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Abstract: Landslide risk assessment is important for risk management and loss–damage reduction.
Herein, we assessed landslide susceptibility, hazard, and risk in the urban area of Yan’an City, which is
located on the Loess Plateau of China and affected by many loess landslides. Based on 1841 slope units
mapped in the study area, a random forest machine learning classifier and eight environmental factors
influencing landslides were used for a landslide susceptibility assessment. In addition, differential
synthetic aperture radar interferometry (DInSAR) technology was used for a hazard assessment. The
accuracy of the random forest is 0.903 and the area under the receiver operating characteristics (ROC)
curve is 0.96. The results show that 16% and 22% of the slope units were classified as being at very
high and high-susceptibility levels for landslides, respectively, whereas 16% and 24% of the slope
units were at very high and high-hazard levels for landslides, respectively. The landslide risk was
obtained based on the susceptibility map and hazard map of landslides. The results show that only
26% of the slope units were located at very high and high-risk levels for landslides and these are
mainly concentrated in urban centers. Such risk zones should be taken seriously and their dynamics
must be monitored. Our landslide risk map is expected to provide information for planners to help
them choose appropriate locations for development schemes and improve integrated geohazard
mitigation in Yan’an City.

Keywords: landslides; risk assessment; random forest; DInSAR; Yan’an city

1. Introduction

Landslides are common natural phenomena on mountains and slopes that can change
the geomorphology of the landscape. Thus, the massive destruction caused by landslides
is of great concern [1,2]. With global climate change and increasingly intense human
engineering, landslides tend to occur more frequently, resulting in huge economic losses
and many casualties [3,4]. Therefore, risk assessment is often the focus of research [5–8],
especially in populated areas that are prone to landslides. This should help provide
the necessary information to governments and decision makers [6,9]. Risk assessment
is the basis for risk management. It refers to the possibility and severity of landslides
impacting life, health, property, and the environment. In practice, the risk of landslides is
computed as the product of landslide hazard and the vulnerability to potential value loss [5].
Quantitative and accurate risk assessment can be effective information for government
departments in land and resources planning, engineering construction, the prevention and
early warning of landslides, and sustainable development.
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It is crucial to select an optimal model and methodology for landslide risk assessment
because different assessments may have different results and accuracies for the same areas.
In recent decades, numerous landslide susceptibility, hazard, and risk assessment methods
have been applied. However, there has been no study showing that a certain model has the
optimal solution for all risk assessments [10,11]. Models for landslide susceptibility assess-
ment can be classified as physically deterministic, heuristic based on experts’ knowledge,
and data-driven quantitative [12]. Physically deterministic models are commonly based on
hydrological characterizations combined with infinite-slope stability analyses to estimate
the relative stability of slopes [13]. Some research has pointed out that these models are
used only for particular hydrological conditions and high model preconditions [14], such as
detailed and homogeneous soil mechanical parameters, hydro environmental factors, and
simple landslide types. For this reason, they could be effective only for mapping small areas
in detail [15,16]. Heuristic models based on experts’ knowledge, including the analytical hi-
erarchy process (AHP) [17], expert knowledge systems [18], and gray relational modes [18],
mainly rely on constructing a relatively simple ranking method determined by experts’
knowledge [16]. Although heuristic models have the advantages of easy application, the
assessment results have low accuracy with a certain level of subjectivity [19]. Previous stud-
ies show that data-driven quantitative models are preferred and applied more frequently
than qualitative evaluation models, such as heuristic or geomorphological mapping [20,21].
Logistic regression (LR) [22,23], frequency ratio (FR) [24,25] and weights of evidence [26]
are the most frequently used statistical models. They are based on considered classical
statistics; index-based, machine learning; neural networks; and multi-criteria decision
analysis. In particular, the use of machine learning for landslide assessment is rapidly in-
creasing [20]. It is a modeling methodology that builds complex relationships between data
and target variables through iterative training and learning without assuming additional
structural constraints [27,28]. Machine learning is often used to solve nonlinear geological
environment problems, such as landslide susceptibility assessment and prediction. For
example, Chen et al. [29] introduced a new bivariate statistical-based kernel logistic regres-
sion to obtain landslide susceptibility maps by optimizing different kernel functions and
two-component statistical correlation analyses. Behnia et al. [30] produced susceptibility
maps for debris flows and other geohazards along the Yukon Alaska Highway Corridor,
in Canada. Hong et al. [31] built a higher-precision susceptibility map of the Guangchang
area in China based on a decision tree model. Furthermore, many studies have compared
the accuracy of machine learning with classical statistical models in landslide susceptibility
assessment [32–34]. They showed that machine learning models provide more accurate
assessments and predictions [35].

Apart from models and methods, selecting appropriate mapping units associated with
the research purpose is a key issue for reasonable and accurate assessment maps. Generally,
the mapping units fall into several groups: grid cells, terrain units, unique conditional
units, topographic units, slope units, complementary geohydrological units and political
or administrative units [20,36]. Each type of unit has certain analytical advantages and
disadvantages. For this reason, the type of unit needs to be determined at the beginning of
a study according to the purpose and scale of the research [36,37]. Landslides tend to show
a clear shape and boundary soon after their occurrence so the slope unit is often preferred
for representing the form of landslides or unstable slopes. In some studies, the slope unit
also performed better than the pixel unit in landslide assessment [38–40].

