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Abstract: This study examines the performance of a data assimilation and forecasting system that
simultaneously assimilates satellite aerosol optical depth (AOD) and ground-based PM10 and PM2.5

observations into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem).
The data assimilation case for the surface PM10 and PM2.5 concentrations exhibits a higher consistency
with the observed data by showing more correlation coefficients than the no-assimilation case. The
data assimilation also shows beneficial impacts on the PM10 and PM2.5 forecasts for South Korea for
up to 24 h from the updated initial condition. This study also finds deficiencies in data assimilation
and forecasts, as the model shows a pronounced seasonal dependence of forecasting accuracy, on
which the seasonal changes in regional atmospheric circulation patterns have a significant impact. In
spring, the forecast accuracy decreases due to large uncertainties in natural dust transport from the
continent by north-westerlies, while the model performs reasonably well in terms of anthropogenic
emission and transport in winter. When the south-westerlies prevail in summer, the forecast accuracy
increases with the overall reduction in ambient concentration. The forecasts also show significant
accuracy degradation as the lead time increases because of systematic model biases. A simple
statistical correction that adjusts the mean and variance of the forecast outputs to resemble those in
the observed distribution can maintain the forecast skill at a practically useful level for lead times of
more than a day. For a categorical forecast, the skill score of the data assimilation run increased by up
to 37% compared to that of the case with no assimilation, and the skill score was further improved by
10% through bias correction.

Keywords: data assimilation; air quality modeling; aerosol forecast; seasonal dependence

1. Introduction

East Asia is a region with high aerosol concentrations due to emissions from vari-
ous natural sources, such as frequent Asian dust events from the Taklamakan and Gobi
Deserts [1,2] and Siberian wildfires [3,4]. Moreover, the region has experienced rapid eco-
nomic growth, which has increased anthropogenic emissions from agricultural, industrial,
commercial, and residential sources. This has resulted in a rapid change in environmental
conditions and air pollution [5–7]. Despite the regulation policies introduced to reduce air
pollutants, particularly in China [8], air pollution is still an important international agenda
that needs to be resolved [9].

While it would take considerable time to mitigate anthropogenic emissions and im-
prove air quality, taking appropriate actions and decisions in advance according to air
quality forecasts could help reduce health risks and negative impacts on the socioeconomy.
There is a growing demand for accurate and reliable predictions of air quality that can be
disseminated to the general public. Many operational centers and research institutes have
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developed comprehensive atmospheric chemical transport models to produce air quality
forecasts. However, the forecast skill of these models is still low and not satisfactory for
providing early warnings [6,10,11], requiring substantial advances in systems by improving
atmospheric chemical transport models, updating emission inventories, and utilizing more
observational data from ground-based and satellite observations [11–15]. In particular,
data assimilation improves the analysis quality and initial conditions set for the forecast
models as it allows the incorporation of more observations in Northeast Asia from satellites
such as the Moderate Resolution Imaging Spectroradiometer (MODIS) [16], Geostationary
Ocean Color Imager (GOCI) [17] and Geostationary Environment Monitoring Spectrometer
(GEMS) [18]. The appropriate application of data assimilation techniques can provide
benefits when using multiple observational data sources [19]. Data assimilation overcomes
the spatial and temporal limitations of current observation networks by considering both
uncertainties in the observational data and background model forecasts [13,15,20–29]. Kim
et al. [28] used the three-dimensional variational (3D-VAR) method for assimilating GOCI
AOD and ground-based PM data during the Korea–US Air Quality (KORUS-AQ) study
period (1 May to 10 June 2016). They indicated the effects of data assimilation in improv-
ing air quality forecast in Korea and examined the forecast skills sensitive to single- and
multiple-observation input data. Their results highlighted that using multiple observations
can overcome the spatial and temporal observation vacancy and provide sustainable air
quality forecasts. Xia et al. [21] also used 3D-VAR for the Chinese Pungyun-3A satellite
and MODIS AOD during the Asian Dust event in the spring of 2011. They indicated
that the effects of data assimilation in improving air quality forecasts in China were the
highest when AODs from both satellites were used simultaneously. Jung et al. [22] tested
Optimal Interpolation (OI) in assimilating the GOCI AOD to the two-way coupled Weather
Research and Forecasting (WRF) model for meteorology and the Community Multiscale
Air Quality (CMAQ) chemistry and transport model that enables the interactive radiative
effects by aerosols on weather and air quality. In this test in the East Asia domain during
May and June 2016, the shortwave radiation on land tended to decrease because of the
direct radiative effects of aerosols, hence reducing the surface air temperature, atmospheric
boundary layer height, and wind speed. These modifications contributed to an increase in
the surface concentrations of major gaseous and particulate pollutants. Not only variational
methods but also ensemble-based methods can be used to improve the initial conditions
and forecasts [13,26,27]. For example, Peng et al. [13] optimized the initial chemical con-
ditions and emission data using the ensemble Kalman filter (EnKF), thereby improving
PM2.5 forecasts. Choi et al. [26] examined the dependence of model performance on data
assimilation methods when assimilating the MODIS AOD by comparing the performances
of the variational and ensemble-based methods with a hybrid scheme that combined both
approaches. Additionally, recently, there was a study that improved the performance of
satellite data assimilation by combining data assimilation and machine learning [29].

