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Abstract: When a target is moving at high-speed, its high-resolution range profile (HRRP) will
be stretched by the high-order phase error caused by the high velocity. In this case, the inverse
synthetic aperture radar (ISAR) image would be seriously blurred. To obtain a well-focused ISAR
image, the phase error induced by target velocity should be compensated. This article exploits the
variation continuity of a high-speed moving target’s velocity and proposes a noise-robust high-speed
motion compensation algorithm for ISAR imaging. The target’s velocity within a coherent processing
interval (CPI) is modeled as a high-order polynomial based on which a parametric high-speed motion
compensation signal model is developed. The entropy of the ISAR image after high-speed motion
compensation is treated as an evaluation metric, and a parametric minimum entropy optimization
model is established to estimate the velocity and compensate it simultaneously. A gradient-based
solver of this optimization is then adopted to iteratively find the optimal solution. Finally, the high-
order phase error caused by the target’s high-speed motion can be iteratively compensated, and a
well-focused ISAR image can be obtained. Extensive simulation experiments have verified the noise
robustness and effectiveness of the proposed algorithm.

Keywords: inverse synthetic aperture radar; space targets; high-speed motion compensation; entropy
minimization; quasi-Newton iterative; noise robust

1. Introduction

Inverse synthetic aperture radar (ISAR) imaging plays an important role in space
target surveillance due to its long-range, all-day, all-weather, and two-dimensional high-
resolution imaging capability [1,2]. In general, the slant high-range resolution depends on
transmitting wide-band linear frequency modulation (LFM) waveforms with a large pulse
width. In contrast, the high azimuth resolution depends on the relative motion between the
radar and the observed targets over the coherent processing interval (CPI) [3,4]. When the
target is stationary or its velocity is low, the “stop–go” model is used to analyze the target
echo signals [5,6]. After de-chirp processing on the receiver [7,8], the range profile of the
signal can be directly extracted from the pulse compression by the Fast Fourier transform
(FFT). However, for a target moving at high speed (such as missiles and satellites), their
high-resolution range profile (HRRP) would be stretched by the high-order phase error
induced by target velocity [9–11]. Velocity estimation and compensation are of particular
significance for the ISAR imaging of high-speed moving targets, which deteriorates the
quality of HRRP and ISAR image [12,13]. Therefore, to not affect the subsequent ISAR
imaging processing, it is necessary to estimate the target speed and compensate for the
phase error caused by the high-speed motion.
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The key to the high-speed motion compensation of ISAR imaging lies in accurately esti-
mating the target’s high velocity. The current methods are divided into two main categories.
One category is the algorithms based on signal decomposition to estimate the high-order
phase error parameters directly for individual echo and then directly acquire the velocity
for high-speed motion compensation. The fractional Fourier transform (FrFT) [14,15] and
its modification [16] have been utilized to reconstruct HRRP for high-speed moving targets.
Furthermore, many parameter estimation methods, such as the integrated cubic phase
function (ICPF) [17,18], particle swarm optimization [19], Wigner Ville Distribution (WVD)
and Hough Transform (HT) [20], etc., were utilized to estimate the target velocity from
the quadratic phase error. These methods model the radar echo after pulse compression
as the sum of multiple signals containing quadratic phase error, then compensate the
high-speed motion by estimating the signal chirp term that contains the target velocity.
This category of method relies on an accurate estimation of the signal’s chirp term, which
is susceptible to noise. Another class of methods uses the focusing quality of the HRRP
as a criterion for the indirect estimation of velocity, and the most typical criterion is the
waveform entropy [11,21,22]. Entropy is an effective metric for evaluating the focusing
quality of HRRP and is used in many ISAR imaging applications such as translational
motion compensation [23–25] and image auto-focusing processing [26–29]. This class of
methods creates a higher-order compensation term for each compressed echo and estab-
lishes a parametric model for individual echo high-speed motion compensation. Then,
the phase error is searched and compensated by minimizing the waveform entropy. The
problem with these algorithms is that they treat each pulse independently, ignoring the
continuity and the integrity of a high-speed moving target’s motions during continuous
observation. Due to the separate processing of the echoes, each echo’s high-speed motion
estimation error gradually accumulates within a CPI, resulting in an inefficient high-speed
compensation of the image as a whole. In addition, the signal-to-noise ratio (SNR) of the
echo is often relatively low for targets due to the signal decay from the long range and
absorption of the transmitting medium. The SNR problem is among the most significant
challenges that ISAR imaging systems frequently face. In the presence of low SNR, the
high-speed motion compensation always encounters some difficulties [17,30,31]. As a
result, the imaging results would degrade seriously.

Aiming to perform the ISAR imaging of a high-speed moving target, this paper pro-
poses a noise-robust high-speed motion compensation method for ISAR imaging based
on parametric minimum entropy optimization. Firstly, for the radar echoes of high-speed
moving targets in the De-chirp mode [7], we analyze the influence of the high-speed motion
of the target on the compressed echoes and establish the signal model for the high-speed
moving target. In general, for a continuously observed target, its movement state, includ-
ing its trajectory and velocity, changes in a continuous manner [25,32–34]. Considering
the variation continuity of the target’s velocity within one CPI, the target’s velocity is
modeled as a high-order polynomial function, and 2D image entropy is minimized to
optimize the velocity polynomial coefficients. A novel coordinate descent algorithm is
proposed to solve the minimum entropy optimization based on the established minimum
entropy optimization model. The coordinate descent algorithm is implemented by the
Broyden–Fletcher–Goldfarb–Shanno (BFGS)-based quasi-Newton algorithm [35–37] yields
fast convergence. The effectiveness of the high-speed compensation algorithm is verified
by simulation data and Yak-42-measured data. Compared with existing algorithms, the
proposed method is innovative in the following aspects:

(1) The most significant advantage of the proposed method is that it considers the
correlation of velocity variations of sequential echoes during one CPI. The continuity
and completeness of the target velocity variation are exploited to establish the high order
polynomial of the sequential echo’s velocity for the high-speed motion compensation.
Compared with the high-speed motion compensation method based on independent echo,
the proposed method is more robust and has higher compensation accuracy.
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(2) Most of the existing high-speed compensation methods use exhaustive search or
signal parameter estimation, which is computationally expensive and sensitive to noise. In
contrast, the proposed method uses the 2D ISAR image’s entropy as an evaluation index.
This uses the BFGS algorithm, which is an effective quasi-Newton algorithm that does not
need to calculate the second-order derivative of the objective function. The operational
speed of the BFGS algorithm is faster than that of the Newton method. That is to say, the
proposed algorithm is more effective and practical.

(3) The existing high-speed motion compensation methods do not take full advantage
of the high accumulation gain of sequential echoes. The proposed method can achieve
high SNR gain from 2D coherent integration [33,34], which benefits the high-speed motion
compensation under low SNR.

This paper is organized as follows. Section 2 presents the De-chirped signal model
for high-speed moving targets. In Section 3, a parametric model of the high-speed mo-
tion compensation within one CPI is established. The minimum entropy optimization is
developed, and the gradient-based solver of this optimization problem is introduced. In
Section 4, some imaging results based on the simulated and measured data are given, and
the performance of the proposed high-speed compensation method is analyzed. Some
conclusions are given in Section 5.