Yan’an, which is located in the north of Shaanxi Province, on the Loess Plateau, is a
typical valley city. Its particular geography and geological environment background, as
well as increasing human engineering activities, appear to be the causes of more frequent
landslides, collapses, and other geohazards [41]. Several studies have evaluated the suscep-
tibility and stability of landslides in Yan’an City and Baota District based on qualitative
methods and physical models [42–44]. However, the evaluation factors in those studies
are limited to geological or topographic conditions, and few studies have focused on the
deformations which can reflect the activity of slopes through SAR data in the risk assess-
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ment of the study area. Interferometric synthetic aperture radar (InSAR) technology can be
used to optimize the landslide susceptibility assessment and reduce landslide classification
errors [45]. Additionally, a smaller range and larger scale of quantitative assessments are
necessary for future urban development in Yan’an City if we want to mitigate the geohaz-
ards occurring in current urban constructions. Therefore, this study aims at constructing
a detailed landslide risk assessment in Yan’an City using high-resolution aerial images
and a digital elevation model (DEM). A detailed investigation and understanding of the
characteristics of the geological hazards in the urban area of Yan’an City is considered a
critical part of risk assessment. In the process, it becomes necessary to combine ground
deformation using InSAR technology with conventional topographic and geomorphic
factors for risk analysis. Advanced random forest machine learning classifiers and InSAR
technology are used in our study to assess landslide susceptibility, landslide hazards, and
the identification of areas exposed to a higher landslide risk in the urban parts of Yan’an
City. It is expected that the assessments of urban hazards and risks in urban areas based on
the slope units can provide more accurate information for government departments and
decision makers in urban planning, construction, and disaster prevention as well as control.

2. Study Area

The present study area is the central urban area of Yan’an City, which is located in
the northern part of Shaanxi Province, China, on the Loess Plateau between the latitudes
of 36◦27′N and 36◦41′N and the longitudes of 109◦22′E and 109◦33′E, covering an area of
185 km2 (Figure 1). Its landform features typical and complex loess beams, mounds, and
gullies. The highest elevation in the study area is 1300 m and the lowest elevation is 927 m,
which is in the river valley, so the elevation difference is about 370 m. The climate in the
area is semi-humid and semi-arid, with a continental monsoon climate. In the past, the
average annual precipitation in Baota District was 537 mm, which occurred mainly from
June to September [46].
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Figure 1. The location, boundary, and geomorphology of the present study area in Yan’an City and
Shaanxi Province. YAND—Yan’an New District; HZP—Hezhuangping Town; QG—Qiaogou Street;
CK—Chuankou Town; BTS—Baotashan Street; FHS—Fenghuangshan Street; ZY—Zaoyuan Town;
NS—Nanshi Street; WHS—Wanhuashan Town; LL—Liulin Town.
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From the perspective of regional geology and geotectonics, the study area is located
in the middle-eastern part of the Ordos Block in the North China Block. The tectonic
movement is slight without strong structural deformation and maintains the characteristics
of a stable sedimentary basin. The strata are mainly Mesozoic and Cenozoic, including
Triassic, Jurassic, and Quaternary; however, the Quaternary loess is the most widely dis-
tributed [47]. Triassic and Jurassic strata are mostly seen along both sides of the valley.
Although there is no strong tectonic movement and fault, many landslides have occurred
and developed in the area due to the unique physical and mechanical properties of loess.
Loess is characterized by high porosity, low bulk density, weak cementation, water sen-
sitivity, collapsibility, structural joints, vertical joints, unloading cracks, and a soft layer
structural plane. Under the area’s special landform conditions, landslide hazards could be
induced by summer rainstorms and human engineering activities, which seriously affect
the sustainable development of the local economy and society.

3. Data and Methods

The methodology applied for landslide susceptibility, hazard, and risk assessment
is shown as a flowchart in Figure 2. A detailed explanation is provided in the following
subsections.
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Figure 2. The flowchart of landslide risk assessment in the present study.

3.1. Landslide Inventory

A landslide inventory map is the first step to assess susceptibility. It shows information
on all historical and active landslides. Combined with field surveys, relevant literature
records and news reports of landslide records were used in this study to verify the spatial
distribution of landslides using Google Earth high-resolution images and an unmanned
aerial vehicle’s digital orthophoto map (DOM) (0.1 m) provided by the Xi’an Center of
China Geological Survey for visual interpretation.
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Generally, slope units are defined by topographic characteristic lines (such as ridgelines
and gully lines) and waterway paths, which are closely related to the DEM of the mountain
area [36]. Therefore, these topographic characteristic lines and waterway paths are also
the basic means to determine slope units in this study. Additionally, to better reflect the
terrain of landslides or unstable slopes, we divided slope units according to topographic
and geomorphic characteristics in the detailed field surveys. The basic requirement in
a field survey is that every gully and slope must be investigated and the results are
presented in the form of slope units. In this study, a total of 1841 slope units covering
the whole study area were surveyed and the location and boundary of discernible slope
units were obtained by the geographic information system (GIS) (Figure 3a). According
to the current morphological characteristics and active state of the slopes in the field
investigation, the slope units were divided into loess landslides, unstable slopes, and
slopes to be evaluated. Loess landslides are the main historical landslides in the study
area; unstable slopes show some deformation signs, such as creep slip, collapse, toppling,
etc., and are developing toward becoming potential landslides. Finally, the landslide
inventory map of the study area was aggregated and shown in Figure 3b, including 344
loess landslides and 411 unstable slopes, detailed in Section 4.1.
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Figure 3. The inventory map of the present study. (a) Slope unit mapping and road elements based on
topography and field surveys. (b) The distribution of landslides and unstable slopes in the study area.