Although previous studies have demonstrated the beneficial impacts of data assim-
ilation when using ground-based and satellite aerosol observations, most studies had a
relatively short testing period. Considering that the data assimilation and forecast per-
formance depend on the region and testing period, the performance evaluation should
be based on a rigorous test with a sufficiently long testing period for a specific system.
Particularly in East Asia, where summer and winter monsoons produce distinct variations
in regional atmospheric circulation and aerosol transport patterns, the forecast perfor-
mance is likely to vary significantly depending on the season. Additionally, natural and
anthropogenic emissions exhibit substantial seasonality. For example, regional air quality
is affected by Asian Dust episodes in spring [1,2], whereas coal-fired heating increases
anthropogenic emissions in winter [30].

To develop a reliable air quality forecast model for operational purposes, this study
first constructs a data assimilation and forecast system using the WRF model coupled
with chemistry (WRF-Chem) and 3D-VAR data assimilation method. Satellite-derived and
ground-based observations were assimilated, including AOD observations from MODIS
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and GOCI, and surface PM10 and PM2.5 concentrations. The performance of the system
was evaluated for one representative month for each season to determine the accuracy of
the data analysis and forecast for surface PM10 and PM2.5. Specifically, a comparison of
forecasts with and without data assimilation measured the extent to which data assimilation
quantitatively improves forecasting. The forecasts tended to degrade with an increase in
the lead time owing to systematic biases in the forecasting model. Therefore, this study
further conducted simple bias correction on the air quality forecast outputs and compared
the results with the original forecast. This study consists of the following sections: Section 2
describes the experimental settings, models, and data used for the data assimilation and
forecast validation. Section 3 presents the performance of data assimilation and forecast
accuracy. Section 4 provides a discussion and Section 5 presents conclusions.

2. Model, Data, and Methods
2.1. Model

The air quality model used in this study was WRF-Chem version 3.9.1 [31], developed
by the National Center for Atmospheric Research (NCAR), an online model with coupled
interactions between atmospheric chemistry and meteorology. The model considers the
direct and indirect effects of atmospheric chemicals and aerosols on atmospheric radiative
transfer and cloud microphysical processes. The model uses Goddard Chemistry Aerosol
Radiation and Transport (GOCART) [32] as an aerosol scheme, including 15 types of dust,
organic carbon (OC), black carbon (BC), sulfate, and sea salt. Atmospheric chemistry was
formulated using the Model for Ozone and Related Chemical Tracers (MOZART) [33].
Parameterized physics included the Lin scheme [34] for microphysics, the Rapid Radiative
Transfer Model (RRTM) scheme [35] for longwave radiation, the Goddard scheme [36]
for shortwave radiation, the Grell-3D scheme [37] for convection, the Yonsei University
(YSU) scheme [38] for atmospheric boundary layer turbulence, and Noah Land-Surface
Model [39] for land surface physics.