2. De-Chirp Signal Model for High-Speed Moving Targets

A general geometry of the radar and target is given in Figure 1, in which a coordinate
is built on the center gravity O of the target with the Y axis along the direction of LOS.
In Figure 1, the plane consisting of the XY axis including the line of radar sight (LOS)
is the imaging plane. The final ISAR image is the projection of the 3D target structure
on the imaging plane. In radar imaging, the high range resolution is usually achieved
by transmitting large band-width linear-frequency-modulated (LFM) signals with pulse
compression. Assuming the radar transmits a chirp waveform that

s(tr, tm) = rect
(

tr

Tp

)
· exp

[
j2π

(
fct +

1
2

γt2
r

)]
, (1)

where rect
(
tr
/

Tp
)
=

{
1, |tr| ≤ Tp

/
2

0, |tr| > Tp
/

2
, and Tp, fc, and γ denote the pulse-width, carrier

frequency, and frequency modulation rate, respectively. t = tr + tm is the full time, where
tr is the fast time and tm is the slow time. As shown in Figure 1, the point p is an arbitrary
scatterer on the target whose distance from the radar at tm is Rd(tm); then the radar echo of
this scatter can be written as

sp(tr, tm) = σprect
(

tr − td
Tp

)
· exp

[
j2π

(
fc(t− td) +

1
2

γ(tr − td)
2
)]

, (2)

where td = 2Rd(tm)
c is the echo time delay of point p, c is the velocity of light, σp is the

reflection coefficient. Note the instantaneous distance from the radar to scatter p, i.e., Rd(tm)
is only related to slow time tm because a “stop–go” assumption is adopted, i.e., the radar
target is supposed to move between radar pulses and stop within each pulse, as shown in
Figure 2a. Noting the pulse width of the wide-band signal is generally narrow, e.g., 100 us,
the “stop–go” assumption is reasonable and has been widely used in ISAR imaging. For
the target moving with high velocity, however, the target movement within a pulse cannot
be ignored and the assumption of “stop-go” is invalid. For example, assuming that the
radar transmits an LFM signal with a bandwidth of 1 GHz and a pulse width of 100 us, for
a slow-moving target with a speed of 100 m/s (such as an airplane), the distance variation
within a pulse is 0.01 m. Furthermore, for a high-speed moving target with a speed of
3000 m/s (such as the satellite), the distance variation within a pulse is 0.3 m. Compared
to the range resolution ∆r = c/2B = 0.15 m, the distance variation within the pulse for
the slow-moving target can be ignored, while it can not be neglected for the high-speed
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moving target. For high-speed moving targets, since it is necessary to consider the target
distance variation within one pulse-width, the distance between point p and the radar is
the variable concerned with both fast time tr and slow time tm, which can be expressed as

Rd(tr, tm) = Rd1(tm) + Rd2(tr), (3)

where Rd1(tm) is the distance variation with slow time, and Rd2(tr) is the distance variation
with the fast time. Considering the fact that a pulse time is short and the change of velocity
within a pulse time can be neglected, i.e., the target can be approximated to be moving at a
uniform speed within a pulse, then Rd2(tr) can be approximated as

Rd2(tr) ≈ v(tm) · tr, (4)

where v(tm) is the instantaneous velocity of the target at slow time tm. The de-chirp
compression processing is expressed as the echo signal multiples with the reference signal’s
conjugate [7]. The reference signal is

sre f (tr, tm) = rect
( tr − tre f

Tp

)
exp

[
j2π

(
fc

(
t− tre f

)
+

1
2

γ
(

tr − tre f

)2
)]

, (5)
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Figure 2. Difference between low-speed moving target and high-speed moving target: (a) the
low-speed moving target; and (b) the high-speed moving target.
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where tre f =
2Rre f (tm)

c , Rre f (tm) is the reference distance from point p to the radar at slow
time tm. After the de-chirp processing, we can obtain the output signal

so(tr, tm) =sp(tr, tm) · s∗re f (tr, tm)

=σprect
(

tr − td
Tp

)
·rect

( tr − tre f

Tp

)
exp

{
−j2π

[
fc

(
td − tre f

)
+ γtr

(
td − tre f

)
− 1

2
γ
(

t2
d − t2

re f

)]}
.

(6)

Simplifying Equation (6) yields

so(tr, tm) = σprect
(

tr − td
Tp

)
·rect

( tr − tre f

Tp

)
· exp

[
−j2π

(
a0 + a1tr + a2t2

r

)]
, (7)

where 
a0 = fc

2[Rd(tr ,tm)−Rre f (tm)]
c − γ

2
[

R2
d(tr ,tm)−R2

re f (tm)
]

c2

a1 = − fc
2v(tm)

c + γ
2[Rd(tr ,tm)−Rre f (tm)]

c + γ
4Rd(tr ,tm)v(tm)

c2 ,

a2 = γ
2v(tm)

c − γ
2v2(tm)

c2

(8)

where a2 is the chirp term caused by the high-speed motion of the target. In ISAR imaging,
the target’s motion can be divided into translational and rotational motion [6], respectively,
as shown in Figure 3. Assuming that the coordinate of the point p in the imaging plane
XOY is

(
xp, yp

)
, the instantaneous distance from scattering point p to radar is given by

Rd(tr, tm) = Ro(tr, tm) + xp sin(ωtm) + yp cos(ωtm) + v(tm) · tr

≈ Ro(tr, tm) + xpωtm + yp + v(tm) · tr,
(9)
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Figure 3. Target’s rotational motion in ISAR imaging.
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where Ro(tr, tm) denotes the translational motion of the target, as shown in Figure 3. In
ISAR imaging, since the time of a CPI is very short, such as a few milliseconds, the rotation
of the target relative to the radar within a CPI is a few degrees (approximately 3◦), and the
target can approximate uniform rotation in a short time. At this time, the terms sin(ωtm)

and cos(ωtm) in Equation (9) satisfy
{

sin(ωtm) ≈ ωtm
cos(ωtm) ≈ 1

, where ω is the rotational velocity

of the target in the imaging plane. Bringing Equation (9) into Equation (7) yields

so(tr, tm) = σprect
(

tr − td
Tp

)
·rect

( tr − tre f

Tp

)
· exp

[
−j

4π

λ
xpωtm

]
· exp

[
−j

4π

c
γtryp

]
· exp

[
−j

4π

λ
yp

]
· exp

[
−j

4π

c
γxpωtmtr

]

· exp
[
−j

4π

λ

(
Ro(tm)− Rre f (tm)

)]
· exp

−j
4π

c

γ
[

R2
d(tm)− R2

re f (tm)
]

c


· exp

[
−j

4π

c

(
γ
(

Ro(tm)− Rre f (tm)
)
− fcv(tm) + γ

2Rd(tm)v(tm)

c

)
tr

]
· exp

[
−j

4π

c
γ

(
v(tm)−

v2(tm)

c

)
t2
r

]
,

(10)

where λ = c
fc

is the wavelength, and the phase in Equation (10) is divided into eight terms.
The first term is the rotational Doppler term of point p and the second term is the range
compression term of point p. These two terms are the time domain data corresponding to
the final image of the target. The third term is constant and can be ignored. The fourth term
is the range walk term due to rotational motion, which usually does not exceed one range
cell in ISAR imaging, whose effect can be neglected [38,39]. The fifth term is the phase
error from the translational movement of the target as a whole, which can be removed by
the autofocus algorithm [6,40,41]. The 6th term is the residual video phase (RVP) error,
which can be removed by RVP compensation. The seventh term is the envelope linear walk
term brought by the target translational and high-speed motion, which can be eliminated
by envelope alignment [23,42]. The eighth term is the range chirp term brought by the
high-speed movement of the target, which needs to be compensated in this paper. After
the envelope alignment [23] and phase error compensation [40], Equation (10) becomes

so(tr, tm) ≈ s̃(tr, tm) · exp
[
−j4πγ

(
v(tm)

c
− v2(tm)

c2

)
t2
r

]
, (11)

where s̃(tr, tm) is the time domain data of the ideal image after high-speed compensation,
denoted as

s̃(tr, tm) = σprect
(

tr − td
Tp

)
·rect

( tr − tre f

Tp

)
exp

[
−j

4π

λ
xpωtm

]
exp
[
−j

4π

c
ypγtr

]
. (12)

According to Equation (11), the high-speed compensation signal model for ISAR
imaging can be expressed as

s̃(tr, tm) ≈ so(tr, tm) · exp
[

j4πγ

(
v(tm)

c
− v2(tm)

c2

)
t2
r

]
. (13)
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Applying the fast Fourier transform (FFT) with respect to tr and tm and considering
the inevitable noise, Equation (13) can be expressed in a discrete form as

g(k, h) =
M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)
· so(n, m) exp

[
j4πγ

(
v(m)

c
− v2(m)

c2

)
n2
]
+ ξ(k, h),

(14)

where g(k, h) is the ISAR image after high-speed motion compensation. k = 1, 2, · · · , N,
k is the range indices, N is the number of range bins, and h = 1, 2, · · · , M, where h
is the azimuth position and M is the number of azimuth cells. so(n, m) is the discrete
form of so(tr, tm), n and m are the discrete form of tr and tm, ξ(k, h) denotes the complex
noise. Equation (14) is the signal model of the final ISAR images after high-speed motion
compensation. In the following sections, the parametric minimum entropy optimized
high-speed motion compensation algorithm is given based on this signal model.