3.2. Factors Influencing Landslides

Selecting appropriate environmental factors and inducing factors is the basis of risk
assessment, which depends on data availability, scale, and study area, and affects future
predictions [21,48]. Based on the field survey and previous work on landslides in the study
area, we considered eight factors: slope, profile curvature, relief, the normalized difference
vegetation index (NDVI), landslide density, building density, the thickness of loess, and the
thickness of exposed bedrock. They are described below.

• Slope and profile curvature: A slope gradient is the measurement of the steepness of a
surface. If the slope is too low, the gravitational potential energy is insufficient, and
if the slope is too high, the material accumulation cannot provide the material basis
for landslides. A profile curvature is used to describe the complexity of the terrain,
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which is divided into convex, straight, and concave profiles, and reflects convergent
and divergent drainages in addition to variations in erosion rate [49]. In the study, the
slope and profile curvature were calculated using ArcGIS and a DEM with a spatial
resolution of 2 m (Figure 4a,b).
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Figure 4. The conditioning factors used in this study: (a) slope; (b) profile curvature; (c) relief;
(d) NDVI; (e) landslide density; (f) building density; (g) loess thickness; (h) thickness of exposed
bedrock; and (i) deformation. The above parameters have been normalized.

• Relief: A relief represents the elevation difference within a certain range of the slope
and determines the gravitational potential energy. Only enough gravitational potential
energy can cause landslides (Figure 4c).

• NDVI: The NDVI reflects the vegetation cover in the study area. High vegetation
coverage is needed to stabilize the slope by the root system and reduce the devel-
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opment of landslides [50]. The NDVI value was calculated using the expression
NDVI = (NIR − R)/(NIR + R) from Landsat-8 images, where NIR is the reflectivity of
the near-infrared portion of the electromagnetic spectrum and R is the reflectivity of
the red portion of the electromagnetic spectrum (Figure 4d).

• Landslide density and building density: The landslide density directly reflects the de-
velopment quantity of disasters in an area. In urban areas, construction activity is one
of the most dominant human activities that cause slope instability. Settlement along
slopes in urban areas is an important factor in slope failure. Therefore, we used build-
ing density to reflect the effect of human activities on slope stability. Landslide density
and building density were calculated for the slope units by vectorizing landslides and
building contours and then interpolating them into grid data (Figures 3 and 4e,f).

The thicknesses of the loess and the exposed bedrock were measured during field
investigations (Figure 4g,h). The loess thickness on a hillslope, which coincides with
the failure depth, is a critical parameter in performing the slope stability analysis. The
overlying loess thickness plays an important role in hydrological effects, such as the ratio of
the saturated depth to the losses [51]. The thickness of the exposed bedrock of the slope has
a great impact on the landslide scale, landslide type, and slope deformation [52]. Due to
the undeveloped tectonic activity in the study area, the effect of earthquakes and faults has
not been considered in this study. In addition, because precipitation within the relatively
small study area is mostly unvarying, precipitation data were excluded from the analysis
processes.

A statistical description of the influencing factors is shown in Table 1. To eliminate the
dimensional influence of factors, the minimax normalization method was applied [53]. The
continuous factor values of each factor were normalized, so all the values fall in the (0, 1)
interval, where the normalized data were calculated following the equation below:

Xi
′ =

xi − xmin
xmax − xmin

(1)

where Xi
′ is the normalized input and xi, xmin, and xmax are the actual, minimum, and

maximum input data, respectively. The results of normalized factors are shown in Figure 4.

Table 1. Statistical description of the influencing factors.

Factors Min Max Standard Deviation

Slope (◦) 0 86.8 15.5
Profile curvature −497.4 499.0 33.6

Relief (m) 8 166.6 29.4
NDVI −0.23 0.98 0.18

Landslide density 0 0.27 0.06
Build density 0 0.22 0.04

Loess thickness (m) 8.0 160.2 29.3
Bedrock thickness (m) 0 24.5 3.4

Deformation (m) 0.11 −0.09 0.014

3.3. DInSAR

In general, the displacement of a pixel is calculated using the interference phase
difference between two SAR images by using the pixel product of a reference image and
slave image—this is the basic principle of InSAR [54]. DInSAR is applied to the removal
of the topographic phase contribution from the interferogram deformation phase using
a two-pass, three-pass, or four-pass technique; however, it is worth noting that the two-
pass technique, which imports an external DEM, yields a more reliable and operational
outcome [54,55]. Furthermore, several limitations of InSAR technology must be considered
at the beginning of use. One limitation is geometric distortion caused by topography,
especially in mountainous areas with high elevations, which is affected by the look side of
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radar observation modes [56]. Another limitation is the poor coherence, even incoherence of
interferograms caused by diffuse vegetation, which is very obvious in the C-band Sentinel-1
images of the study area [57].