Figure 1 shows the model domain in East Asia (D01) at a horizontal resolution of
27 km with a nested sub-domain (D02) with a resolution of 9 km above the Korean Penin-
sula. The model was configured with 30 vertical layers, with a topmost layer at 50 hPa.
The initial and lateral boundary conditions for meteorology were specified using the Met
Office Unified Model (UM) [40] global forecasts produced by the the Korea Meteorological
Administration. The initial and lateral boundary conditions for chemicals were specified
using MOZART-4 [41] global chemistry reanalysis data produced by the Goddard Earth
Observation System 5 (GEOS-5) model coupled with MOZART. The model uses the Emis-
sions Database for Global Atmospheric Research–Hemispheric Transport of Air Pollution
(EDGAR-HTAP) [42] for the anthropogenic emissions of gases and aerosols. The model
also includes biological emissions from the Model of Emissions of Gases and Aerosols from
Nature (MEGAN) [43].

2.2. Data Assimilation

The data assimilation method was the 3D-VAR algorithm implemented by the Grid-
point Statistical Interpolation (GSI) version 3.5 [44,45]. Details of applying the 3D-VAR to
the GOCART aerosol scheme have previously been described by Liu et al. [20], and the
essential parts are briefly described here.

The 3D-VAR algorithm finds the best estimate “analysis” by considering the Euclidian
distance from observations at irregularly spaced points and a gridded background field.
The analysis vector (x) can be determined by minimizing the scalar cost function J(x),
given by

J(x) =
1
2
(x− xb)

T B−1(x− xb) +
1
2
[H(x)− y]T R−1[H(x)− y] (1)

In Equation (1), xb denotes the model background state, y is the vector of observations,
and B and R are the background and observation error covariance matrices, respectively,
representing the relative weights for the analysis. H is an observation operator that converts
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the model values to observations and interpolates the model values to observation positions
in space. The AOD observation operator was calculated based on the Community Radiative
Transfer Model (CRTM) [46], and the observation operators of PM10 and PM2.5 have been
described by Pagowski et al. [47].
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Figure 1. Simulation domain for WRF-Chem with surface elevation (shaded, unit: kilometer).
(a) shows domain 1 (D01) and (b) shows domain 2 (D02). Purple dots indicate the locations of
ground-based PM observation.

Proper specification of the model background error, on which the performance of data
assimilation depends, is one of the most critical parts of the data assimilation technique.
The National Meteorological Center (NMC) method [48] was used to obtain the background
error covariance B, which extracts the systematic error by calculating the difference be-
tween two model background forecasts starting at different initial times. In this study, the
background error was calculated using the difference between the 24 and 12 h forecasts.
The forecast differences were collected at 12 h intervals to calculate the background error
covariance statistics for each season in January, April, July, and October 2017.

2.3. Observation Data and Errors

AODs from both satellites, MODIS and GOCI, and the ground-based PM observations
from the China Monitoring Network (CMN) and the National Ambient Monitoring Infor-
mation System (NAMIS) in Korea were integrated as inputs for 3D-VAR data assimilation.
Detailed information on the input data is presented in Table 1. The table also shows the
observation errors specified for the MODIS AOD as a function of the AOD value (τ), which
follows Levy et al. [49] for land (εL) and Remer et al. [50] for ocean (εO) errors. The errors
for GOCI follow the error equations specified by Choi et al. [51].
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Table 1. Input observation data and the observation error equations. εO and εL are the errors over
ocean and land, respectively, and τ is the AOD. εm is the measurement error for ground-based PM
observation, εr is the representative error, εt is the total error, Πo is the PM concentration, γ = 0.5
is the adjustable parameter, ∆x is the model grid size, and L = 3 km is the radius of influence of
observation according to Elbern et al. [52].

