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Abstract: Due to the limited hardware conditions, hyperspectral image (HSI) has a low spatial
resolution, while multispectral image (MSI) can gain higher spatial resolution. Therefore, derived
from the idea of fusion, we reconstructed HSI with high spatial resolution and spectral resolution
from HSI and MSI and put forward an HSI Super-Resolution model based on Spectral Smoothing
prior and Tensor tubal row-sparse representation, termed SSTSR. Foremost, nonlocal priors are
applied to refine the super-resolution task into reconstructing each nonlocal clustering tensor. Then
per nonlocal cluster tensor is decomposed into two sub tensors under the tensor t-prodcut framework,
one sub-tensor is called tersor dictionary and the other is called tensor coefficient. Meanwhile, in
the process of dictionary learning and sparse coding, spectral smoothing constraint is imposed on
the tensor dictionary, and L1,1,2 norm based tubal row-sparse regularizer is enforced on the tensor
coefficient to enhance the structured sparsity. With this model, the spatial similarity and spectral
similarity of the nonlocal cluster tensor are fully utilized. Finally, the alternating direction method of
multipliers (ADMM) was employed to optimize the solution of our method. Experiments on three
simulated datasets and one real dataset show that our approach is superior to many advanced HSI
super-resolution methods.

Keywords: hyperspectral image fusion; super-resolution; tensor decomposition; tensor sparse
representation

1. Introduction

Hyperspectral image (HSI), as a three-dimensional data cube with two spatial dimen-
sions and one spectral dimension, contains rich spatial and spectral information of ground
objects. Due to this advantage, it has been widely used in many fields such as denoising [1],
unmixing [2], classification [3,4], and object detection [5]. However, limited by the hardware
conditions of the sensor, there is a trade-off between the spatial resolution and spectral
resolution of HSIs. That is, HSIs usually have lower spatial resolution and higher spectral
resolution, while multispectral images (MSIs) have lower spectral resolution and higher
spatial resolution. Therefore, it is urgent and necessary to fuse the information of HSI and
MSI to obtain an HSI with higher spatial and spectral resolutions, thereby improving the
accuracy of practical applications.

In recent decades, scholars have proposed many methods for hyperspectral and
multispectral fusion. According to the characteristics and theoretical basis of HSI super-
resolution, those related work can be divided into four categories: the methods based on
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pan-sharpening, the methods based on matrix decomposition, the methods based on deep
learning, and the methods based on tensor decomposition.

1.1. Fusion Based on Pan-Sharpening

The early fusion method is to fuse the lower-resolution MSI with the higher-resolution
panchromatic (PAN) image, called pansharpening. The typical techniques include compo-
nent projection-substitution (CP) [6] and multiresolution analysis (MRA) [7]. CP methods
include intensity hue saturation (IHS) transformation [8], principal component analysis
(PCA) transformation [9] and Gram–Schmidt (GS) transformation [10]. The main idea of
those methods is to replace the component containing spatial information in PAN image
with the same element for MSI. The representative methods based on MRA include wavelet
transform [11], Laplacian pyramid (LP) [12]. The main idea is to inject the high-resolution
spatial structure particulars of the PAN into the MSI. Inspired by this, many methods
extend the pan-sharpening way to HSI and MSI fusion, such as hypersharpening [13,14].
However, If there is a large gap between the spatial resolution of HSIs and MSIs, the fusion
results will be accompanied by varying degrees of distortion.

1.2. Fusion Based on Matrix Decomposition

Based on the matrix decomposition, it is assumed that the matrix of a high-resolution
HSI (HR-HSI) expanded along spectral dimension can be decomposed into the product
of a spectral basis matrix and a coefficient matrix, and the fusion problem is transformed
into the estimation of a spectral basis matrix and a coefficient matrix. Specifically, based on
the linear mixed spectral model [15], Yokoya et al. [16] proposed a coupled non-negative
matrix decomposition method to alternately update the hyperspectral endmember and
the abundance matrix with high spatial resolution. Having the idea that there is a strong
correlation between bands of an HSI, Simões et al. [17] estimated spectral features in a
low-dimensional subspace by using the low-rank feature between bands of the HSI, thus
improving the fusion accuracy and efficiency. Similarly, Zhang et al. [18] fully explored
the multi-manifold structure and low-rank structure of spectral bands, and proposed an
method based on fusion on group spectral embedding (GSE). More recently, the sparse
representation methods have shown good capabilities in estimating the spectral basis
matrix and coefficient matrix to obtain the desired results. The work of [19–27] regarded
spectral basis as an overcomplete dictionary to obtain sparsity, and enforced sparsity con-
straints to the coefficient matrix. Akhtar et al. [19] proposed a Bayesian sparse coding
method. Dong et al. [20] proposed a non-negative structure sparse representation method,
and utilized the clustering sparsity of HSI for fusion task. Later, Xue et al. [26] proposed a
structured sparse representation model by utilizing higher-level spectrum and spatial prior.
In general, the premise of matrix decomposition-based methods is to expand HR-MSI and
LR-HSI into matrices along spectral dimensions, which often ignore the original structure
of hyperspectral images. Although the accuracies are improved compared to pansharp-
ening methods, however, matrix factorization-based methods have higher computational
complexity and parameter settings.

1.3. Fusion Based on Deep Learning

In recent years, deep learning has made major breakthroughs in the application of
image processing. Dong et al. [28] applied convolutional neural networks (CNN) to image
super-resolution for the first time. Since then, a lot of work has been carried out around
deep learning methods. For instance, Palsson et al. [29] proposed a 3D convolutional
network-based fusion algorithm, which regarded the fusion problem as a spectral super-
resolution task of multispectral images. First, the down-sampled multispectral image and
the original hyperspectral image were used to learn between the images. Then the learned
model was utilized to complete the super-resolution of MSI. Zhang et al. [30] focused more
on reconstructing the missing spatial and spectral information of the image, and proposed
SSR-NET based on the spatial and spectral edge loss. Yang et al. [31] established a two-
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branch convolutional neural network architecture to extract multispectral images and
hyperspectral images separately, and combine features to achieve super-resolution goals.
Compared with traditional machine learning methods that rely on the design of strong
handcrafted features, deep learning methods are data-driven, and directly learn prior
knowledge from a large amount of data. For example, Wei et al. [32] proposed a deep
recursive network based on a deep structure prior and achieved excellent performance.
Because the three-dimensional (3D) convolution operation can preserve the spatial-spectral
correlation of the HSI better than the one-dimensional (1D) and two-dimensional (2D)
convolution operations, Wang et al. [33] proposed to extract spectral and spatial information
of source images through 1D convolution and 2D convolution while Hu et al. [34] proposed
a multi-scale feature fusion aggregation network based on 3D convolution, which had better
reconstruction results. In addition, the non-blind method relies on the fully known point
spread function (PSF) and spectral response function (SRF) to simulate the degradation
process. Some super-resolution methods based on deep learning can adaptively simulate
these two functions. From this perspective, Zheng et al. [35] adaptively learn the parameters
of PSF and SRF through two special convolutional layers and a self-encoding network.
Inevitably, deep learning methods have some shortcomings. Compared with traditional
method models, the neural network used in deep learning is poorly interpretable, and it
relies on a large number of data sets for training, also requires high hardware conditions.