In this research, two ascending SAR images acquired from ALOS-2 on 5 Novem-
ber 2018 and 20 May 2019 were selected for interference calculations (Figure 5a and Table 2).
Due to the relatively flat terrain of the study area, the SAR images from a single orbit can
be used to detect and monitor the deformation of most of the slopes. The sensor of ALOS-2
can transmit and receive the L-band with strong penetrating ability and can capture the
ground deformation under the dense vegetation. The external DEM for removing the
topographic phase and geocoding is the 1-arc-second (~30 m) Shuttle Radar Topography
Mission (SRTM) data from NASA. Ground deformation along the LOS (light-of-sight) of the
Yan’an City area was obtained after registration and resampling, differential interference,
coherence calculation, filtering and phase unwrapping, orbit refining, and reflattening in
addition to geocoding. All of these were processed with the DInSAR tool of the SARScape
software (Figure 5b). The normalized deformation factor image is shown in Figure 4i.
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Table 2. Details of two SAR images and displacement from ALOS-2.

Sensor PALSAR-2

Wavelength 23 cm
Band L

Acquired time 5 November 2018
20 May 2019

Orbit direction Ascending
Angle of incidence 32.5◦

Polarization HH
Observation mode Fine

Resolution 10 m
Normal baseline 140.798 m

Absolute time baseline 196 days
Max displacement 0.150 m
Min displacement −0.172 m
Standard deviation 0.018 m

3.4. Random Forest

Random forest has been widely used in data classification and management and has
excellent performance in landslide susceptibility mapping. Random forest is an ensemble
machine learning algorithm based on a decision tree. The classifier is a recursive process
from root nodes to child nodes, which is similar to the combination of a decision tree and the
flowchart of a tree structure [58]. The bootstrap method is used to extract multiple samples
from the original samples. Starting from the nodes of a tree, the optimal features among
different internal nodes are selected, and the corresponding branches are determined based
on the test output. Finally, the results are obtained from the leaf nodes of the decision tree.

Random forest has strong generalization ability and can deal with multi-dimensional
and large learning sets. Compared with other statistical learning models, random forest
does not easily generate overfitting. It improves prediction accuracy without significantly
increasing the amount of calculation. It has a higher tolerance for outliers and noise,
resulting in data loss and imbalance. In this study, a random forest module was built based
on the R language. Before running the random forest module to perform the landslide
susceptibility assessment, the training and validation datasets must be selected. In the
study, landslide inventories including stable slopes, unstable slopes, stable landslides, and
unstable landslides were selected as training sites. Using ArcGIS, these slope units were
converted into 109,981 vector points, where 3000 points were selected randomly at each
of the landslide sites and non-landslide sites to train and test the classifier. Finally, its
performance was evaluated with the ROC curve and confusion matrix.

4. Results
4.1. Characteristics of Landslides

Based on the field survey, the geohazards of Yan’an City were counted as 334 land-
slides, 411 unstable slopes, and land subsidence locations. Their depths of the sliding
surface are mainly shallow (less than 30 m) [47]. The landslides can be classified as loess
landslides and loess-bedrock interface landslides because most landslides occur in the
loess layer or on the top of the bedrock (Figure 6a,b). The geometric morphology and
characteristics of the loess landslides and the unstable slopes including the types, lengths,
widths, height, slope angles, and others, such as the longitudinal shape and depth of slide
surfaces, were mapped using the GIS and field investigations with high-resolution DEM
(~2 m) (Table 3). The length and width of landslides are mainly in the range of 50 to 200 m.
The height and slope angle are also condition factors of loess landslides. A higher or steeper
slope has a higher degree of stress concentration and tensile stress range so it is more prone
to failure and sliding. The study area is located in the loess hilly gully region with dense
gullies, and the relative height differences of 60 to 150 m leads to the height of landslides
usually being less than 120 m. Since the late Cenozoic era, the Loess Plateau has been in a
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state of intermittent uplift, with rivers cutting sharply and ravines crisscrossing, creating
topographic conditions for loess landslides. The longitudinal shape can control the values
and positions of the stress inside the slope body and plays a key role in the stability. For
example, flat and convex slopes tend to be more easily destroyed under stress, suggesting
an unstable evolutionary trend, whereas sunken and stepped slopes tend to be more stable
with less stress concentration. Therefore, the longitudinal shapes of landslides in this study
are mainly flat and convex slopes.
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Figure 6. Examples of geohazard types mapped in the study area: (a) loess–bedrock interface
landslide; (b) loess landslide; (c) soil–bedrock unstable slope; (d) soil unstable slope; and (e,f) cracks
and damages in the ground and buildings due to land subsidence. Arrows indicate the direction of
the slide and the location of the cracks.

Table 3. Types and characteristics of landslides and unstable slopes. L and U represent landslides
and unstable slopes, respectively.

Type Length (m) Width (m) Height (m) Slope (◦) Area (103m2)

Loess 243
<50 26 <50 25 ≤30 7 ≤20 10 ≤5 73

50–100 108 50–100 107 30–60 113 20–30 95 5–10 73
L 100–150 104 100–150 99 60–90 118 30–40 174 10–15 59

Loess-bedrock 91
150–200 50 150–200 41 90–120 69 40–50 55 15–20 46
200–250 22 200–250 31 120–150 24 >50 0 20–25 17

>250 24 >250 31 >150 3 25 66

Loess 285
≤50 76 ≤50 35 ≤30 19 ≤20 12 ≤5 145

50–100 218 50–100 160 30–60 184 20–30 59 5–10 143
U

Bedrock 5
100–150 82 100–150 138 60–90 161 30–40 231 10–15 61
150–200 19 150–200 39 90–120 40 40–50 108 15–20 28