Data Period Resolution (km) Variables Error Equation

MODIS (Lv 2)
2000–Present

5 min
(Aqua & Terra)

10 × 10 550 nm AOD εO = 0.05τ + 0.03
εL = 0.15τ + 0.05

GOCI
2011–Present

1 h
(00–07 UTC)

6 × 6 550 nm AOD εO = 0.185τ + 0.037
εL = 0.137τ + 0.073

NAMIS 2014–Present
1 h Station data PM10, PM2.5 εm = 1.5 + 0.0075 Πo

εr = γ εm

√
∆x
L

εt =
√

ε2
m + ε2

rCMN 2014–Present
1 h Station data PM10, PM2.5

Ground-based PM observations were available from 1514 stations in China and 361 sta-
tions in South Korea, as indicated in Figure 1. The PM observation error consisted of
measurement and representative errors. The measurement error was defined according to
Schwartz et al. [53] and the representative error was obtained from Elbern et al. [52] and
Pagowski et al. [47].

In addition, the quality of the observed data was controlled prior to data assimilation.
For satellite AODs, only data with a confidence flag of 3 (the best quality) were used. Data
thinning was also applied, where high-resolution satellite data were coarsely sampled to
match the model resolution [16]. One AOD observation was randomly sampled for every
27 km × 27 km grid for Domain 1 and every 9 km × 9 km grid for Domain 2. In the case of
PM10 (PM2.5), unrealistic observation values were discarded when they were higher than
300 (150) µg m−3 or the innovation (H (x) − y) values were higher than 300 (150) µg m−3.

2.4. Experiments

Two sets of experiments were performed in this study (Figure 2). The first run involved
an unconstrained WRF-Chem simulation that provided 24 h model forecasts for a month
with meteorological fields reinitialized by atmospheric reanalysis data at 00 UTC every day
(hereafter NoDA, no data assimilation). In NoDA, the chemical and aerosol fields were
restarted from previous forecasts. The second run comprised continuous data assimilation
and forecast runs with a 6 h cycle (hereafter DA, data assimilation). The aerosol fields were
assimilated via satellite and ground-based observations from MODIS, GOCI, CMN, and
NAMIS. The meteorological fields were reinitialized at 00 UTC every day, as for NoDA, but
3D-VAR data assimilation was performed at 00, 06, 12, and 18 UTC for the aerosol fields
to provide the initial conditions for the next 6 h. The chemistry fields were restarted from
previous forecasts, as for the NoDA. For satellite data assimilation, the geostationary GOCI
data in the visible radiation bands are only available hourly from 00 to 07 UTC. The sun-
synchronous MODIS data are available twice a day at 03–04 and 17–18 UTC from Aqua, and
02–03 and 13–14 UTC from Terra. This study used a time window of ±3 h, and all available
satellite observations during this period were collated for aerosol data assimilation for the
given period. This helped to increase the number of satellite observation samples that are
often masked by clouds. Time weighting was not applied to the observations sampled at
different times within the window. The improvements in forecasting by 3D-VAR aerosol
data assimilation were measured by first conducting 24 h model forecasts starting from the
assimilated aerosol states and then comparing the forecasts with NoDA runs. Because of
computational costs, only January, April, July, and October 2017 were selected for testing
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seasonal changes in the forecasting performance, and for each month, the 24 h forecasts
were conducted at 00, 06, 12, and 18 UTC every day.
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assimilation with a 6 h cycle. The solid line represents the WRF-Chem model integration.

2.5. Verification

The accuracy of the air quality forecasts for surface PM concentrations was evaluated
using the temporal correlation coefficient and root-mean-square error (RMSE) compared
with the observed values. As discussed later in the text, the WRF-Chem forecast model
exhibits a systematic bias as the forecast lead time increases. A simple statistical correction
was applied to remove biases in the forecast values using the following equation:

X′ =
(

X f − X f

) σo

σf
+ Xo (2)

where X′ is the corrected model forecast, X f is the original model forecast, X f is the time
average of X f , and Xo is the average of observations. σf and σo are the standard deviations
of the forecasts and observations, respectively. Equation (2) adjusts the mean and variance
of the forecast values to those of the observed values, assuming a normal distribution.
These forecast outputs are denoted by BiasC (i.e., bias-corrected) in Section 3. Note that this
bias-correction method can also be applied to real-time forecasts if the long-term historical
observations and the hindcasts are available.