3. Optimal Compensation for High-Speed Motion
3.1. Optimization Based on Parametric Minimum Entropy

From Equation (14), it can be seen that the velocity of the target varies with the slow
time tm. The high-speed compensation for independent echoes does not consider the
continuity of velocity variation [15,20,21]. Due to the complex motion of the target and the
variance of the system and the environment, the high-velocity between the target and the
radar usually has high-order terms [24,25,33,34]. Without loss of generality, we model the
target’s high-velocity as an L-order polynomial, meaning that

v(m) =
L−1

∑
l=0

bl(m∆tm)
l , (15)

where l denotes the order of velocity variation with slow time tm, l = 0, 1, · · · , L− 1, and bl
represents the coefficient of each order. ∆tm denotes the pulse repetition time (PRT). One
notes that l begins from 0 to L− 1, b0 indicates the initial value of the velocity. For simplicity
and clarity, we define the polynomial coefficient vector as b = [b0, b1, b2, · · · , bL−1]1×L,
and give the complex image after error correction by the high-speed compensation term
as follows:

g(k, h) =
M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) exp

j4πγ


L−1
∑

l=0
bl(m∆tm)

l

c
−

(
L−1
∑

l=0
bl(m∆tm)

l
)2

c2

n2

+ ξ(k, h).

(16)

If the values of b = [b0, b1, b2, · · · , bL−1]1×L are obtained precisely, the high-speed
motion of the target will be compensated, and a well-focused ISAR image can be ob-
tained. Therefore, the high-speed motion compensation problem turns into an opti-
mal parameter estimation problem. Actually, estimating the optimal parameters set in

v(m) =
L−1
∑

l=0
bl(m∆tm)

l can be transferred into solving an unconstrained optimization prob-

lem in which b = [b0, b1, b2, · · · , bL−1]1×L are the variables of objective function.
Image entropy [25–27] and contrast [37,41] are frequently used in ISAR imaging to

quantify the image focus. In this paper, image entropy is employed to evaluate the focus
quality of images. Entropy has been used as a typical indicator in ISAR imaging in many
different ways [28,29]. The entropy of the 2-D image represents its sharpness, and generally,
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the “sharpest” image corresponds to the entirely focused image. The complex image after
high-speed motion correction by b̃ =

[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L can be rewritten as

g
(
k, h; b̃

)
=

M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) exp

j4πγ


L−1
∑

l=0
b̃l(m∆tm)

l

c
−

(
L−1
∑

l=0
b̃l(m∆tm)

l
)2

c2

n2

+ ξ(k, h).

(17)

Therefore, the entropy of an image is defined as a function of b̃ =
[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L,

which is given by

Eg
(
b̃
)
= ln Sg −

1
Sg

N−1

∑
k=0

M−1

∑
h=0

∣∣g(k, h; b̃
)∣∣2 ln

∣∣g(k, h; b̃
)∣∣2, (18)

where Sg is the image intensity that can be expressed as

Sg =
N−1

∑
k=0

M−1

∑
h=0

∣∣g(k, h; b̃
)∣∣2. (19)

The estimate of b̃ =
[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L is obtained by minimizing the image

entropy, expressed as follows:〈
b̂0, · · · , b̂L−1

〉
= arg min

b̃0,··· ,b̃L−1

Eg
(
b̃
)
. (20)

To date, the optimization based on entropy minimization for high-speed motion
compensation is established, and it is an optimization function with series parameters b̃ =[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L. Many standard algorithms are available to solve this optimization,

such as particle swarm optimization (PSO) and genetic algorithms (GA)[19]. However,
these nonparameteric methods always need great computation time. BFGS is an effective
quasi-Newton algorithm that efficiently solves unconstrained optimization problems. In
the following subsection, we present a fast iterative optimization search method based on
the BFGS quasi-Newton iteration method [37].

3.2. Parameter Optimization Based on Fast Iteration

To apply the BFGS-based fast iterative search method, one first has to obtain the gradi-
ent of each parameter. For an arbitrary parameter b̃l0 , l0 ∈ [0, 1, · · · , L− 1], its gradient is

∂Eg
(
b̃
)

∂b̃l0
= − 1

Sg

N−1

∑
k=0

M−1

∑
h=0

{[
1 + ln

∣∣g(k, h; b̃
)∣∣2] · ∂

∣∣g(k, h; b̃
)∣∣2

∂b̃l0

}
, (21)

where
∣∣g(k, h; b̃

)∣∣2 = g
(
k, h; b̃

)
· g∗
(
k, h; b̃

)
; then, we have

∂
∣∣g(k, h; b̃

)∣∣2
∂b̃l0

= 2Re

[
g∗
(
k, h; b̃

)
·

∂g
(
k, h; b̃

)
∂b̃l0

]
, (22)
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where

∂g
(
k, h; b̃

)
∂b̃l0

=
M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) · exp

j4πγ


L−1
∑

l=0
b̃l(m∆tm)

l

c
−

(
L−1
∑

l=0
b̃l(m∆tm)

l
)2

c2

n2



·

j4πγ

1
c
−

2
L−1
∑

l=0
b̃l(m∆tm)

l

c2

(m∆tm)
l0

,

(23)

With the partial derivative expressions in Equation (23), the gradient of image entropy
with respect to b̃ =

[
b̃0, b̃1, b̃2, · · · , b̃L−1

]
1×L is

∇Eg
(
b̃
)
=

[
∂Eg

(
b̃
)

∂b̃0
,

∂Eg
(
b̃
)

∂b̃1
, · · · ,

∂Eg
(
b̃
)

∂b̃L−1

]T

. (24)

In the BFGS algorithm, an approximate matrix (defined as B, whose initial form
is B0 = IL×L), is used to replace the Hessian matrix of the objective function. In this
paper, since we are searching for each polynomial parameter individually, B0 = 1. In
addition, considering the considerable number of velocity polynomial parameters, it is
difficult to ensure the algorithm’s convergence speed and convergence robustness if the
joint iterative search is performed for all parameters simultaneously. Therefore, to improve
the convergence speed while providing the algorithm’s robustness, a BFGS-based quasi-
Newton coordinate descent algorithm was used in this paper. Herein, this paper minimized
the entropy Eg

(
b̃
)

with respect to a single parameter while holding the other parameter
constant to avoid the local optimum. For example, for the parameter b̃l0 , with the first
l0 parameters b̃0 ∼ b̃l0−1 which are already iteratively updated, the minimum entropy
optimization function of b̃l0 can be expressed as

〈
b̂l0

〉
= arg min

b̃l0

Eg
(
b̃
)∣∣∣∣∣

b̃0,···l0−1,l0+1,··· ,L−1=0

. (25)

In the coordinate descent iterative algorithm, each parameter b̃l0 is solved inde-
pendently iteratively and optimally. Considering that in Equation (25), b̃l = 0, l =
0, · · · , l0 − 1, l0 + 1, · · · , L − 1. Taking this into Equation (23), the gradient of the inde-
pendent parameter b̃l0 can be expressed as

∂g
(
k, h; b̃l0

)
∂b̃l0

=
M−1

∑
m

exp
(
−j2π

hm
M

) N−1

∑
n=0

exp
(
−j2π

kn
N

)

· so(n, m) · exp

j4πγ

 b̃l0(m∆tm)
l0

c
−

(
b̃l0(m∆tm)

l0
)2

c2

n2


·
[

j4πγ

(
1
c
−

2b̃l0(m∆tm)
l0

c2

)
(m∆tm)

l0

]
.