1.4. Fusion Based on Tensor Decomposition

Recently, tensor decomposition has rapidly emerged in the fields of high-dimensional
image denoising, image completion, and compressed sensing. Since HSIs possess a three-
dimensional tensor structure that integrates spatial and spectral information, tensor decom-
position has become a hot spot for HSI super-resolution [36]. Li et al. [37] took the lead in
applying Tucker decomposition to hyperspectral image fusion, alternately estimating dic-
tionaries of the three modes and a core tensor. In addition, Dian et al. [38] added a non-local
prior to estimate each non-local cluster, reducing the computational cost of each iteration,
and also discussed the effect of image reconstruction under blind conditions. On this basis,
Wan et al. [39] stacked each non-local cluster into a fourth-order tensor and discussed the
cluster sparsity. In addition, CANDECOMP/PARAFAC decomposition (CPD) can also
capture the dependencies between different dimensions, and Kanatsoulis et al. [40] utilized
the coupled CPD model to handle the HSI-MSI fusion task. However, based on the fusion
model of Tucker decomposition or CPD, although the size of each modal dictionary is
obviously reduced, the interaction between spatial information and spectral information
is also weakened by the matrixing operation in the decomposition process. Moreover,
the tensor train decomposition model and tensor ring decomposition model have a more
vital ability to mine the internal structure of the data. These two decomposition models can
effectively maintain the inherent low-rank structure of the tensor while avoiding the loss
of original information. For example, Dian et al. [41] applied a regular term to the tensor
train decomposition factor and achieved good reconstruction results. Then, Dian et al. [42]
proposed a method based on low-rank subspace to estimate the spectral dictionary and
coefficients. Later, Xu et al. [43] proposed a non-convex rank constrained fusion model
of tensor ring factors, which imposed tensor nuclear norm constraints on decomposition
factors. Inspired by t-prodcut based tensor sparse representation [44], Xu et al. [45] pro-
posed a new HSI super-resolution framework. However, the model proposed in [45] lacked
some considerations of the inherent properties of HSIs. For example, it did not make full
use of the essential characteristics of the tensor decomposition factor and only used the L1
norm to solve the tensor coefficients, which would lead to loss of primary information and
sub-optimal solutions in practical applications. In addition, the model adopted orthogonal
constraints on the dictionary tensor, so that the spectrum of the linear combination of these
base spectra did not satisfy the smooth property. Therefore, there are still too much room
left for improvement.
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In this paper, we focus more on the properties of the reconstructed image itself.
Combining the characteristics of hyperspectral images, we carefully design the constraints
of spectral smoothing and tubal row-sparse on the framework mentioned in [45] and
propose a new HSI super-resolution model. In each iteration process, the reconstruction
image is made closer to the structural properties of the image itself. The advantages of our
method are mainly reflected in two aspects. First, we use a nonlocal patch-wise way to deal
with the fusion problem, instead of directly processing it on the whole image. Second, we
pay more attention to the internal structure and properties of the tensor factorization. On the
one hand, we impose a spectral smoothing constraint on the tensor spectral dictionary,
and on the other hand, we impose the L1,1,2 norm [46] on the tensor coefficient factor to
capture the intrinsic structure of it. Compared with current super-resolution methods, our
contributions are as follows.

1. We approach the fusion problem in a patch-wise way instead of directly processing
the images. Specifically, to fully exploit the spatial self-similarity of HSI, we use a
clustering method on the source image and construct multiple nonlocal tensor patches.
On this basis, we apply the tensor sparse representation model to the reconstruction
of each nonlocal tensor patch. In this way, the efficiency of our method is improved.

2. Furthermore, based on the tensor sparse representation model, we focus more on the
properties of hyperspectral images. To make the reconstructed image closer to the
original properties of HSI, we impose a spectral smoothing constraint on the tensor
dictionaries to promote the spectral smoothness of reconstructed images. Meanwhile,
it was noted that we use the L1,1,2 norm [46] to characterize the tubal row-sparsity
exhibited by the coefficient tensor.

3. We perform effective convex approximation for each term of the model and use
ADMM [47] to optimize the solution of the model. Comparative experiments con-
ducted on multiple simulated data sets and one real data set validate that the proposed
method is superior to the current advanced competitors.

The remainder of this paper is organized as follows. Section 2 presents the basic
notations with HSI super-resolution problem, as well as some of the related work, and our
proposed method. Section 3 presents the optimization algorithm. In Section 4, we show
the results of comparing our method with other methods in three simulated data sets and
one real data set. In Section 5, we discuss parameter selection and the effectiveness and
superiority of our designed constraints. Section 6 presents the conclusions.

2. Materials and Methods
2.1. Notions and Definitions

In this section, we will introduce the symbols and definitions [44] involved in this
paper. It is important to note that we use lowercase letters for vectors, capital letters for
matrices, and Euler Script letters for tensors.

Definition 1 (Mode-n unfolding). The mode-n unfolding matrix of the P-dimensional tensor
X ∈ R f1× f2×···× fP is denoted as X(p) ∈ R fp× f1 f2,..., fp−1 fp+1,..., fP , which is also represented by
un f oldp(X ) = X(p), and X = f oldp(X(p)). It takes the nth dimension fiber as the column of the
matrix, mapping the tensor elements into the matrix elements. Noted that X (:, i, j), X (i, :, j) and
X (i, j, :) are the column, row, and tubal fibers of X , respectively.

Definition 2 (Mode-n Tensor-Matrix Product). The mode-n tensor-matrix product of a tensor
X ∈ RI1×I2× ···×IN and a matrix A ∈ RPn×In is a tensor Y ∈ RI1×I2×...×In−1 ×Pn×In+1×...×IN

denoted by X ×k A and its elements are computed by

(X ×k A)i1,...,ik−1,j,ik+1,...,iN
= ∑

ik

xi1 ...ik−1ik ik+1 ...iN apnin (1)

Here, we have Y = X ×k A⇔ Y(k) = AX(k).
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Definition 3 (t-prodcut). The t-prodcut between D ∈ Rd1×d2×d3 and A ∈ Rd2×d4×d3 is J ∈
Rd1×d4×d3 , where J (i, j, :) = ∑r

m=1D(i, m, :) ∗A(m, j, :), and ∗ represents a circular convolution
operator. To better understand, we represent the t-prodcut using the following operator. First, we
use D(i) to represent D(:, :, i), i ∈ [d3], each D(i) is a frontal slice of D. Then, we define the block
circular matrix blkcirc (D) ∈ Rd1d3×d2d3 as

blkcirc(D) =


D(1) D(d3) · · · D(2)

D(2) D(1) · · · D(d3)

...
...