Loess-bedrock 121
200–250 10 200–250 18 120–150 6 >50 1 20–25 12

>250 6 >250 21 >150 1 >25 22
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Unstable slopes refer to a slope with creep slip, collapse, toppling, lateral tensile
fracture, and other deformation characteristics or trends, and that is regarded as a potential
geohazard. The 411 unstable slopes from the field survey were divided into three types
according to their material composition: (i) soil unstable slope, (ii) rock unstable slope, and
(iii) soil–bedrock unstable slope. There were about 285 soil unstable slopes in the study
area, accounting for 69% of the total number of unstable slopes. Soil–bedrock unstable
slopes and rock unstable slopes are fewer, numbering 125 and five, respectively, accounting
for 31% of the total number of unstable slopes and mainly occurring in the Quaternary
loess and the Jurassic sandstone strata. The unstable slopes have similar characteristics to
landslides in their ranges of length, width, height, and area but the slope angles of unstable
slopes are relatively larger. The characteristics of landslides and unstable slopes in the
present study are summarized in Table 3.

In addition, under the pressure of population growth and development as well as the
preservation of historical and cultural sites, in 2012 the government built a new district
called Yan’an New District by cutting mountains and filling ditches. However, because of
the special microstructure and complex engineering-geological conditions of the loess, land
subsidence in Yan’an New District has become one of the geohazards that requires much
attention. The surface deformation along the radar LOS calculated by the DInSAR technique
was very similar to that of the small baseline subsets InSAR (SBAS-InSAR) approach from
Sentinel-1 images (see [59,60] for more details). DInSAR and field surveys show that
the land subsidence area is the ribbon (Figure 7), mainly concentrated in the filling area
manifested as wall cracking or collapse, ground subsidence, and cracks (Figure 6e,f).
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Figure 7. Surface deformation image of Yan’an New District from 2018 to 2019 calculated using
DInSAR. Positive values indicate that the ground object deformation is close to the radar along the
radar LOS, and negative values indicate that the ground object deformation is far away from the
radar along the radar LOS.

4.2. Landslide Susceptibility Mapping

The normalized factors were used as the input, and the landslide susceptibility index
was the output data. The mean decrease accuracy and mean decrease Gini coefficient of the
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random forest are used to order the eight variables (Figure 8). The vertical axis represents
the eight variables, with the mean decrease accuracy and mean decrease Gini coefficient
decreasing from top to bottom. It shows that the importance of the hazard density is the
highest and that the build density, thickness of exposed bedrock, loess thickness, relief,
and the NDVI are the next most-important. The ROC curve is widely used to evaluate
the classification results of the random forest classifier through the area under the ROC
curve (AUC) [35]. The vertical axis and horizontal axis represent the true positive rate
(TPR) and false-positive rate (FPR) using the random forest classifier, respectively. TPR
and FPR, also called the sensitivity and specificity, are the ratio of the landslide sample
points correctly detected by the classifier and the ratio of the non-landslide sample points
incorrectly classified as landslide sample points, respectively [61]. The larger the AUC, that
is, the closer the vertex of the curve is to the upper left corner, the better the classifier’s test
capability. In this research, the AUC is 0.96, which indicates excellent classification results
of the random forest classifier (Figure 9). In addition, the confusion matrix shows that the
overall accuracy of the random forest classifier is 0.903 and that the predicted precision
of non-landslides and landslides is 0.927 and 0.881, respectively, which is a good method
to analyze the prediction accuracy (Table 4). Four levels of susceptibility, i.e., very high
(>0.711), high (0.711–0.458), moderate (0.458–0.231), and low (<0.231), were categorized
based on the natural breaks classification conducted using the ArcGIS software (Figure 10).
The natural breaks classification was determined based on natural groupings inherent in
the data. Then, the classification interval was identified to provide an optimum grouping
of similar values and maximize the differences between classes [62,63]. Additionally, the
distribution of the landslide susceptibility index using the natural breaks is shown in
Figure 10b.
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Figure 8. Mean decrease accuracy and mean decrease Gini of variables assigned by the random forest
classifier. The vertical axis is the inducing factor variable. hazard—hazard density; build—build
density; lithe—thickness of exposed bedrock; loess—loess thickness; height—relief; ndvi—NDVI;
curv—profile curvature.

The results show that the distribution of landslides and unstable slopes in the study
area is closely related to the susceptibility partitioning (Table 5). Over one-third of the slope
units in the study area are in the high- and very high-susceptibility areas, accounting for
21% and 16% of the total, respectively, with a total area of 10.1 km2; the remaining slope
units are in the moderate- and low-susceptibility areas. Moreover, 35% of the landslides
and the unstable slopes are located in the very high-susceptibility area, accounting for 16%
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of the total number of the slope units; 33% of the landslides and the unstable slopes are
located in the high-susceptibility areas, accounting for 21% of the total number of the slopes;
21% of the landslides and the unstable slopes are located in the moderate-susceptibility
area, accounting for 27% of the total number of the slopes; and 11% of the landslides and
the unstable slopes are located in the low-susceptibility areas, which account for 36% of the
total number of slopes.
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Table 4. Confusion matrix of the random forest classifier.