(26)
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For each parameter b̃l0 , its iterative solution process is based on the BFGS algorithm.
Let b̃0

l0
be the initial parameter and b̃k

l0
be the parameter of the kth iteration. The searching

direction in BFGS is updated as follows:

dk = −Bk · ∇Eg

(
b̃k

l0

)
. (27)

The k + 1th parameter b̃k+1
l0

is updated as follows:

b̃k+1
l0

= b̃k
l0 + λkdk, (28)

where λk is the search step corresponding to b̃k
l0

at the kth iteration. It can be estimated by
Equation (29) via some 1-D inexact searching methods, such as golden section search or the
Armijo–Goldstein stepsize rule [37].

λk = arg min
λk

[
Eg

(
b̃k

l0 + λkdk
)]

. (29)

The Hessian matrix Bk in BFGS is updated as follows:

Bk+1 = Bk +
yk ·

(
yk
)T

yk ·
(
sk
)T −

Bksk
(

sk
)T

Bk(
sk
)TBksk

, (30)

where sk = λkdk , yk = ∇Eg

(
b̃k+1

l0

)
−∇Eg

(
b̃k

l0

)
.

All parameters are updated throughout the parameter optimization process in two
loop iterations, the inner and outer loops, respectively. Within the inner loop, for the
parameter b̃l , l = 0, 1, · · · , L− 1, the parameters are independently updated based on BFGS
from b̃0 ∼ b̃L−1 in turn, and each parameter is independently updated as an inner loop.
When all parameters are updated once, it is an outer loop, and after completing an outer
loop, it goes to a new outer loop. Until the image entropy satisfies a certain value, the
iteration stops.

To clearly describe the proposed algorithm, a flowchart of the proposed algorithm is
given in Figure 4.

As can be seen from the flow chart, first, the polynomial order is selected. Since the
time of a CPI is very short, say less than 1 second, the target’s velocity variation is small,
and a velocity polynomial of order 1–2 can accurately describe the high-speed motion of
the target. In this paper, L is set to 5 to make the proposed algorithm more robust, i.e., it can
satisfy the case of weak target maneuver as well as the case of strong target maneuver. For
L = 5, the algorithm only sacrifices a small amount of computation time, but this will make
the high-speed compensation more accurate and robust. The iterative process is divided
into an inner loop and an outer loop. The inner loop is a BFGS-based gradient search for
each polynomial parameter independently. After a complete search estimation of all order
coefficients, the range alignment and phase adjustment were re-implemented. This process
is an outer loop, where δ1 and δ2 are the inner loop and outer loop iteration termination
conditions, respectively. In general, δ1= 10−3, δ2= 10−4 are usually a good choice in reality.
It is important to emphasize that after all the coefficients are updated, the range profile of
each pulse will be changed because the high-speed motion of the target was compensated
to a certain extent. Hence, it is necessary to realign all the echo envelopes [23] and refocus
the image [26,27] for the next iteration.
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Figure 4. The flow chart of the proposed algorithm.

4. Experiment Analysis

To verify the effectiveness of the proposed algorithm, in this subsection, different
experiments were designed to demonstrate the performance of the proposed algorithm.
The experiments are divided into the three types and all the images are generated by
the conventional range-Doppler (RD) [1] imaging algorithm. The difference is that dif-
ferent high-speed motion compensation algorithms are used. For all experiments, the
proposed method is compared with the algorithm in [21], which uses the idea of minimum
entropy of individual echoes for high-speed compensation. It is referred to as ME. The
proposed algorithm is also compared with the algorithm proposed in [17], which uses
ICPF to estimate the chirp coefficients of independent echoes and thus for high-speed
compensation. It is referred to as ICPF in this paper. It is important to emphasize that
before the high-speed motion compensation, the translation compensation [23] and the
phase error compensation [40] are applied to compensate for the fifth, sixth, and seventh
terms in Equation (10).

(1) Firstly, point simulation experiments are designed to verify the performance of the
proposed algorithm under different high-speed motion conditions.

(2) Considering the difficulty of obtaining the real measurement data of the space
target, this paper uses the electromagnetic simulation data of the space target for the
experiment, and the PO algorithm [43] obtains simulation data. In addition, to illustrate
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the robustness of the proposed algorithm in the case of low SNR, the performance of the
proposed algorithm under different SNR conditions is given in the experiments.

(3) In this part of the experiment, different high-speed motion was added to the
Yak-42 real measured data to evaluate the effectiveness of the proposed method, and the
high-speed motion was added using Equation (11).

4.1. Experiments Based on Point Array Simulation

The first experiment is based on scattering point simulation. A simulated ballistic
missile consisting of 13 scatterers is constructed as shown in Figure 5b, which is supposed
to fly straight above the radar with different projected velocities. The motion model is
given in Figure 5a. The radar transmits a linear frequency modulation (LFM) signal with
the parameters given in Table 1. The signal-to-noise ratio (SNR) of the radar echo is 20 dB.
The radar echo simulation was carried out under different high-speed motion conditions,
as shown in Table 2. In this paper, the SNR of a signal is defined as

SNR = 10log10

(
Es

En

)
, (31)

where Es denotes the energy of the radar echo, and En denotes the energy of white Gaus-
sian noise.

The high-speed compensated ISAR imaging results under different motion conditions
are shown in Figure 6, all the imaging results were obtained using the RD imaging al-
gorithm [1]. The left column of Figure 6 is the ISAR images without high-speed motion
compensation. It can be seen that, as the target speed increases, the high-speed motion also
has an increasing impact on the ISAR imaging results, and the images become increasingly
blurred. The second column of Figure 6 shows the ISAR images acquired by the ME. It can
be seen that the focusing image quality is significantly improved by using the high-speed
compensation algorithm. The third column of Figure 6 shows the ISAR images acquired by
the ICPF. It can be seen that the image focusing quality obtained by ICPF is basically the
same as that of the ME algorithm. Compared with uncompensated images, the scattered
points in the images are well focused. The fourth column of Figure 6 shows the focused
ISAR images acquired by the proposed algorithm, and it can be seen that the proposed
algorithm achieves images with better focusing quality. For comparison, the entropy of
the images after high-speed compensation by different algorithms are given, as shown
in Table 3. As can be seen from the table, compared with the ME and ICPF, the image
entropy obtained by the proposed algorithm is smaller and closer to the ideal image. The
variation of the image entropy with the iteration number of the proposed algorithm is given
in the right column of Figure 6, and it can be seen that the proposed algorithm reaches
convergence after approximately ten iterations. Considering that the first and second-order
of the target velocity dominate the influence within a CPI, the image entropy against the
velocity and acceleration are given in Figure 7a–d. It can be seen that the adoption of the
global image entropy as the evaluation criterion has a global minimum, and the algorithm
can robustly converge to the global optimum.
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Figure 5. (a) Target movement trajectory; (b) the scattering point model; and (c) the ideal image of
zero velocity.
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Figure 6. High-speed compensated imaging results under different motion conditions. The leftmost
column is the imaging results without high-speed motion compensation; the second column is the
high-speed compensation imaging results by ME; the third column is the high-speed compensation
imaging results by ICPF; the fourth column is the high-speed compensation imaging results of the
proposed algorithm; the rightmost column is the image entropy against the iteration number of the
proposed algorithm.
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Table 1. Radar parameters of the simulation.