In addition, a contingency table was constructed to record the hit and false-alarm
rates of the categorical air quality forecasts. The categories for clean, normal, polluted, and
extremely polluted PM10 (PM2.5) concentrations were 0–30 (0–15), 31–80 (16–35), 81–150
(36–75), and 151–(76–) µg m−3, respectively, as officially defined by the National Institute
of Meteorology (NIER) in Korea. Table 2 presents a contingency table.
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Table 2. Contingency table for the categorical forecasts.

Observation

Clean Normal Polluted Extremely Polluted

Forecast

Clean A1 A2 A3 A4
Normal B1 B2 B3 B4
Polluted C1 C2 C3 C4

Extremely
Polluted D1 D2 D3 D4

Based on Table 2, the total hit rate (THR), polluted case hit rate (PHR), and false-alarm
rate (FAR) were calculated using the following equations:

THR =
A1 + B2 + C3 + D4

n
× 100 (3)

PHR =
C3 + D4
I I I + IV

× 100 (4)

FAR =
I I

I I + IV
× 100 (5)

where n indicates the sum of all values in the contingency table, and II, III, and IV are
defined as

I I = C1 + C2 + D1 + D2 (6)

I I I = A3 + A4 + B3 + B4 (7)

IV = C3 + C4 + D3 + D4 (8)

This study also presented the categorical forecast skill using the Heidke Skill Score
(HSS) [54], defined as:

HSS =
∑I

i=1 p(yi, oi)−∑I
i=1 p(yi)p(oi)

1−∑I
i=1 p(yi)p(oi)

(9)

where i indicates the index of the category, I is the total number of forecast categories,
p(yi, oi) is the joint probability distribution of forecasts and observations, and p(yi) and
p(oi) are the marginal distributions of forecasts and observations, respectively. ∑I

i=1 p(yi, oi)
represents the proportion of correct forecasts (i.e., the forecast accuracy of actual forecasts),
and ∑I

i=1 p(yi)p(oi) represents the correct proportion for the random reference forecast.
Therefore, HSS indicates the extent to which the forecast has improved compared to a
random reference forecast. HSS values range from negative infinity to 1. A value of 1
indicates a perfect forecast, 0 indicates that the forecast has the same performance as the
random forecast, and the negative value suggests a worse performance than the random
forecast. A HSS higher than zero indicates that the forecast is practically useful.

3. Results
3.1. Seasonal Dependence of Model Background Error

This study specifies the model background error covariance differently for each season
to reflect the seasonal dependence of the forecast errors in the model. Examining the model
background error for each aerosol species and season identifies which aerosol species are
dominant and how they are transported depending on the season.

Figure 3 compares the vertical distributions of the standard deviation of the model
background error, averaged for each month and species: hydrophobic BC (BC1), hydrophilic
BC (BC2), hydrophobic OC (OC1), hydrophilic OC (OC2), sea salt (SEAS), dust (DUST),
sulfate (SULF) and unspeciated PM2.5 (P25). The errors were generally larger in the lower
atmosphere. As most aerosols originate from the surface, a higher concentration contributes
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more to model errors and forecast uncertainty. Note that the background error depends
significantly on the season, owing to differences in the dominant emission types and
atmospheric circulation. On average, the errors tended to increase in winter for OC, BC,
and P25, owing to increased fossil fuel combustion and biomass burning in this season. A
stronger surface wind in winter due to the enhanced East Asian jet stream also contributes
to active aerosol transport and therefore induces more forecast errors for these species.
Hydrophilic aerosols (BC2 and OC2) show larger errors than hydrophobic aerosols (BC1
and OC1), particularly at levels above 800 hPa. In the GOCART aerosol scheme, the emitted
carbonaceous aerosols are initially hydrophobic, and then they become hydrophilic through
the aging process with a typical e-folding time scale of approximately 2.5 days [55]. This
process causes a sharp decrease in errors in BC1 and OC1 from the surface, and the errors
are maximized right above the atmospheric boundary layer in BC2 and OC2. Therefore,
hydrophilic aerosols are more prone to large-scale transport by atmospheric winds above
the boundary layer. The hydrophilic black carbon (BC2) undergoes further transformation
into hydrophilic organic carbon (OC2). This is to compensate for the secondary organic
aerosol formation which is not adequately represented in the GOCART scheme. Therefore,
increased OC2 shows the greatest error among carbonaceous species. This process is
dominant in winter, with other seasons exhibiting comparable error magnitudes.

