgrounds faced by radar detection, and from the clutter interference suppres-
sion, detection, tracking and classification included in radar detection to improve
the utilization of information, and then obtain the radar classification performance
improve;

(2) The fusion of signal and data features is an effective way to improve the classification
accuracy. Fusion the signal and data features of UAVs and birds can expand the
feature space and improve the classification probability;

(3) Deep learning networks provide new means for intelligent target classification of
UAVs and birds. Since the m-DS can be regarded as two dimensional characteristic
time-frequency data, the target returns and movement trajectory reflected in the radar
P display screen are also two dimensional images of distance, which is suitable for
the intelligent classification and identification of targets;

(4) The staring radar system has laid a hardware foundation for the integration of target
refinement processing and identification. In a complex environment, the probability
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of target classification relying on a single radar detection device is low. It is necessary
to comprehensively use the information of different sensors, such as photoelectric,
acoustic, etc., to make up for the limitations of a single sensor and improve the
classification efficiency and accuracy.

5. Conclusions

This paper proposed an algorithm for RATR of UAVs and interfering targets under a
new system of L band staring radar. In this algorithm, LMD performs m-DS separation
and feature extraction on a frame signal in the spectrogram and outperforms the currently
widely used EMD algorithm. The other is to exploit the information contained in the spec-
trogram and supplement the information in exceptional situations. The m-DS, movement
and energy aggregation features of the target are extracted from the spectrogram. In this
way, SVD is used to remove ground clutter and noise in the spectrogram. Experimental
results demonstrate that the proposed algorithm is effective and efficient. Particularly
noteworthy is the fact that there are not enough UAVs to form an entire UAV group due to
the limitations of the current experimental conditions. We will consider adding a discussion
of a group of UAVs to follow-up research work.
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