Center Frequency Pulse Repetition Frequency Pulse Width Band Width Sample Frequency

16 GHz 1000 Hz 400 us 2 GHz 10 MHz

Table 2. Motion parameters for the simulation.

v
b b0 b1 b2

v(tm; b0) 0 0 0
v(tm; b1) 1000 1000 10
v(tm; b2) 3000 1000 100
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v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

(a) (b) (c) (d)

2.2 2.4 2.6 2.8 3 3.2

Range Cell ×10
5

-50

-40

-30

-20

-10

0

10

N
o

rm
a

liz
e

d
 m

a
g

n
it
u

d
e

 (
d

B
) v (tm;b0)

v (tm;b1)
v (tm;b2)
v (tm;b3)
v (tm;b4)

(e)

1.6 1.8 2 2.2 2.4

Range Cell ×10
4

-60

-50

-40

-30

-20

-10

0

10

N
o

rm
a

liz
e

d
 m

a
g

n
it
u

d
e

 (
d

B
) v (tm;b0)

v (tm;b1)
v (tm;b2)
v (tm;b3)
v (tm;b4)

1.9195 1.92 1.9205

×10
4

-0.06

-0.04

-0.02

0

(f)

1.6 1.8 2 2.2 2.4

Range Cell ×10
4

-60

-50

-40

-30

-20

-10

0

10

N
o

rm
a

liz
e

d
 m

a
g

n
it
u

d
e

 (
d

B
) v (tm;b0)

v (tm;b1)
v (tm;b2)
v (tm;b3)
v (tm;b4)

1.9195 1.92 1.9205

×10
4

-0.06

-0.04

-0.02

0

(g)

1.6 1.8 2 2.2 2.4

Range Cell ×10
4

-60

-50

-40

-30

-20

-10

0

10

N
o

rm
a

liz
e

d
 m

a
g

n
it
u

d
e

 (
d

B
) v (tm;b0)

v (tm;b1)
v (tm;b2)
v (tm;b3)
v (tm;b4)

1.9195 1.92 1.9205

×10
4

-0.06

-0.04

-0.02

0

(h)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Observation Time [s]

800

900

1000

1100

1200

V
e

lo
c
it
y
 [

m
/s

]

v (tm;b1)

Real Velocity

Proposed method

ICPF

ME

(i)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Observation Time [s]

2800

2900

3000

3100

3200

V
e

lo
c
it
y
 [

m
/s

]

v (tm;b2)

Real Velocity

Proposed method

ICPF

ME

(j)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Observation Time [s]

4600

4800

5000

5200

5400

V
e

lo
c
it
y
 [

m
/s

]

v (tm;b3)

Real Velocity

Proposed method

ICPF

ME

(k)

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Observation Time [s]

5500

6000

6500

7000

7500

8000

8500

V
e

lo
c
it
y
 [

m
/s

]

v (tm;b4)

Real Velocity

Proposed method

ICPF

ME

(l)

Figure 7. (a–d) Image entropy variation with velocity and acceleration; (e–h) range profiles of
individual scattering points in ISAR images; and (i–l) velocity estimation and its true value of
different high-speed compensation algorithms at different motion conditions.
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Table 3. The entropy of images acquired by different algorithms.

Image Entropy

Ideal Image 4.3252

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Image 6.2026 5.5213 5.9747 6.593

ME 4.4224 4.4917 4.3975 4.3981

ICPF 4.3911 4.3853 4.3897 4.3821

Proposed Method 4.3347 4.3328 4.3256 4.3422

To better reflect the advantages of the proposed algorithm, the range profiles of the
independent scattering points of the image are given in Figure 7e–h. From Figure 7e, it can
be seen that as the target velocity continues to increase, the range chirp term brought by
the high-velocity becomes more and more prominent, and the profile spreading after range
compression becomes more and more serious. The range profile after high-speed motion
compensation is shown in Figure 7f–h, and it can be seen that after high-speed motion
compensation, the main lobe broadening of the independent points disappears, forming a
well-focused range compression lobe. However, compared with the proposed algorithm,
the main lobe of the range profile after the compensation of ME and ICPF still has the
spreading phenomenon. In contrast, after the compensation of the proposed algorithm, the
main lobe has no broadening.

Figure 7i–l gives the estimated velocity of the three algorithms and the true velocity.
One can see that since the ME and ICPF algorithms process each echo independently from
the velocity estimation, the estimated velocity is not correlated. The velocity estimates of
each pulse are independent of each other. There are many speed estimates that deviate
significantly from the true value, which will eventually lead to inadequate image com-
pensation. In contrast, the proposed algorithm considers the continuity of the target’s
velocity variation within a CPI, and the estimated velocity is consistent with the actual
value which also reflects the effectiveness of the proposed algorithm. The root mean square
error (RMES) of velocity estimated by different algorithms is shown in Table 4, and RMES
is defined as

RMSE =

√√√√ 1
N

N

∑
n=1

(ṽestimate(n)− vreal(n))
2 (32)

where ṽestimate is the estimated velocity and vreal is the true velocity. It can be seen from the
RMSE that the estimation error of the proposed algorithm is much lower than the errors of
the comparison methods, which proves the effectiveness of the proposed algorithm.

Table 4. Estimated speed RMSE of different algorithms with point simulation experiments.

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 217.41 254.57 27.27 65.99
ICPF 19.55 18.46 19.24 19.76

Proposed Method 17.35 4.40 12.83 6.46

4.2. Experiments Based on TG-I’s Electromagnetic Simulation

Since satellite data are rarely publicly available, the experimental data in this subsec-
tion are obtained based on electromagnetic simulations with the electromagnetic model
TG-1, whose 3D model is shown in Figure 8a. All simulations adopt a triangular facet
model to divide the target surface into thousands of equivalent scatterers. The radar echo
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data of a solid object are calculated by adopting the fast physical optics (FPO) algorithm [1],
and the conventional RD algorithm generates the ISAR images for EM simulation. To
illustrate the validity of the EM simulation, a comparison between the real ISAR image
of TG-I (Figure 8a) and the EM simulation ISAR image (Figure 8b) is given in Figure 8.
The German FGAN Lab published the measurement image of TG-I in March 2018 (at
Fraunhofer FHR, available at https://www.fhr.fraunhofer.de/tiangong-bilder; accessed
on 21 March 2018). The comparison result shows that the performance of the generated
imagery is close to that of the measured ISAR image, which supports the investigation in
this article. The radar parameters and target’s motion parameters used for the simulation
are the same as the experiments in the previous section.

(a) (b)

Simulation

(c)

Figure 8. (a) The CAD model of TG-I satellite; (b) real ISAR image; and (c) EM simulation ISAR image.

First, the imaging results of the different algorithms for high-speed compensation
under different motion conditions are given, as shown in Figure 9. The left column of
Figure 9 shows the imaging results without high-speed motion compensation, where
one can see that as the target speed increases, the blurring of the ISAR images becomes
increasingly severe, and the entropy value of the images becomes larger. When looking at
the two high-speed compensation algorithms, since the electromagnetic simulation is closer
to the actual measurement data than the previous simple scattering point simulation, the
high-speed compensation of ME and ICPF is not satisfactory. The focusing quality of the
images is minimally improved. In contrast, the algorithm proposed in this paper can still
accurately compensate, and the image after high-speed compensation can be accurately
focused, reflecting the robustness of the proposed algorithm. For comparison, the entropy
of the images after high-speed compensation by different algorithms are given, as shown
in Table 5. As can be seen from the table, compared with the ME and ICPF, the image
entropy obtained by the proposed algorithm is smaller and closer to the ideal image. From
Figure 10, it can be seen that the estimated velocity using ME and ICPF have a significant
error, and the bias between the estimated velocity and the true value can reach several
kilometers per second, which is the main reason for the failure of the algorithm. In contrast,
the estimated velocity of the proposed algorithm basically matches the true value, and
the error is basically negligible, which reflects the effectiveness of the proposed algorithm.
Similarly, the RMSE for the speed estimation of different algorithms is given, as shown in
Table 6. From the table, it can be seen that the speed estimation of the proposed algorithm
is more accurate and has less error.

https://www.fhr.fraunhofer.de/tiangong-bilder
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Figure 9. Experimental results of TG-I electromagnetic simulation under different motion conditions.
The leftmost column shows the imaging results without high-speed motion compensation; the second
column shows the high-speed compensation imaging results by ME; the third column shows the high-
speed compensation imaging results by ICPF; the fourth column shows the high-speed compensation
imaging results of the proposed algorithm; the rightmost column is the image entropy against the
iteration number of the proposed algorithm.
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Figure 10. Comparison of the estimated velocity and real velocity using TG-I EM simulation data
under different motion conditions.
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Table 5. The entropy of images acquired by different algorithms using TG-I EM simulation data.