1 

 

 

Figure 3. Vertical distributions of the standard deviation of the model background error for
8 GOCART aerosol species averaged over Domain 2 in winter (blue), spring (green), summer (red),
and autumn (brown). Values in four different-sized bins are averaged for dust and sea salt.

The natural dust error is the greatest in spring owing to the more frequent Asian
Dust transport from the inland continental area. The mid-troposphere near the 600 hPa
level shows the largest error rather than the ground level, implying that this species is
transported to Domain 2 by background winds rather than originating from the surface.
When the prevailing wind at low elevations changes to being southerly in summer, the
error for dust becomes small, particularly in the lower atmosphere. When the low-level
wind blows from the ocean toward the continent in summer, there are substantial errors
in the upper troposphere, where westerlies prevail in all seasons. In contrast, the forecast
error did not show a clear seasonal variation for natural sea salt.

The background error for sulfate was the greatest in summer and lowest in winter.
Sulfate aerosols are mostly produced by anthropogenic sources, such as power plants and
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industries. This study used the EDGAR-HTAP emission, which assumes the emission of
only sulfur dioxide (SO2) gas, with no emission of aerosols. Therefore, all sulfate aerosols in
the model forecast formed secondarily. In our investigation, even though the SO2 emissions
by EDGAR-HTPA peaked in winter, the simulated sulfate aerosol concentration peaked
in summer. The transformation of SO2 into sulfate aerosols is affected by many factors,
including temperature and other meteorological conditions. The sulfate concentration
maxima in the warm season are also supported by observational data from Seoul [56], as
abundant sunlight and high relative humidity are favorable meteorological conditions for
secondary aerosol formation [57].

3.2. Performance of Data Assimilation

Next, this study examined the overall performance of data assimilation for PM10 and
PM2.5 at the surface. Figure 4 shows the average surface PM concentration for Domain 1.
The 6-hourly PM analysis fields were averaged for January, April, July, and October 2017 to
represent the four seasons. The values over the desert area are masked out intentionally
in the figure because of the excessive dust concentration in the model, and there were
no reliable ground-based stations to verify the model simulation. The spatial patterns
for PM10 and PM2.5 were quite similar in NoDA (cf. Figure 4b,f). Both underestimated
the concentration in Manchuria and South Korea and overestimated it over the Sichuan
Basin and inland China. The only exception was the Beijing–Tianjin–Hebei (BTH) area,
which is one of the most polluted regions in China, where NoDA underestimated PM10
but overestimated PM2.5. DA showed a significant improvement compared to NoDA. First,
the overall overestimation bias in central and southern China and the underestimation
bias in northern China and South Korea in the PM10 concentration decreased through
data assimilation.
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Figure 5 compares the spatial distribution of the time-averaged PM concentration
in Domain 2. The comparison focused on South Korea to examine the data assimilation
impacts at a high resolution of 9 km. The figure shows observations only in South Korea
owing to poor data availability. The surface PM concentration showed a local maximum
in the northwest around the Seoul metropolitan area and its vicinity. As the ground-



Remote Sens. 2022, 14, 2123 10 of 22

based observation stations are clustered mainly in the cities, the PM concentration also
showed local maxima around cities, with many data gaps over rural areas. As in East Asia
(Domain 1), NoDA significantly underestimated the PM10 and PM2.5 concentrations in
South Korea. Although the concentration generally increased from west to east, like in the
observations, the forecast failed to clearly delineate local contributions by major cities and
industrial regions. This seems to be partly due to the substantial uncertainty in the local
emissions specified by the EDGAR-HTAP. DA showed a spatial distribution that was in
good agreement with the observations, although it still had difficulty in reproducing high
values induced by local pollution sources such as in the southeast.