RF
Predicted

Recall
Non-Landslide Landslide

Actual
Non-landslide 543 73 0.881

Landslide 43 541 0.926

Precision 0.927 0.881 0.903

The results of the landslide susceptibility assessments show that two regions are highly
prone to landslides, one being the urban center of Baota District, and the other Nanniwan
Airport (Nnwa) and its surrounding areas. In the urban center of Baota District, including
Yangjialing Village (Yjl), Nanshi Street (Ns), Baiping Village (Bp), Hutoumao Village (Htm),
Zezigou Village (Zzg), Nanzhaibian Village (Nzb), Majiawan Village (Mjw), Huanghaowa
Village (Hhw), Mata Village (Mt), Erzhuangke Village (Ezk), and Shanlangcha Village
(Slc), where landslides occur frequently, the landslide susceptibility is high and very high
because of the very high-density population and frequent human activities (Figure 10).
Due to the effects of road construction, domestic water discharge, crop planting, slope toe
excavation, and other activities, landslides, including rock falls, slope failures, unstable
slopes, and creep, occur frequently, which poses a great threat to the lives and properties of
the local residents. The other highly landslide-prone areas are Nanniwan Airport (Nnwa)
and its surrounding areas, including Yangjiawan Village (Yjw), Maozegou Village (Mzg),
Sanshipu Village (Ssp), and Yejiagou Village (Yjg). Nnwa is the area of mountain excavation
and valley infilling on the Loess Plateau and its construction destroys the stability of the
surrounding slopes, resulting in the development of landslides and unstable slopes in the
surrounding areas.
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Figure 10. Landslide susceptibility map of the study area in (a), and the distribution of the landslide
susceptibility index using the natural breaks in (b).

Table 5. Slope unit statistics based on landslide susceptibility, hazard, and risk zone.

Slope Units VH H M L

Susceptibility
zone

Number 291 401 495 654
Total areas 5.8 4.3 4.6 6.9

Proportion (N) 16% 22% 27% 36%
Landslides 122 96 62 54

Unstable slopes 138 147 96 30

Hazard zone

Number 293 439 583 526
Total areas 6.4 4.7 6 4.5

Proportion (N) 16% 24% 32% 29%
Landslides 123 89 77 45

Unstable slopes 131 149 93 38

Risk zone

Number 116 377 560 788
Total areas 2.0 4.4 6.0 9.2

Proportion (N) 6% 20% 30% 43%
Landslides 55 78 99 102

Unstable slopes 41 132 133 105
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4.3. Landslide Hazard Mapping

Reliable landslide hazard mapping is crucial for hazard mitigation and risk manage-
ment. In this study, InSAR technology was used to obtain the landslide hazard assessment,
aiming for an ongoing and quantitative practice [63]. The fieldwork showed that the
landslide type in the study area was relatively single, mainly loess landslides, and that the
geological environment and inducing conditions, such as rainfall, are similar in the small
study area, leading to the relatively simple mechanism of loess landslide activity. Therefore,
DInSAR was used as a comprehensive indicator to reflect slope displacement, whether
caused by rainfall or human activities, in landslide hazard assessment. The spatial probabil-
ity of landslides (landslide susceptibility) and the intensity of ground surface deformation
were used in the weighted overlay model parameters to calculate landslide hazard [64].
The weighted overlay technique is defined to develop a map using the overlays of several
raster layers by giving weight to each raster layer according to expert opinions [65]. The
weighted overlay analysis was applied to obtain the landslide hazard assessment using the
following equation:

WX i =
m

∑
j=1

R(j ) × X(i, j) (2)

where m is the total number of factors to assess, WXi is the hazard index of the assessment
units, R(j) is the weight value of each factor, and X(i,j) is the value of the assessment factors.
In this study, X(i,j) is the landslide susceptibility index obtained from the random forest
and the ground–surface deformation intensity that was defined using the normalized
ground deformation data obtained from DInSAR during the monitored time; the weight
values of both were set at 0.5 after analyzing the geological environment and inducing
conditions of landslides in the study area, respectively. Finally, the hazard indexes of slope
units were calculated by summing the product of assessment factors and corresponding
weight values. Four levels of hazard, i.e., very high (>0.594), high (0.594–0.416), moderate
(0.416–0.269), and low (<0.269), were categorized based on the natural breaks classification,
and the LOS displacement in different hazard levels were counted, which are illustrated in
Figures 11 and 12, respectively.

The number and LOS displacement values of slope units in different hazard levels
are illustrated in Figure 11. The distribution histogram shows the maximum and mean
displacement values, as well as the number of slope units in different hazard levels. It
shows that the displacement values of slope units are distributed in a normal curve and
that the higher hazard of slope units presents a higher displacement value than the lower
hazard on the whole. The results show that 40% (732) of the slope units in the study area
are in the high- and very high-hazard areas for landslides, accounting for 24% and 16% of
the total, respectively, with a total area of 11.1 km2 (Figure 12). There was a small increase
in the number and distribution of the hazard zones in the urban areas compared with the
susceptibility map. About 34% (254) of the landslides and the unstable slopes are located in
the very high-hazard areas, accounting for 14% of the total number of slopes; 32% (234)
of the landslides and the unstable slopes are located in the high-hazard areas, accounting
for 13% of the total number of slopes; 23% (170) of the landslides and the unstable slopes
are located in the moderate-hazard areas, accounting for 9% of the total number of slopes;
and 11% (83) of the landslides and the unstable slopes are located in the low-hazard areas,
which are 5% of the total number of slopes. The results show that the spatial distribution of
landslide hazard areas was consistent with the field investigations.
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4.4. Landslide Risk Mapping