Image Entropy

Ideal Image 6.3441

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Images 6.8023 7.3338 7.5326 7.8763

ME 7.181 7.177 7.134 7.8239

ICPF 6.9641 6.9599 6.9469 6.9511

Proposed Method 6.4277 6.3488 6.3703 6.3587

Table 6. Estimated speed RMSE of different algorithms using TG-I EM simulation data.

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 492.3 414.1 454.8 549.5
ICPF 503.6 503.5 503.5 457.0

Proposed Method 125.2 202.8 83.4 123.7

4.3. Performance Under Different SNRs

To verify the performance of the proposed method under low SNR, the complex white
Gaussian noise is added to electromagnetic simulation data with velocity parameters of
v(tm; b4) to generate different SNRs (from 0 dB to −13 dB). Figure 11 shows the experiment
results under different SNRs. The images without high-speed compensation are shown
in the first column in Figure 11, corresponding to the SNR equivalent of 0 dB, −5 dB, −10
dB, and −13 dB, respectively. The images obtained from the ME and ICPF are given in the
second and third columns of Figure 11. The images obtained from the proposed method are
given in the fourth column. Furthermore, entropy against the iteration number is shown
in the last column of Figure 11. As one can note, even under the low SNR conditions,
the proposed gradient-based optimization usually achieves convergence within less than
15 iterations. It is notable in Figure 11 that the images obtained without high-speed motion
compensation are poor in quality due to the strong noise. It cannot generate focused images
when the SNR is less than −5 dB. In addition, it can be seen that the images generated by
the high-speed compensation algorithm based on ME and ICPF have some improvement
in focus quality. However, in the case of low SNR, such as below −5 dB, both algorithms
have failed, and it is basically impossible to focus the imaging.

In contrast, the proposed algorithm can realize the accurate compensation for high-
speed target motion at −13 dB and achieve well-focused images. Table 7 gives the entropy
of the high-speed compensated images for different algorithms at different SNRs. The table
shows that the proposed algorithm performs the best, and the proposed algorithm obtains
the smallest image entropy compared to the other algorithms.
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Figure 11. Experimental results of TG-I electromagnetic simulation under different SNRs.

Table 7. Entropy of high-speed compensated images with different SNRs based on TG-I’s EM
simulation data.

Image Entropy vs. SNR

SNR 0 dB −5 dB −10 dB −13 dB

Raw Images 11.7568 13.3095 14.0247 14.102
ME 11.4112 13.1684 13.9722 14.0921

ICPF 11.2388 12.9563 13.802 14.0086
Proposed Method 10.9154 12.7832 13.7311 13.9501

In the experiments, we found that when the SNR decreases below −13 dB, the pro-
posed method will fail to compensate for the high-speed motion accurately, and the com-
pensated images will be seriously blurred. To illustrate these, the RMSE curves between the
estimated velocity and the true velocity for different SNRs are given, as shown in Figure 12.
As one can note, the proposed method provides very small MSE only when SNR is above
−13 dB, while the speed estimation errors of the other two compared methods significantly
increase at SNR lower than−5 dB. When the SNR decreases below−13 dB, the RMSE of the
estimated velocity becomes much more significant, which leads to blurred images. As has
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been mentioned before, the relationship between the focusing quality and image entropy
is inconsistent when extreme noise is involved in the data. Furthermore, the entropy of
the image almost relies on the strong noise only, independent of the high-speed motion
compensation. In this situation, one can use more pulses to obtain high-SNR gain, and
then, the well-focused images may be generated by the proposed method. In general, the
proposed algorithm has good noise robustness.

-15-14-13-12-11-10 -5 0

SNR(dB)

0

1000

2000

3000

4000

5000

R
M

S
E

Proposed Method

ME

ICPF

Figure 12. RMSE under different SNRs based on EM simulation data.

4.4. Experiment Using Measured Yak-42 Data

To verify the performance of the proposed algorithm on the measured data, this section
uses the Yak-42 measured data for the performance analysis of the algorithm. High-speed
motion and different noise are added into the data, and the different high-speed motion
compensation algorithms are performed. The dataset of the Yak-42 airplane is recorded by
a C-band (5.52 GHz) ISAR experimental system. The system transmits a 400 MHz linear
modulated chirp signal with 25.6 us pulse duration, providing a range resolution of 0.375 m.
The de-chirp sampling rate is also 10 MHz. The SNR is up to 22 dB of the raw data. The
picture of the Yak-42 aircraft is shown in Figure 13a. The standard ISAR image is shown in
Figure 13b. Since the speed of the actual aircraft is relatively low (approximately 100 m/s),
the speed of the aircraft itself is negligible compared to the high-speed motion of several
kilometers per second. In addition, different high speed motions in Table 2 are added to
the original radar echoes according to Equation (10). As in the two previous experiments,
the transnational motion compensation and phase error compensation are performed first,
followed by the high-speed motion compensation with different algorithms.

As one can clearly see from Figure 14, compared with ME and ICPF, significantly
clearer images can be achieved by using the proposed method, no matter which high-speed
motions are added into the measured Yak-42 data. On the contrary, the images obtained by
ME and ICPF are poor in focusing quality, although it is greatly improved compared to the
images without high-speed compensation. To better show the advantage of the proposed
method, Table 8 gives the image entropy after different high-speed motion compensation
algorithms, as it can be seen that the proposed algorithm has the smallest image entropy
after compensation, which is basically close to the entropy of the ideal image. Figure 15
gives the estimated velocity of different algorithms with respect to the real velocity, and
Table 9 gives the RMSE of the estimated velocity, and it can be seen that the proposed
algorithm still has the best performance on the real measured data.
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Figure 13. (a) Yak-42 airplane and (b) its standard ISAR image.
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Figure 14. Experimental results of Yak-42 measured data under different motion conditions. The
leftmost column is the imaging results without high-speed motion compensation; the second column
is the high-speed compensation imaging results by ME; the third column is the high-speed compen-
sation imaging results by ICPF; the fourth column is the high-speed compensation imaging results of
the proposed algorithm; the rightmost column is the image entropy against the iteration number of
the proposed algorithm.
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Figure 15. Comparison of estimated velocity and real velocity using Yak-42 measured data at different
motion conditions.

Table 8. The entropy of images acquired by different algorithms using Yak-42 measured data.

Image Entropy

Ideal Image 5.9478

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

Raw Images 7.0153 8.1064 8.7729 9.0073
ME 6.3938 6.4513 6.9367 6.881

ICPF 6.6593 6.6628 6.6609 6.6615
Proposed Method 5.9983 5.9617 6.1039 6.0206

Table 9. Estimated speed RMSE of different algorithms using Yak-42 measured data

RMSE

v(tm; b1) v(tm; b2) v(tm; b3) v(tm; b4)

ME 146.99 93.78 194.24 252.78
ICPF 319.42 319.61 319.99 321.25

Proposed Method 35.28 49.79 66.59 49.87

The results of the high-speed motion compensation using Yak-42 measured data with
different SNRs are given in Figure 16, and the different columns are the imaging results
obtained by using different compensation algorithms. It can be seen that, similarly to the
EM simulation data results, the proposed algorithm obtains well-focused images at low
SNR (not lower than −13 dB), while both the ME and ICPF algorithms fail at low SNRs.
Similarly, the entropies of the compensated images for different SNRs are given in Table 10.
The RMSE of velocity estimation for different SNRs is also given, as shown in Figure 17. It
can be seen that the proposed method performs the best.