...
...

D(d3) D(d3−1) · · · D(1)

 (2)

Next, we define the operator of unfolding and folding of the frontal slices of D as

Unfold V(D) =


D(1)

D(2)

...
D(d3)

, Fold V( Unfold V(D)) = D (3)

At this point, the t-prodcut between D and A is J = D ∗A = FoldV(blk circ(D)·
UnfoldV(A)) ∈ Rd1×d4×d3 . To solve the tensor-tensor product optimization problem quickly, we
introduce a significant tool called the Discrete Fourier Transform (DFT). Let D ∈ Rd1×d2×d3 repre-
sents transformation form of DFT of D ∈ Rd1×d2×d3 along the 3rd mode, we define
D ∈ Rd1d3×d2d3 as follows:

D = blockdiag (D) =


D(1)

D(2)

. . .

D(d3)

 (4)

The function of blockdiag (·) operator above is mapping the tensor D to the block matrix arranged
diagonally. Then we will use the following Lemma to explain why we can use DFT to solve our
problem quickly.

Lemma 1 ([48]). Assume that D ∈ Rd1×d2×d3 , A ∈ Rd2×d4×d3 are two random tensors. Let
J = D ∗A. Then, we introduce the theorem of property as follows.

1. ‖J ‖2
F = 1

d3
‖J‖2

F

2. J = D ∗A is equivalent to J = DA, thus, we have J(j)
= D(j)A(j), j ∈ [d3]

Definition 4 (L1,1,2 norm and tubal row-sparsity). For a tensor A ∈ Rd1×d2×d3 , we define
A(i, j, :) as a tube of A, and define the tubal row-sparse of A as the number of non-zero tubes of A.
Here, we use L1,1,2 norm to compute the tubal sparsity [49]. The definition of L1,1,2 norm is given
as follows.

‖A‖1,1,2 = ∑
i,j
‖A(i, j, :)‖F (5)

which calculates the summation of the L2 norm of all tubes of A.

2.2. Preliminaries
2.2.1. Problem Formulation

To facilitate understanding, we build a preliminary observation model, and use Euler
Script letters to represent two input images and one output image, respectively.

Through the fusion of LR-HSI Y ∈ Rw×h×C and HR-MSI Z ∈ RW×H×c, we obtain
the target image HR-HSI X ∈ RW×H×C, where W, w and H, h represent the dimensions
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of the spatial width and height, respectively. C and c represent the dimension of the
spectral. It is noted that w << W, h << H and c << C. As mentioned at Definition 1,
X(3) ∈ RC×WH , Y(3) ∈ RC×wh, and Z(3) ∈ Rc×WH indicate matrices of X ∈ RW×H×C,
Y ∈ Rw×h×C and Z ∈ RW×H×c expanded along spectral mode individually. Therefore, we
establish a preliminary representation relationship.

Y(3) = X(3)BH + Nhs (6)

Z(3) = RX(3) + Nms (7)

where B ∈ RWH×WH represents the spatial blurring operator and H ∈ RWH×wh is often
assumed to be a down-sampling matrix. Nhs represents the independent and identically
distributed (i.i.d.) noise of LR-HSI. R ∈ Rc×C represents the spectral response of multi-
spectral sensor. Nms indicates the independent and identically distributed (i.i.d.) noise
of HR-MSI.

Based on the above description, we build a preliminary model as follows.

arg min
X(3)

{
1
2

∥∥∥Y(3) − X(3)BH
∥∥∥2

F
+

δ

2

∥∥∥Z(3) − RX(3)

∥∥∥2

F
+ λφ

(
X(3)

)}
(8)

where δ is a parameter that measures the relationship between the two fidelity terms.
There may be multiple solutions to solve this problem, resulting in severely ill-posed
of the problem. Therefore, we carry out appropriate regularization constraints on the
problem according to the prior knowledge of hyperspectral images. φ

(
X(3)

)
represents

the constraint on the spatial and spectral information of potential X(3) and λ represents the
coefficient of the constraint term.

2.2.2. Tensor Sparse Representation Based on t-Product

Because of the similarity and redundancy between the bands of hyperspectral data,
sparse representation has a strong advantage in super-resolution reconstruction model.
For high-dimensional image data, traditional methods based on matrix decomposition
usually embed high-dimensional data into the matrix space and use traditional dictionary
learning methods to complete restoration or denoising tasks. However, this matrixization
will break the original multi-dimensional structure of the image, Zhang et al. [46] proposed
the tensor dictionary learning and considered the sparsity of the tensor coefficient based
on the t-prodcut mentioned in Definition 3, and offered a tensor combination sparse
representation model. The model is as follows.

arg min
D,A

1
2
‖X −D ∗A‖2

F + λ‖A‖1 (9)

where X ∈ Ra×n×b indicates a third-order tensor which is stacked by n images of size a× b.
D ∈ Ra×r×b represents a dictionary which also is a third-order tensor and per lateral slice
of the dictionary indicates an atom. So, r expresses the number of atoms. A ∈ Rr×n×b

represents the tensor sparse coefficients. λ is a sparse regularization parameter. According
to the algebraic form of tensor-tensor product, each lateral slice of X ∈ Ra×n×b can be
linearly combined by tensor dictionary and tensor coefficient. Here, we present a linear
combination representation of each lateral slice below as shown in Figure 1.

X (:, i, :) = D ×A(:, i, :) = D(:, 1, :)×A(1, i, :) + · · ·+D(:, r, :)×A(r, i, :) (10)
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Figure 1. A tensor signal represented by a tensor-linear combination of i tensor dictionary atoms.

2.3. Proposed Method

Given the tensor linear combination sparse representation model based on t-prodcut,
we proposed a super-resolution method based on this model. To take full advantage of the
nonlocal self-similarity of hyperspectral images, we first performed nonlocal clustering on
the up-sampled LR-HSI and HR-MSI, and transformed the problem into the reconstruction
of each cluster of HR-HSI. Then per nonlocal cluster tensor was decomposed into two
sub tensors under the tensor t-prodcut framework, and the potential properties of each
sub tensor were explored. Specifically, the tensor dictionary was constrained by the prior
knowledge of spectral smoothing (spectrum continuity) of HSIs. In addition, the L1,1,2
norm was utilized to well characterize the tubal-row sparsity of tensor coefficients. Finally,
the ADMM algorithm was employed to iteratively solve our model. The flowchart of the
proposed method is shown in Figure 2.