The JTC-1 Joint Technical Committee on Landslides and Engineered Slopes noted that
landslide risk is a measure of the probability and severity of the adverse effects of landslides
on health or property, which must consider the hazard mapping and vulnerability of land-
slides [5]. Vulnerability assessment is a fundamental element in the evaluation of landslide
risks [66]. Vulnerability to landslides is expressed in economic (monetary, quantitative)
and heuristic (qualitative) scales. When using economic measurements, vulnerability is
commonly expressed in the element values, such as monetary, intrinsic, and utilitarian
values [67]. Due to a lack of information about properties and population distribution data,
the Kriging interpolation of building distribution and building density was used for the
vulnerability assessment in this study. The location and spatial distribution of buildings
reflect the distance between buildings and slope units, which indirectly indicates the extent
to which buildings and populations are threatened by landslides. Additionally, the building
density can also indicate the properties and populations. Of course, this assumes that the
sizes and values of the buildings are similar and that the differences in the populations
attached to the different buildings are slight. The equation for landslide risk calculation is
expressed as follows:

R = HL × VL (3)

where HL and VL represent the landslide hazard and vulnerability, respectively. The
landslide risk index obtained from Equation (3) is divided into four levels according to
the natural breaks method after normalization, namely, very high-risk (>0.406), high-risk
(0.406–0.223), middle-risk (0.223–0.101), and low-risk (<0.101). The results of the risk
assessment zones and statistics are shown in Figure 13 and Table 5.
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The landslide risk assessment map shows that the risk in the urban center is higher
than that in the suburban areas, where the risk decreases with increasing distance from
the urban center (Figure 13). Additionally, a total of 20 and 167 extra slopes are in very
high and high-hazard zones besides landslides and unstable slopes (Table 5). About 6%
(116) of the slope units are located in very high-risk zones with a total area of about
2 km2; 20% (377) of the slope units are located in high-risk zones with a total area of
about 4.4 km2, which are mainly distributed in concentrated areas (i.e., Yjl-Sy-Slc-Hhw)
(Figure 13 and Table 5). The building and population densities in these areas are high,
which may lead to significant economic losses and casualties, so it is necessary to pay more
attention and conduct landslide risk management to mitigate the landslide risks. Compared
with the landslide susceptibility and hazard maps, Nnwa and its surrounding areas are
classified into moderate- and low-risk areas because of the low population density in the
areas. In addition, many engineering solutions, including slope geometry modification,
underground drainage systems, gravity retaining walls, and anti-slide piles, have been
applied to stabilize the slopes. Therefore, the slopes, which are originally very highly prone
to landslides, are classified as low-risk zones for landslides.



Remote Sens. 2022, 14, 2131 18 of 23Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

  

Figure 13. Landslide risk map of the study area in (a), and the distribution of the landslide risk index 

using the natural breaks in (b). 

5. Discussion 

Landslide risk assessment has been attracting the attention of researchers and gov-

ernments in order to effectively deal with landslides in the study area. For this purpose, 

machine learning and DInSAR technology were used to evaluate the landslide suscepti-

bility in the main urban parts of Yan’an City. Currently, the susceptibility, hazard, and 

risk of landslides in the whole of Yan’an City have been determined in existing studies. In 

terms of the methodology, they can be divided into the heuristic model and generalized 

objective functions based on experts’ knowledge scoring [44,68,69], a quantitative model 

of evidence weight [42], and a physically deterministic model [43]. In terms of map units 

and scopes, they can be divided into grid cells (25 m or 30 m), catchment basin units [42–

44,68,69], administrative boundaries [42–44], and watershed boundaries [68,69]. However, 

those results are not only subjective but also can only meet the needs of a wide range of 

Figure 13. Landslide risk map of the study area in (a), and the distribution of the landslide risk index
using the natural breaks in (b).

5. Discussion

Landslide risk assessment has been attracting the attention of researchers and gov-
ernments in order to effectively deal with landslides in the study area. For this purpose,
machine learning and DInSAR technology were used to evaluate the landslide susceptibility
in the main urban parts of Yan’an City. Currently, the susceptibility, hazard, and risk of
landslides in the whole of Yan’an City have been determined in existing studies. In terms
of the methodology, they can be divided into the heuristic model and generalized objective
functions based on experts’ knowledge scoring [44,68,69], a quantitative model of evidence
weight [42], and a physically deterministic model [43]. In terms of map units and scopes,
they can be divided into grid cells (25 m or 30 m), catchment basin units [42–44,68,69],
administrative boundaries [42–44], and watershed boundaries [68,69]. However, those
results are not only subjective but also can only meet the needs of a wide range of risk
management options and cannot truly reflect the geomorphic characteristics of the slope in
the study area, which can be useful for risk management in a large administrative area. The
research reviewed that an inventory including detailed landslide information and a rea-
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sonable mapping unit as well as model type is a prerequisite for obtaining highly accurate
assessment results [20]. Firstly, a landslide inventory with more detailed information can
provide more input data to the model to analyze the relationship between landslides and
geological environment factors to obtain a comprehensive landslide susceptibility map [70].
Some previous studies in the study area may not have shown this. Therefore, a complete
landslide inventory, mapping all landslides in the study area, was determined through
the interpretation of UAV images and site-by-site investigations. Secondly, field surveys
and risk assessment of slope units on a large scale in small areas can provide planners
with an adequate and applicable landslide risk map, especially in areas of critical concern
such as urban centers. Research shows that grid cells or pixels are still the most commonly
used map units in current papers on landslide assessment, and only a few papers have
used slope units [20,21]. To reflect the geomorphic characteristics of slopes, slope units
were used as map units in this study. Thirdly, the selection of a model is also an important
factor affecting the accuracy of landslide susceptibility assessment. There are more and
more models and methods developed for landslide susceptibility assessment, among which
machine learning with good performance can be used to solve the nonlinear relationship
between landslides and geological environment factors [16,34]. For this reason, random
forest was selected to predict landslide susceptibility in the study area, with good proven
performance [34,71]. Therefore, the accuracy of the landslide susceptibility assessment in
this study was improved by using a machine learning model and slope units.