To reflect the speed advantage of the proposed algorithm, a comparison of the compu-
tation time of the proposed algorithm with several other algorithms is given in Table 11.
The cpu time is obtained with MATLAB coding using a personal computer with an Intel
Core i5 3.30-GHz processer and 8-GB memory. From the table, it can be seen that the
proposed method requires only a few seconds for the computation time, while the other
two compared algorithms require several hundred seconds. This is due to the fact that the
proposed method compensates all the echoes within a CPI consistently, taking into account
the integrity of the target motion. However, the other two algorithms process each pulse
individually and require a longer computing time.
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Figure 16. Experimental results of Yak-42 measured data under different SNRs.
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Table 10. Entropy of high-speed compensated images with different SNRs based on Yak-42 mea-
sured data.

Image Entropy Vs SNR

SNR 0 dB −5 dB −10 dB −13 dB

Raw Images 9.0235 10.3065 11.0532 11.2426
ME 7.8333 9.3286 10.5286 11.2758

ICPF 8.0752 9.4778 10.5239 11.348
Proposed Method 7.69 8.9948 10.3366 10.4271

Table 11. Computation time comparison of individual methods.

Algorithms ME ICPF Proposed Method

Computation time (s) 70.91 224.77 5.52

5. Conclusions

The target’s high-speed motion leads to the range profile spreading after echo pulse
compression, which seriously affects the ISAR imaging and leads to severe image blurring.
In addition, the low SNR of the high-speed moving target echoes has been a critical problem
that plagues accurate and robust high-speed motion compensation. This paper proposes
a noise-robust high-speed motion compensation algorithm for the high-speed moving
target ISAR imaging under low SNR conditions. This paper innovatively considers the
continuity of the target velocity variation. By transforming the velocity within a CPI into a
high-order polynomial model, the proposed method establishes a parameterized minimum
entropy optimization model and realizes the high-speed motion compensation for the
targets by quickly and accurately searching the polynomial coefficients via the BFGS-based
quasi-Newton iterative method. The proposed algorithm has promising noise robustness
and can accurately compensate for the high-speed motion of the target under low SNR
conditions. Different experiments verify the effectiveness of the proposed algorithm.

Author Contributions: Conceptualization and methodology, J.W. and Y.L.; software, J.W.; resources,
J.W. and M.S.; writing—review and editing, J.W., Y.L., P.H. and M.X. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported in part by the National Key R&D Program of China under Grant
2018YFB2202500, in part by the National Natural Science Foundation of China (Grant No. 62171337),
in part by the Key R&D program of Shaanxi Province under grant 2017KW-ZD-12, in part by the
Shaanxi Province Funds for Distinguished Young youths under grant S2020-JC-JQ-0056, in part by the
National Natural Science Foundation of China (Grant No. 62101396) and in part by the Fundamental
Research Funds for the Central Universities (No. XJS212205).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all reviewers and editors for their comments on
this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Walker, J.L. Range-Doppler imaging of rotating objects. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 23–52. [CrossRef]
2. Xu, G.; Xing, M.D.; Zhang, L.; Duan, J.; Chen, Q.Q.; Bao, Z. Sparse apertures ISAR imaging and scaling for maneuvering targets.

IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2942–2956. [CrossRef]
3. Yang, L.; Xing, M.; Zhang, L.; Sun, G.C.; Gao, Y.; Zhang, Z.; Bao, Z. Integration of rotation estimation and high-order compensation

for ultrahigh-resolution microwave photonic isar imagery. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2095–2115. [CrossRef]
4. Ma, J.T.; Gao, M.G.; Guo, B.F.; Dong, J.; Xiong, D.; Feng, Q. High resolution inverse synthetic aperture radar imaging of

three-axis-stabilized space target by exploiting orbital and sparse priors. Chin. Phys. B 2017, 26, 108401. [CrossRef]

http://doi.org/10.1109/TAES.1980.308875
http://dx.doi.org/10.1109/JSTARS.2014.2315630
http://dx.doi.org/10.1109/TGRS.2020.2994337
http://dx.doi.org/10.1088/1674-1056/26/10/108401


Remote Sens. 2022, 14, 2178 25 of 26

5. Jakowatz, C.V.; Wahl, D.E.; Eichel, P.H.; Ghiglia, D.C.; Thompson, P.A. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing
Approach: A Signal Processing Approach; Springer: Berlin/Heidelberg, Germany, 2012.

6. Chen, C.C.; Andrews, H.C. Target-motion-induced radar imaging. IEEE Trans. Aerosp. Electron. Syst. 1980, AES-16, 2–14.
[CrossRef]

7. Caputi, W.J. Stretch: A time-transformation technique. IEEE Trans. Aerosp. Electron. Syst. 1971, AES-7, 269–278. [CrossRef]
8. Wehner, D.R. High resolution radar. In Norwood; Artech House: London, UK, 1987.
9. Tian, B.; Chen, Z.; Xu, S.; Liu, Y. ISAR imaging compensation of high speed targets based on integrated cubic phase function. In

MIPPR 2013: Multispectral Image Acquisition, Processing, and Analysis; International Society for Optics and Photonics: Bellingham,
Washington, USA, 2013; Volume 8917, p. 89170B.

10. Kun-Fan, Z.; Zhi-Hong, F.; De-Bao, M. Study on a method of compensation for the range profile of high velocity spatial targets.
In Proceedings of the 2010 International Conference on Image Analysis and Signal Processing, Zhejiang, China, 9–11 April 2010;
pp. 450–453.

11. Tian, B.; Lu, Z.; Liu, Y.; Li, X. High velocity motion compensation of IFDS data in ISAR imaging based on adaptive parameter
adjustment of matched filter and entropy minimization. IEEE Access 2018, 6, 34272–34278. [CrossRef]

12. Gu, F.F.; Fu, M.H.; Chen, C.H.; Yang, M.; Zhang, Y. A novel ISAR imaging method for high speed moving target based on
parametric sparse representation. In Proceedings of the 2017 16th International Conference on Optical Communications and
Networks (ICOCN), Wuzhen, China, 7–10 August 2017; pp. 1–3.

13. Zhiping, Y.; Zhen, F.; Dongjin, W.; Weidong, C. ISAR imaging of fast-moving target based on FRFT range compression. In
Proceedings of the 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, China, 5–9 November 2007;
pp. 306–309.

14. Cao, M.; Fu, Y.; Jiang, W.; Li, X.; Zhuang, Z. High resolution range profile imaging of high speed moving targets based on
fractional Fourier transform. In MIPPR 2007: Automatic Target Recognition and Image Analysis; and Multispectral Image Acquisition;
International Society for Optics and Photonics: Bellingham, WA, USA, 2007; Volume 6786, p. 678654.

15. Zhang, S.; Sun, S.; Zhang, W.; Zong, Z.; Yeo, T.S. High-resolution bistatic ISAR image formation for high-speed and complex-
motion targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3520–3531. [CrossRef]

16. Wang, F.; Jiang, D.; Chen, H. High range resolution profile construction exploiting modified fractional Fourier transformation.
Math. Probl. Eng. 2015, 2015, 321878. [CrossRef]

17. Liu, Y.; Zhang, S.; Zhu, D.; Li, X. A novel speed compensation method for ISAR imaging with low SNR. Sensors 2015,
15, 18402–18415. [CrossRef]

18. Wang, Y.; Kang, J.; Jiang, Y. ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and
integrated high-order ambiguity function for cubic phase signal model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014,
7, 2971–2991. [CrossRef]

19. Brinkman, W.; Thayaparan, T. Focusing ISAR images using the AJTF optimized with the GA and the PSO algorithm-comparison
and results. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006.