Figure 2. Flowchart of SSTSR method.
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2.3.1. Nonlocal Cluster Tensor

To capture strong low rankness of the patches in HSIs, we incorporate a nonlocal
self-similarity prior to the model. Briefly, we divide the image into multiple patches by
a clustering algorithm and stack these patches with similar spectral and spatail features
into clusters. That is, we change the super-resolution task of the whole image into the
reconstruction of each cluster. Here, we employ [49] to sort all the segmented patches into
a highly smooth one-dimensional sequence, in which the two adjacent patches are highly
similar. All you need to do is initializing the number of each cluster on the sequence.

Since HR-HSI is unknown, we cannot group it directly. Therefore, we cluster and
group HR-HSI based on the spatial information and location of HR-MSI. So we first divide
HR-MSI Z ∈ RW×H×c into a group of overlapping tensor patches {Ji}1<i<N ⊂ Rvw×vh×c,
where vw and vh indicate the width and height of the patch of the partitioning tensor,
and N represents the number of patches of all the partitioning blocks. Then we group these
tensor patches to form multiple clusters. The elements of per cluster are tensor patches
with dimension of vw × vh × c. We use

{
J k

i

}
1<i<n

⊂ Rvw×vh×c to represent the kth cluster

with n tensor patches. Then, we expand each element of each cluster into a matrix along
the spectral dimension of the tensor, and stack each matrix to form a new third-order
tensor. We use Z k ∈ Rc×vwvh×mk to represent this new third-order tensor, and we have
Z k(:, :, i) = unfold3

(
J k

i

)
. Finally, we rewrite the fusion problems with the tensor notions

as follows.

arg min
X

{
1
2
‖Y − XBH‖2

F +
δ

2
‖Z −RX‖2

F

}

s.t. Y =

(
∑
k

UT
k Uk

)−1

∑
k

UT
k Y

k

Z =

(
∑
k

UT
k Uk

)−1

∑
k

UT
k Z

k

(11)

Here, Uk represents the operator that extracts the kth nonlocal cluster tensor from
HR-MSI or LR-HSI, that is, Z k = UkZ ,Y k = UkY . B and H represent spatial blurring
kernel and downsampling operator, respectively. However, in practice, we use mode-n
tensor-matrix product for computation, where XBH is equivalent to BHX(3). In addition,
each pixel intensity of HR-MSI is equal to the spectral response times the pixel intensity
in the corresponding HR-HSI. So when we use t-product to compute Z = RX , we have
Zk(i) = RXk(i) , i = 1, . . . , mk to compute each slice individually, as shown in the following
equation. 

Zk(1)

Zk(2)

...

Zk(mk)

 =


R 0 · · · 0
0 R · · · 0
...

...
...

...
0 0 · · · R




Xk(1)

Xk(2)

...
Xk(mk)

 (12)

2.3.2. Spectral Smooth Prior on Nonlocal Cluster Tensor

In HSIs, the nonlocal similarity between different patches not only represents the
spatial structure similarity, but also represents spectral similarity. So, we apply t-prodcut
to the reconstruction process of nonlocal cluster tensor. In this case, similar patches are
likely to belong to the same type of ground material at the same coordinates, so they should
be represented on the same basis. Based on Section 2.2.2, each nonlocal cluster tensor is
reconstructed separately as follows.
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arg min
X ,Dk ,Ak

{
1
2
‖Y − XBH‖2

F +
K

∑
k=1

(
δ

2

∥∥∥Z k −R ∗Dk ∗ Ak
∥∥∥+ λ

∥∥∥Ak
∥∥∥

1

)}

s.t. Z =

(
∑
k

UT
k Uk

)−1

∑
k

UT
k Z

k

(13)

For each nonlocal cluster tensor X , we have to estimate two sub tensors: tensor
dictionary Dk and coefficient tensor Ak. In this section, we only discuss the properties of
tensor dictionary. From Equation (10), it is easy to find that each lateral slice of the tensor is
a linear combination of the corresponding tensor dictionary Dk and coefficient tensor Ak.
This means that these lateral slices can be regarded as the basis of the spectral space Dk.
That is, continuous bases tend to generate continuous data. For hyperspectral data, spectral
smoothing is an important property. We assume that if we enforce the spectrum of each
base of the dictionary to be smooth enough, then the spectrum of the nonlocal cluster tensor
reconstructed from these bases will also be smooth enough. To confirm this hypothesis,
we reconstructed one nonlocal cluster tensor by applying spectral smoothing constraint
and without applying spectral smoothing constraint, respectively. From Figure 3, there are
obvious differences between the spectral curves at the same spatial location, the original
curve shows a smooth change. Therefore, we impose spectral smoothing constraints on
tensor dictionary for all nonlocal cluster tensors. Then, (13) can be rewritten as follows.

arg min
X ,Dk ,Ak

{
1
2
‖Y − XBH‖2

F +
K

∑
k=1

(
δ

2

∥∥∥Z k −R ∗Dk ∗ Ak
∥∥∥+ τ

∥∥∥Dk × 1M
∥∥∥2

F
+ λ

∥∥∥Ak
∥∥∥

1

)}

s.t. Z =

(
∑
k

UT
k Uk

)−1

∑
k

UT
k Z

k

(14)

where M represents a first-order difference matrix, τ is a regularization parameter and ×k
is the k-mode product between tensor and matrix.

Figure 3. Spectral smoothing regularization term and restoration results of the spectrum at location
(2,2). (a) Fidelity term with tensor decomposition X k = Dk ∗ Ak. (b) Image obtained by spectral
difference operator. (c) Spectral smoothing regularization term on the sub-tensor Dk. (d) spectral
curve with spectral-smoothness constraint. (e) spectral curve without spectral-smoothness constraint.

2.3.3. Tubal Sparsity Constraint with Sparse Representation Model for Nonlocal
Cluster Tensor

Since the optimization problem of L0 norm is not convex [50], many scholars proposed
to use a convex relaxation technique to transform it into a convex optimization problem.
Xu’s work [45], as well as Li’s [37] and Dian’s [38] work, only uses L1 norm [51] to constrain
the tensor coefficients. However, it ignores the underlying structural properties of tensor
coefficient factors, which can easily lead to loss of image information and sub-optimal
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solutions. Therefore, we explore the intrinsic structural properties of tensor coefficients
from two aspects. On the one hand, based on tensor sparse representation model of t-
prodcut, the actual operation is the convolution operation between the lateral slices of
the tensor dictionary and tubes of the tensor coefficients. Therefore, we reckon that it is
easier to obtain an optimal solution by capturing the sparsity presented by all tubes of
the tensor coefficient. On the other hand, the group sparse signals are more seemly to
emerge after nonlocal clustering than completely random sparse signals. As illustrated in
Figure 4, the tensor coefficients exhibit a row sparsity. So, we use the L1,1,2 norm mentioned
in Definition 4 to characterize the tubal row-sparsity of tensor coefficients.