In addition, DInSAR technology was introduced in the process of hazard assessment
to calculate slope deformation, and the hazard was calculated by giving the same weight
coefficient of susceptibility and slope deformation. InSAR technology was used to perform
a time-effective analysis, and the results can present the active state of slopes directly
to predict the failure time and assess the hazard class of landslides [72,73]. At present,
combining the ground deformation products from the InSAR technology with a landslide
risk assessment map has become a concern in the relevant research [63,74]. However, many
existing studies focus on the early identification and long-term monitoring of temporal and
spatial evolution using InSAR technology [75,76] but there is still insufficient attention paid
to risk assessment. The application of InSAR data in landslide risk assessment can improve
the reliability of landslide predictions and make a reliable landslide risk map [45].

Finally, landslide risk was calculated by multiplying the hazard with the vulnerability
composed of the spatial distribution and density of the buildings. The susceptibility, hazard,
and risk assessment in this paper have a similar trend to the previous paper on Yan’an
City in the area of different levels and spatial distributions [42–44], such as the area and
percentage of low-susceptibility or hazard zones being greater than that of the higher-
susceptibility or hazard zones, and the high-risk zones in the spatial distribution patterns
are similar, which can also imply the accuracy of this work to a certain extent. Moreover,
the risk assessment in this study can provide more specific guidance for risk management
and prevention in practice.

There are some limitations that need to be considered in future research. Firstly, due
to the lack of detailed population and property data, only the spatial location information
of buildings was used for the vulnerability. The precondition for this question is to assume
that the values of the buildings in the study area are the same, which would lead to certain
information loss for vulnerability. Secondly, influenced by the observation mode of the
radar satellites, the deformations obtained by the SAR images are ultimately along the LOS.
However, the deformation rate along the slope (Vslope) can more intuitively reflect the real
motion of the slopes, which can be transformed through the spatial geometric relationship
between the radar LOS and slope. Due to the limitations of the image numbers in the
SAR dataset from the study area, we have to use the ascending SAR images for InSAR
processing, with which it is difficult to form an effective complement for the descending
data. Therefore, we will also try to transform the LOS displacement into the slope direction
displacement in future research. PSI or SBAS algorithms can be selected to obtain long-term
ground deformation products if the SAR datasets have sufficient and long-term images,
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which can reflect the long-term movement status and trend of slopes [63,74]. It is expected
that more accurate risk assessment maps for the study or elsewhere could be produced by
improving the above limitations.

6. Conclusions

Quantitative risk assessment is very effective for landslide risk management and urban
areas need more detailed investigations and assessments. In this study, the quantitative
landslide risk assessment was based on susceptibility and hazard assessments. The random
forest classifier and eight environmental factors influencing landslides, including slope,
profile curvature, relief, NDVI, landslides density, building density, the thickness of loess
and the thickness of exposed bedrock were used to examine landslide susceptibility in
Baota District, Yan’an City. Combined with DInSAR technology, landslide hazard mapping
was developed to reflect the hazards quantitatively. Surface deformation, which can be
caused by many factors (e.g., precipitation, slope groundwater, and engineering), can be
detected by DInSAR technology with centimeter precision. Finally, the landslide risk map
was obtained by being combined with the landslide susceptibility and hazard assessment
and divided into very high-risk, high-risk, middle-risk, and low-risk areas according to the
natural breaks method.

In this study, a total of 1841 slope units were mapped in the study area, including
334 landslides and 411 unstable slopes determined by field investigations, in which the
main material of landslides and unstable slopes is loess and only a few of them contain
bedrock. The length and width of landslides and unstable slopes are mainly between
50 m and 150 m, the slope angles are mainly between 20◦ and 50◦, and the heights are
predominantly between 30 and 90 m, where the slope angles and heights of most of the
unstable slopes are larger than those of the landslides. The areas are usually less than
20 × 103 m2. Reliable risk assessment was achieved using 1841 slope units, which were
divided based on the terrain, optical images, and DEM. Remote sensing InSAR technology
was applied to determine the quantitative landslide hazard zones. The classification results
of the random forest classifier were evaluated with the receiver operating characteristics
(ROC) curve and confusion matrix. The confusion matrix shows that the overall accuracy
of the random forest classifier is 0.903 and that the AUC value is 0.96, with good prediction
accuracy and classified ability of landslide susceptibility. The results of the landslide risk
assessment indicate the risk level and the corresponding quantity of the slope units and
total areas. Approximately 6% of the slope units located in the very high-risk zones and
20% of the slope units located in the high-risk zones must receive more attention to monitor
the dynamics.

The present research has significant implications for landslide risk mitigation in Baota
District, Yan’an City. Our scientific landslide risk map is expected to promote landslide
prevention based on a zoning strategy and provide a valuable decision to support the local
and regional government for disaster prevention, mitigation, and management, which
eventually can effectively reduce the impacts of geohazards.
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