20. He, C.; Daiying, Z. High speed motion compensation based on the range profile. In Proceedings of the 2013 IEEE International
Conference on Signal Processing, Communication and Computing (ICSPCC 2013), Kunming, China, 5–8 August 2013; pp. 1–4.

21. Sheng, J.; Fu, C.; Wang, H.; Liu, Y. High speed motion compensation for terahertz ISAR imaging. In Proceedings of the 2017
International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1–4 August 2017; pp. 1–2.

22. Guo, B.; Li, Z.; Xiao, Y.; Shi, L.; Han, N.; Zhu, X. ISAR Speed Compensation Algorithm for High-speed Moving Target Based on
Simulate Anneal. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an,
China, 16–19 October 2019; pp. 1595–1599.

23. Zhu, D.; Wang, L.; Yu, Y.; Tao, Q.; Zhu, Z. Robust ISAR range alignment via minimizing the entropy of the average range profile.
IEEE Geosci. Remote Sens. Lett. 2009, 6, 204–208.

24. Liu, L.; Zhou, F.; Tao, M.; Sun, P.; Zhang, Z. Adaptive translational motion compensation method for ISAR imaging under low
SNR based on particle swarm optimization. IEEE J.Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5146–5157. [CrossRef]

25. Zhang, L.; Sheng, J.l.; Duan, J.; Xing, M.D.; Qiao, Z.J.; Bao, Z. Translational motion compensation for ISAR imaging under low
SNR by minimum entropy. EURASIP J. Adv. Signal Process. 2013, 2013, 33. [CrossRef]

26. Xi, L.; Guosui, L.; Ni, J. Autofocusing of ISAR images based on entropy minimization. IEEE Trans. Aerosp. Electron. Syst. 1999,
35, 1240–1252. [CrossRef]

27. Wang, J.; Liu, X.; Zhou, Z. Minimum-entropy phase adjustment for ISAR. IEE Proc.-Radar Sonar Navig. 2004, 151, 203–209.
[CrossRef]

28. Kragh, T.J.; Kharbouch, A.A. Monotonic iterative algorithm for minimum-entropy autofocus. In Proceedings of the Adaptive
Sensor Array Processing (ASAP) Workshop, Lexington, KY, USA, 6–7 June 2006; Volume 40, pp. 1147–1159.

29. Wang, J.; Zhang, L.; Du, L.; Yang, D.; Chen, B. Noise-robust motion compensation for aerial maneuvering target ISAR imaging by
parametric minimum entropy optimization. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4202–4217. [CrossRef]

30. Li, Y.; Wu, R.; Xing, M.; Bao, Z. Inverse synthetic aperture radar imaging of ship target with complex motion. IET Radar Sonar
Navig. 2008, 2, 395–403. [CrossRef]

http://dx.doi.org/10.1109/TAES.1980.308873
http://dx.doi.org/10.1109/TAES.1971.310366
http://dx.doi.org/10.1109/ACCESS.2018.2850055
http://dx.doi.org/10.1109/JSTARS.2015.2417192
http://dx.doi.org/10.1155/2015/321878
http://dx.doi.org/10.3390/s150818402
http://dx.doi.org/10.1109/JSTARS.2014.2301158
http://dx.doi.org/10.1109/JSTARS.2015.2491307
http://dx.doi.org/10.1186/1687-6180-2013-33
http://dx.doi.org/10.1109/7.805442
http://dx.doi.org/10.1049/ip-rsn:20040692
http://dx.doi.org/10.1109/TGRS.2018.2890098
http://dx.doi.org/10.1049/iet-rsn:20070101


Remote Sens. 2022, 14, 2178 26 of 26

31. Liu, Y.; Li, G.; Tian, B.; Chen, Z.P. ISAR imaging at low SNR level based on polarimetric whitening filter. In MIPPR 2013:
Multispectral Image Acquisition, Processing, and Analysis; International Society for Optics and Photonics: Bellingham, WA, USA,
2013; Volume 8917, p. 891703.

32. Barbarossa, S.; Di Lorenzo, P.; Vecchiarelli, P. Parameter estimation of 2D multi-component polynomial phase signals: An
application to SAR imaging of moving targets. IEEE Trans. Signal Process. 2014, 62, 4375–4389. [CrossRef]

33. Cantoni, A.; Martorella, M. Fourier-based ISAR imaging using 2D polynomials. IET Radar Sonar Navig. 2017, 11, 1216–1227.
[CrossRef]

34. Cantoni, A.; Martorella, M. ISAR image autofocus using 2D-polynomials. In Proceedings of the 2016 IEEE Radar Conference
(RadarConf), Philadelphia, PA, USA, 2–6 May 2016; pp. 1–6.

35. Nocedal, J.; Wright, S. Numerical Optimization; Springer: Berlin/Heidelberg, Germany, 2006.
36. Shao, S.; Zhang, L.; Liu, H.; Zhou, Y. Spatial-variant contrast maximization autofocus algorithm for ISAR imaging of maneuvering

targets. Sci. China Inf. Sci. 2019, 62, 40303. [CrossRef]
37. Shao, S.; Zhang, L.; Liu, H.; Zhou, Y. Accelerated translational motion compensation with contrast maximisation optimisation

algorithm for inverse synthetic aperture radar imaging. IET Radar Sonar Navig. 2019, 13, 316–325. [CrossRef]
38. Chen, V.C.; Lipps, R. ISAR imaging of small craft with roll, pitch and yaw analysis. In Proceedings of the Record of the IEEE 2000

International Radar Conference, Alexandria, VA, USA, 12 May 2000; pp. 493–498.
39. Chen, V.C.; Miceli, W. Time-varying spectral analysis for radar imaging of manoeuvring targets. IEE Proc.-Radar Sonar Navig.

1998, 145, 262–268. [CrossRef]
40. Li, Y.; Xing, M.; Su, J.; Quan, Y.; Bao, Z. A new algorithm of ISAR imaging for maneuvering targets with low SNR. IEEE Trans.

Aerosp. Electron. Syst. 2013, 49, 543–557. [CrossRef]
41. Martorella, M.; Berizzi, F.; Haywood, B. Contrast maximisation based technique for 2-D ISAR autofocusing. IEE Proc.-Radar Sonar

Navig. 2005, 152, 253–262. [CrossRef]
42. Wang, J.; Kasilingam, D. Global range alignment for ISAR. IEEE Trans. Aerosp. Electron. Syst. 2003, 39, 351–357. [CrossRef]
43. Boag, A. A fast physical optics (FPO) algorithm for high frequency scattering. IEEE Trans. Antennas Propag. 2004, 52, AES-16,

197–204. [CrossRef]

http://dx.doi.org/10.1109/TSP.2014.2333553
http://dx.doi.org/10.1049/iet-rsn.2016.0586
http://dx.doi.org/10.1007/s11432-018-9707-2
http://dx.doi.org/10.1049/iet-rsn.2018.5115
http://dx.doi.org/10.1049/ip-rsn:19982220
http://dx.doi.org/10.1109/TAES.2013.6404119
http://dx.doi.org/10.1049/ip-rsn:20045123
http://dx.doi.org/10.1109/TAES.2003.1188917
http://dx.doi.org/10.1109/TAP.2003.822426

	Introduction
	De-Chirp Signal Model for High-Speed Moving Targets
	Optimal Compensation for High-Speed Motion
	Optimization Based on Parametric Minimum Entropy
	Parameter Optimization Based on Fast Iteration

	Experiment Analysis
	Experiments Based on Point Array Simulation
	Experiments Based on TG-I's Electromagnetic Simulation
	Performance Under Different SNRs
	Experiment Using Measured Yak-42 Data

	Conclusions
	References