So, we rewrite Equation (14) as follows.

arg min
X ,Dk ,Ak

{
1
2
‖Y − XBH‖2

F +
K

∑
k=1

(
δ

2

∥∥∥Z k −R ∗Dk ∗ Ak
∥∥∥+

τ
∥∥∥Dk × 1M

∥∥∥2

F
+ λ

∥∥∥W k �Ak
∥∥∥

1,1,2

)}

s.t. Z =

(
∑
k

UT
k Uk

)−1

∑
k

UT
k Z

k

(15)

whereW k represents a weight tensor that better promote the tubal sparsity, and � repre-
sents the operation of component-wise multiplication.

Figure 4. Tubal row-sparse constraints for coefficient tensor, the red tubes in the coefficient tensors
stand for the non-zero tubes, and green ones are zero tubes. The image on the far right is the
visualization matrix of Ak expanded along the second dimension.

3. Optimization Algorithm

Having ADMM algorithm in mind, we introduce two new variables to decouple D
and A, so we can express (14) as the following Lagrangian.

L(X ) =
1
2
‖Y − XBH‖2

F

+
K

∑
k=1

(
δ

2

∥∥∥Z k −R ∗Dk ∗ Ak
∥∥∥2

F
+ λ

∥∥∥W k � E k
∥∥∥

1,1,2

)
+ τ

∥∥∥Ck × 1M
∥∥∥2

F

+
K

∑
k=1

〈
P k

2 ,Dk − Ck
〉
+

σ

2

K

∑
k=1

∥∥∥Dk − Ck
∥∥∥2

F

+
K

∑
k=1

〈
P k

3 ,Ak − E k
〉
+

σ

2

K

∑
k=1

∥∥∥Ak − E k
∥∥∥2

F

+

〈
P1,X −

(
K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)〉

+
σ

2

∥∥∥∥∥∥X −
(

K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)∥∥∥∥∥∥
2

F

(16)



Remote Sens. 2022, 14, 2142 11 of 23

where P1, P k
2 , and P k

3 are the so-called Lagrange multipliers, σ is a penalty parameter. Then
we solve this optimization algorithm by alternatively updating each variable with the others
fixed. It should be noted that each cluster tensor is optimized and solved separately, and Ck,
Dk, E k and Ak are all updated independently. The optimization process is as follows.

(1) Update Ck

arg min
Ck

{
σ

2

∥∥∥Ck −Dk −P k
2 /σ

∥∥∥2

F
+ τ

∥∥∥Ck × 1M
∥∥∥2

F

}
(17)

In order to facilitate the solution, the tensors in the equation are expanded along
1−mode. The optimal of Ck along 1−mode is

Ck
(1) =

[
σI + τ

(
MT M

)]−1(
σDk

(1) + Pk
2

)
(18)

It is worth noting that Dk
(1) and Pk

2 are the unfolded matrices of Ck and P k
2 along

the first dimension, respectively. After getting Ck
(1), we fold it to tensor form, where

Ck = fold1

(
Ck
(1)

)
.

(2) Update Dk

arg min
Dk

δ
2‖Z k −R ∗Dk ∗ Ak‖2

F +
σ
2

∥∥∥X k −Dk ∗ Ak + P k
1 /σ

∥∥∥2

F

+ σ
2

∥∥∥Dk − Ck + P k
2 /σ

∥∥∥2

F

(19)

Each Dk can be solved seperately. In this case, P k
1 = UkP1. According to Lemma 1,

we know that Dk ∗ Ak is equivalent to Dk(i)Ak(i), i ∈ [mk]. Therefore, Equation (19) can
be effectively solved in Fourier domain. Its unique solution is equivalent to solving the
general Sylvester Equation (20).(

δR(i)R(i)T
+ σI

)(
Dk(i)Ak(i)Ak(i)

T
)
+ σDk(i)

= δZk(i)R(i)Ak(i)
T

+ σXk(i)Ak(i)
T

+ P k
1
(i)

Ak(i)
T

+ σCk(i) −P k
2
(i)

(20)

The conjugate gradient method [52] is used to solve (20) efficiently.

(3) Update E k

The optimization problem of E k is

arg min
E k

σ

2

∥∥∥E k −Ak −P k
3 /σ

∥∥∥2

F
+ λ

∥∥∥W k � E k
∥∥∥

1,1,2
(21)

Here, we use a soft threshold operator for the solution.

E k(i, j, :) = shrink1,1,2

(
tempAk(i, j, :),

∣∣∣W k(i, j)
∣∣∣ · λ

σ

)
(22)

where

tempAk = Ak + P k
3 /σ

W k(i, j) =
1∥∥tempAk(i, j, :)

∥∥
2 + γ

(23)
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If ψ < ‖x‖2, shrink1,1,2(x, ψ) = ‖x‖2−ψ
‖x‖2

x , otherwise shrink1,1,2(x, ψ) = 0. The function
of γ is to avoid singularities.

(4) Update Ak

The optimization for the coefficient tensors is shown below.

arg min
Ak

{
δ

2

∥∥∥Z k −R ∗Dk ∗ Ak
∥∥∥2

F
+

σ

2
‖X k −Dk ∗ Ak+

P k
1 /σ

∥∥∥2
F +

σ

2

∥∥∥Ak − E k −P k
3 /σ‖2

F

} (24)

Similar to Dk, Ak can be effectively solved in the Fourier domain.

Ak(i) =

(
δDk(i)

T

R(i)T
R(i)Dk(i) +σDk(i)

T

Dk(i)
)−1(

δDk(i)
T

R(i)T
Zk(i)

+σDk(i)
T

Xk(i) + Dk(i)
T

P k
1
(i)

+ σE k −P k
3
(i)
) (25)

(5) Update X
The optimization problem of X is

X = arg min
X

1
2
‖Y − XBH‖2

F +

P1,X −
(

K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)
+

σ

2

∥∥∥∥∥∥X −
(

K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)∥∥∥∥∥∥
2

F

(26)

Here, we convert it to

X
(
BHHTBT+σD) = YHTBT −P1 + σ

(
K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)
(27)

Here, we use the conjugate gradient method to solve (27) efficiently.

(6) Update Lagrange multipliers

P1 = P1 + σ

X −( K

∑
k=1

UT
k Uk

)−1 K

∑
k=1

UT
k

(
Dk ∗ Ak

)
P k

2 = P k
2 + σ

(
Dk − Ck

)
, k = 1 . . . , K

P k
3 = P k

3 + σ
(
Ck − E k

)
, k = 1 . . . , K

(28)

where σ = sσ, s > 1 and the process of SSTSR is shown in Algorithm 1.
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Algorithm 1 The proposed SSTSR method for HSI super-resolution.

Require: LR-HSI Y , HR-MSI Z , vw, vh, B,R,H, δ, λ, τ

Ensure: HR-HSI X(i)

1: Initialization: i = 1, imax = 15, X(0) = YHTBT , P1(0) = 0,P k
2(0)

= 0,P k
3(0)

= 0,

Dk
(0),A

k
(0), C

k
(0), E

k
(0) are randomly initialized with the scale dimensions, σ = 1, s = 1.01,

tol=0.001.

2: While not converged and i < imax do

3: For clusterk = 1 : Maxk

4: Update E k
(i) by (22)

5: Update Ck
(i) by (18)

6: Update Dk
(i) by (20) with CG

7: Update Ak
(i) by (25)

8: Update P k
2(i)

, P k
3(i)

by (28)

9: End for

10: Update X(i) by (27) with CG

11: Update P1(i) by (28), σ = sσ

12: Check the convergence condition

13:

∥∥∥∥X(i) −
(

∑K
k=1 UT

k Uk

)−1
∑K

k=1 UT
k

(
Dk

(i) ∗ A
k
(i)

)∥∥∥∥2

F
<tol,

∥∥∥X(i) −X(i−1)

∥∥∥2

F
<tol

14: ‖
(

∑K
k=1 UT

k Uk

)−1
∑K

k=1 UT
k

(
Dk

(i) ∗ A
k
(i)

)
−
(

∑K
k=1 UT

k Uk

)−1
∑K

k=1 UT
k

(
Dk

(i−1) ∗ A
k
(i−1)

)
‖2

F

15: <tol

16: Update iteration

17: i = i + 1

18: End While

4. Results
4.1. Synthetic Dataset

Data set 1: The first data (http://www.ehu.eus/ccwintco/index.php/Hyperspectral_
Remote_Sensing_Scenes, accessed on 29 January 2022) set was formed by ROSIS sensor
capturing scenes from the University of Pavia (PU) over northern Italy. The initial data
size was 610× 340× 115, but considering the presence of water vapor absorption bands in
the data and in order to show more spatial details, we sampled the data as the reference
image, which has size of 300× 300× 103. We simulated LR-HSI by using a 9× 9 Gaussian
filter with standard deviation 2.12 to blur it from the reference image, then we sampled
it with down sampling ratio of 5. We used the spectral response function of IKONOS
multispectral sensor to simulate the generation of HR-MSI. After that, the independent
identically distributed noise of corresponding SNR was applied. For LR-HSI, the SNR was
set to 30 dB, and for HR-MSI, the SNR was arranged to 40 dB.

Data set 2: The second data set (https://engineering.purdue.edu/~biehl/MultiSpec/
hyperspectral.html, accessed on 29 January 2022) was formed by HYDICE sensor capturing
scenes from the National Mall over Washington, D.C (WDC). Similarly, there were bands

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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with low SNR in this data, so the final size left was 1280× 307× 191, and then we chose
300× 300× 191 as the reference image. We used the same simulation process as the first
data set to generate LR-HSI and HR-MSI.

Data set 3: The last data set (2013 IEEE GRSS Data Fusion Contest: http://www.
grss-ieee.org/community/technical-committees/data-fusion, accessed on 29 January 2022)
was Houston (HOS) captured by ITRES CASI-1500 sensor, which was offered by the 2013
IEEE GRSS Data Fusion Competition. The original size of Houston was 349× 1905× 144.
Similarly, we selected the bands and sampled the data with rich details of features. So,
the final size of reference image was 300× 300× 103. We used the same method to generate
LR-HSI together with HR-MSI as we did for the first data set.

4.2. Quantitative Metrics

We used six quantitative index [53] to judge our superresolution output.
(1) PSNR: The Peak Signal to-Noise Ratio. PSNR is the most regular objective evalua-

tion index of images and the larger PSNR is, the less image distortion is. Since the data are
hyperspectral images with multiple bands, we calculate the average PSNR of all bands.

(2) SAM: The spectral angle mapper. Sam computes the average angle between the
estimated image spectrum and the reference image spectrum.

(3) CC: The Correlation Coefficient.
(4) ERGAS: The relative dimensionless global error in synthesis. ERGAS mainly

evaluates the spectral quality of all fusion bands.
(5) SSIM: Structural Similarity. It mainly measures the similarity of the estimated

image and reference image.
(6) UIQI: The Universal Image Quality Index. The UIQI calculates the average value

of all image patches for the estimated image and reference image.

4.3. Compared Methods

We choose some classical and recent advanced methods based on tensor decomposition
to compare with our proposed method, including Hysure [17], CSTF [37], NPTSR [45],
LTTR [41], NLSTF [38] and LTMR [42]. The parameters of these comparison algorithms are
the best parameters described in the reference literature as far as possible.

All methods except for CSTF have the same spectral response function and spatial
blur kernels in the experiments. For CSTF, we follow the assumption about the separability
of the downsampling operator along spatial modes.

For the parameters used in the comparison algorithms, we follow the reference litera-
ture as much as possible, and have adjusted them appropriately. For Hysure, the number
of subspace bands is 10 and the dimensions of estimated method choose VCA, λm = 1,
λφ = 5× 10−4. For CSTF, nw = nh = 500, ns = 15, λ = 10−5. For LTMR, K = 200,
patchsize = 10, L = 10, λ = 10−3. For NLSTF, nw = nh = 10, ns = 10, K = 150, λ = 10−7,
λ1 = 10−4, λ2 = λ3 = 10−5. For LTTR, K = 460, λ = 4× 10−4. For NPTSR, λ = 10−3,
β = 103, Nk = 3, r = 10.

In addition, we also compare the proposed SSTSR method with the two deep learning
methods, i.e., HAM-MFN [54] and CNN-Fus [55], the details are described in Section 4.4.

4.4. Experimental Results on Synthetic Datasets

In this section, we present the results generated by all methods on three simulated
datasets, i.e., PU, WDC, and HOS. We also show the comparison of quantitative indicators
in Tables 1 and 2, where the best values are boldface. In addition, we demonstrate the
superiority of our method in the following three aspects.

(1) Visual effects of reconstructed images. Figures 5–7 list the fusion results of different
methods on three datasets, i.e., PU, WDC, and HOS, respectively. To deepen the visual
effect, we pseudo-color the experimental results while magnifying the representative
local information. In addition, with the aid of ground truth, the comparison of
residual images is supplemented, in which the dark blue residual image indicates

http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion
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better reconstruction effect. As can be seen from Figures 5–7, the results of CSTF, LTMR,
LTTR, and NLSTF all show color distortion compared with the ground truth. From the
residual image, the result of our method is bluer and smoother. It fully verifies that
our proposed method can obtain images with better spatial structure details.

(2) Spectral curve and spectral curve residual. In addition, we also compare the spectral
quality of the reconstructed images. Figure 8a shows the spectral curve of the recon-
structed image at pixel (90, 90) of the PU dataset and the residual spectral curve of
the reconstructed image with the ground truth. Similarly, Figure 8b,c also compare
the spectral curves at the pixel (100, 200) of the WDC and the pixel (100, 100) of the
HOS, respectively. It is clear from Figure 8 that the spectral curves of the reconstructed
images of our method on the three datasets are closer to the ground truth spectral
curves, and the residual curves are also closer to the zero-horizontal line. This also
demonstrates the effectiveness of the spectral smoothing constraints imposed in our
method. Compared with other methods, our proposed SSTSR method can obtain
images with higher spectral quality.

(3) Quantitative indicators and time complexity comparison. As can be seen from Table 1,
on the PU dataset, our method achieves a leading position in all indicators, and on
the WDC dataset, although the three indicators of SAM, CC, and ERGAS slightly lag
behind Hysure and NPTSR, our PSNR, SSIM, UIQI values are still leading, and on
the HOS dataset, all indicators of our method once again rank first. It needs to be
mentioned that all methods have similar SSIM values on HOS dataset, so the results
of this indicator are not listed. Taken together, the average PSNR of our method
on the three datasets is 0.63 dB, 2.85 dB, 4.53 dB, 9.84 dB, 2.33 dB, 0.33 dB higher
than Hysure, CSTF, LTMR, LTTR, NLSTF, NPTSR, respectively, which verifies the
superiority of our method. In addition, we also give a comparison of PSNR in each
band for all methods on the three datasets in Figure 9. As can be seen from Figure 9,
our method outperforms other methods in most bands. Besides, the measurement of
the ERGAS index indicates the spectral quality of the reconstructed image and the
smaller the value, the better the spectral quality. The ERGAS value of our method
is also state-of-the-art on three datasets. Although the designed regular terms can
improve the performance of the method, they also consume more computing time.
Our method has no advantage in the comparison of time complexity, so in future
work, we will focus on optimizing our method to reduce the time complexity.

We also selected two deep learning methods [54,55] for comparison. Unfortunately,
there was a lack of relevant codes. We directly quoted the results in the reference literature
for quantitative comparison. For a fair comparison, we set the same conditions for the exper-
iments. (1) The size and scope of HR-HSI and HR-MSI were the same. (2) We simulated and
generated LR-HSI and HR-MSI according to the spatial-spectral degradation method de-
scribed in the reference literature. (3) We selected the same quantitative indicator function.
Specifically, compared with the HAM-MFN [54], the selected PU size was 260× 340× 103,
the upper left corner coordinate was (351, 1), the spectral degradation was simulated by the
randomly generated spectral response function, and the spatial degradation was simulated
by bicubic linear interpolation and the downsampling ratio was 4. Compared with the
CNN-Fus [55], the selected PU size was 610× 340× 103, the upper left corner coordinate
was (0, 0), the spectral degradation was simulated by the spectral response function of
the IKONOS sensor to generate HR-MSI, and the 7× 7 Gaussian filter with a standard
deviation of 2 was used to simulate spatial degradation with a downsampling ratio of 4.
As can be seen from Table 2, our method also showed certain advantages.
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(a) HSI (b) MSI (c) Hysure (d) CSTF (e) LTMR

(f) LTTR (g) NLSTF (h) NPTSR (i) SSTSR (j) GT

Figure 5. The first and third rows show the false color images (composited by bands 70, 35, 5) of
the comparison methods on the University of Pavia data set. The second and fourth rows show the
normalized residual images of the comparison methods at band-50.

(a) HSI (b) MSI (c) Hysure (d) CSTF (e) LTMR

(f) LTTR (g) NLSTF (h) NPTSR (i) SSTSR (j) GT

Figure 6. The first and third rows show the false color images (composited by bands 65, 45, 5) of the
comparison methods on the Washington DC Mall data set. The second and fourth rows show the
normalized residual images of the comparison methods at band-50.
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(a) HSI (b) MSI (c) Hysure (d) CSTF (e) LTMR

(f) LTTR (g) NLSTF (h) NPTSR (i) SSTSR (j) GT

Figure 7. The first and third rows show the false color images (composited by bands 70, 45, 5) of the
comparison methods on the Houston data set. The second and fourth rows show the normalized
residual images of the comparison methods at band-50.

Figure 8. Spectral curve comparison and spectral curve residual comparison for three data sets.
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Figure 9. PSNR values against different spectral bands on three data sets.

Table 1. Quantitative and complexity comparison in simulated PU, WDC and HOS data sets.

Dataset Index Best
Values

Hysure
[17]

CSTF
[37]

LTMR
[42]

LTTR
[41]

NLSTF
[38]

NPTSR
[45] SSTSR

PU

PSNR +∞ 43.26 40.76 40.71 35.53 40.70 43.55 43.84
SAM 0 2.5971 2.7189 3.7590 5.6304 2.8811 2.4149 2.4080
CC 1 0.9946 0.9943 0.9868 0.9769 0.9915 0.9950 0.9951

ERGAS 0 1.1519 1.2062 1.6003 2.3986 1.5421 1.1248 1.1071
SSIM 1 0.9379 0.9308 0.9053 0.8261 0.9390 0.9438 0.9444
UIQI 1 0.9257 0.9165 0.8896 0.8017 0.9271 0.9328 0.9335
TIME 0 43 37 220 176 20 280 371

WDC

PSNR +∞ 46.05 44.64 43.32 36.77 43.28 46.43 46.81
SAM 0 6.6306 6.0177 6.8458 8.2989 10.5458 5.0079 5.0167
CC 1 0.9177 0.9115 0.8417 0.6580 0.8167 0.9097 0.9150

ERGAS 0 5.7105 7.4531 12.6333 30.8024 10.6421 9.0399 6.4304
SSIM 1 0.7302 0.6652 0.5595 0.3564 0.6451 0.7576 0.7703
UIQI 1 0.6797 0.7113 0.5006 0.3289 0.6105 0.7192 0.7286
TIME 0 43 48 210 352 25 489 673

HOS

PSNR +∞ 50.24 47.19 43.81 39.63 50.46 50.49 50.80
SAM 0 1.4110 1.2761 3.4890 5.1802 1.3703 1.2914 1.2746
CC 1 0.9980 0.9981 0.9890 0.9779 0.9982 0.9982 0.9983

ERGAS 0 0.6727 0.6437 1.7494 2.2988 0.6246 0.6173 0.6111
SSIM 1 - - - - - - -
UIQI 1 0.9819 0.9810 0.9289 0.8562 0.9831 0.9838 0.9835
TIME 0 43 35 80 174 25 271 341

Table 2. Comparison of quantitative indicators between the proposed method and the deep learn-
ing methods.

Dataset Method PSNR SAM ERGAS SSIM

PU (260 × 340 × 103) HAMMFN [54] 40.8632 2.5308 1.8052 0.9776
SSTSR 44.0746 2.3627 1.1156 0.9428

Dataset Method PSNR SAM UIQI SSIM

PU (610 × 340 × 103) CNN-Fus [55] 43.0170 2.2350 0.9920 0.9870
SSTSR 43.6980 2.4149 0.9932 0.9607

4.5. Experimental Results on Real Dataset

The real data set was captured and formed from the scenes over Paris. Among them,
the multi-spectral data was provided by The ALI Instrument, and the hyperspectral data
was captured and formed by Hyperion. The size of HSI was 24× 24× 128, the size of MSI
was 72× 72× 9. For the estimation of spectral response function and blurring kernel, we
employed the algorithm proposed in [17] according to the input data. Similarly, for CSTF,
we used a separable blurring kernel to guarantee the maximum fair comparison. Since
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there was no ground truth maps, we did not list the quantitative results. In Figure 10, we
illustrated the images of band 90 of the competing algorithms for visual comparison, and it
was clear that the results of the proposed SSTSR super-resolution method contained more
fine details, as shown in the red rectangle.

(a) HSI (b) Hysure (c) CSTF (d) LTMR

(e) LTTR (f) NLSTF (g) NPTSR (h) SSTSR

Figure 10. Super-resolution results of all comparison methods at band 90 on real data set.

5. Discussion
5.1. Parameters Selection

There are five important parameters for our proposed method, including δ, λ, τ, mk
and r. δ weighs the relationship between the two fidelity terms. λ and τ are penalty factors
for the two regular terms. mk determines the number of each cluster, and r determines the
size of the tensor dictionary.

Figure 11a–c show the psnr values as a function of parameter δ and parameter λ on
the simulated three data sets, respectively. For these experiments, δ was selected from
and λ was chosen from [0.001 0.005 0.01 0.015 0.02 0.03 0.04 0.05]. It can be seen from
Figure 11a–c that the values of parameters δ and λ do have a great influence on the
experimental results. However, for the three data sets, when parameter δ = 103, the local
optimal values of parameter λ may be reached. Therefore, we set λ = 0.03 for PU, λ = 0.01
for WDC, λ = 0.01 for HOS, respectively. In addition, Figure 12a shows the psnr as a
function of parameter τ on the WDC dataset. It could be seen that the proposed SSTSR
exhibited stable performance when τ = 10,000. Furthermore, we also found that setting
τ = 10,000 was also robust for both PU and HOS datasets.

Besides, we also discussed the number of nonlocal clusters mk and the number of
dictionary atoms r. First, we set the range of [1 3 5 7 9 11] for mk. The selection of r should
not only consider the reduction of the subspace dimension, but also ensure that enough
spectral information was retained. The range of r was set to [5 10 15 20 25]. As can be seen
in Figure 11d–f, the PSNR of the reconstructed images of the three datasets reached the
maximum value when r = 5. Because of the difference of similar spatial information in
each dataset, the values of mk for the three datasets were slightly different, so we set mk = 5
for PU, mk = 5 for WDC, mk = 9 for HOS, respectively. In addition, for the non-local
clustering algorithm used in our method, the size of the nonlocal clustering patch was set
to 20× 20 and the step size was set to 8.
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(a) (b) (c)

(d) (e) (f)

Figure 11. The first row shows the psnr as a function of parameter λ and parameter δ on three data
sets. The second row shows the psnr as a function of parameter mk and parameter r on three data
sets. (a,d) University of Pavia. (b,e) Washington DC Mall. (c,f) Houston.

Figure 12. (a) PSNR as a function of parameter τ for Washington DC Mall. (b) Relative error of the
reconstructed image for successive iterations for PU and WDC

5.2. Convergence Behavior

Taking University of Pavia and Washington DC Mall as examples, Figure 12b shows
the relative error calculated by

∥∥∥X(i+1) −X(i)

∥∥∥
F

/
∥∥∥X(i)

∥∥∥
F

of the reconstructed image as a
function of iterations. It is clear that the relative error decreases sharply in the initial stage,
and then continues to decrease in a relatively smooth trend until the relative error is close
to 0. This verifies that our proposed SSTST method has strong convergence. When the
number of iterations is 15, the tolerance threshold of the algorithm can be reached.

5.3. Effectiveness of the Spectral Smooth Prior and Tubal Sparsity Constraint

In this subsection, we discuss the influence of each regular term on the reconstructed
results. First, we did the related experiments on data set 2. From Table 3, we can find that
the ERGAS index with only the spectral smoothing constraint is lower than the ERGAS
index without the spectral smoothing constraint, and the lower the ERGAS index, the better
the fusion quality of the spectrum, which fully invalidates the effeciveness of the spectral
smoothing constraint. By adding tube row-sparseness constraint on the basis, the PSNR
increases by 0.3 dB, which validates that the constraints imposed on both dictionaries and
coefficients are reasonable and effective.
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Table 3. The necessity of using spectral smooth and tubal row-sparse constraints.

Constraints PSNR SAM ERGAS CC UIQI SSIM

Spectral Smooth 46.57 5.1505 6.6625 0.9131 0.7243 0.7621
ine Tubal Sparsity 46.50 5.0497 8.7855 0.9076 0.7164 0.7511

ine Both Constraints 46.81 5.0167 6.3404 0.9150 0.7286 0.7703

6. Conclusions

In this article, we propose a SSTSR model for HSI super-resolution, which employs the
tensor sparse representation framework based on t-product. The proposed SSTSR method
puts forward continuity constraints on tensor dictionary to improve the spectral smoothness
of HSI, and introduces tubal row-sparse constraints on tensor coefficients to exploit their
inherent sparse structure. It fully considers the relationship between nonlocal modes
and tensor decomposition factors. Besides, ADMM algorithm is used to efficiently solve
our model. Extensive experimental results show that the SSTSR method can significantly
improve the spatial resolution of LR-HSI while preserving the spectral curves.

In the near future, we will improve the performance of our method in three aspects.
First, because the spectral reflectance of ground objects is non-negative, limiting the non-
negativity of the dictionary has practical physical significance for hyperspectral image
super-resolution. Second, our method relies on the estimation of the spectral subspace
of the reconstructed nonlocal clustering tensor, and we subsequently consider speeding
up the algorithm by adaptively choosing the subspace spectral dictionary size. Further-
more, we will refer to more efficient hyperparameter optimization methods to reduce the
computational cost.
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