1 

 

 

 

Figure 5. Same in Figure 4 except for Domain 2.

The impact of data assimilation was quantitatively assessed based on scatter plots
between observations and model analysis (Figure 6). NoDA showed poor consistency with
the observations for both PM10 and PM2.5, with underestimation biases. DA showed a
better alignment with the observed values, with a correlation coefficient as high as 0.86 for
PM10 and 0.88 for PM2.5. The RMSE was also significantly reduced, indicating that aerosol
analysis was considerably improved through data assimilation.
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Figure 6. Scatter plots of PM10 and PM2.5 values from observations and the model analysis results
from (a,b) NoDA and (c,d) DA experiments over South Korea. The shaded values indicate the
frequency. The correlation (R), mean bias (MB), and root-mean-square error (RMSE) values are also
provided in each panel.

The surface PM10 distributions and low-level (850 hPa) winds during each season are
compared in Figure 7. The PM10 concentration was the highest in January and April in the
BTH region and lowest in July and October in the BTH region and South Korea. In January,
north-westerly winds prevail over East Asia. In the meantime, the PM10 concentration in
the BTH region showed a peak, presumably due to increased anthropogenic emissions.
The concentration also increased in South Korea, indicating the impacts of large-scale
transport by the north-westerlies as well as an increase in local emissions. Even though
the concentration tends to decrease in April over the BTH region, likely because of lower
emissions, the PM10 concentration increased on the downstream side over the Korean
Peninsula, East Sea, East China Sea, and the Japanese archipelago. This is possibly because
of the eastward and southward transport of Asian dust from the Gobi and Taklamakan
deserts in spring by the background winds. In summer and autumn, the south-westerlies
prevail over South Korea because of the high pressure of the North Pacific Ocean; the wind
blows from the relatively clean South Sea in Korea, and the effect of the long-distance
transport of fine dust is low. The seasonal variation of PM2.5 (not shown) is similar to that
of PM10.
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Figure 7. Monthly mean distributions of PM10 (shaded) and 850 hPa wind (vector) from the DA
experiments for (a) January, (b) April, (c) July, and (d) October.

Figure 8 compares the time average and standard deviation of PM concentration in
each season in South Korea. The observed PM10 values showed pronounced seasonal
variations, with high values in April and January and low values in July and October.
Characterized by strong seasonality in low-level circulation due to the East Asian monsoon,
the background aerosol concentration reached high values in spring and winter, when
northerlies or westerlies prevailed and transported air pollutants from continental areas.
The background concentration decreased when the low-level winds turned into southerlies
and easterlies during summer and fall. The seasonal evolution of PM2.5 was not very
different from that of PM10, although the latter showed a peak in the Asian Dust season
in spring [58,59]. This also suggests that anthropogenic influences are more important for
PM2.5 than for PM10. Previous studies have suggested the importance of removal processes
that contribute to the seasonality of aerosol concentrations, such as the high PM concentra-
tion in winter due to dry and stagnant weather conditions and the low concentration in
summer due to aerosol washout by precipitation [60]. The contribution of the dry and wet
deposition of aerosols seems to partially support their importance, based on our results.
As measured by the standard deviation, the daily variation showed a larger amplitude
in spring and winter, indicating large day-to-day variations owing to transporting wind
and meteorological conditions rather than stagnant conditions. The East Asian summer
monsoon is also characterized by intensive rainfall days that vary substantially daily. This
suggests that seasonal variations in aerosol concentrations are affected not only by natural
and anthropogenic emissions but also by meteorological conditions.



Remote Sens. 2022, 14, 2123 13 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 13 of 22 
 

 

variations in PM2.5, but with an overall underestimation in all seasons, as for PM10. DA 

showed significantly improved results in terms of the monthly mean values and seasonal 

variations. The larger standard deviation of PM concentrations in winter and spring was 

also well-represented in both the NoDA and DA.  

 

Figure 8. Time-averaged (a) PM10 and (b) PM2.5 concentrations in South Korea in each season for the 

observations (green), NoDA (blue), and DA (red). The one standard deviation of daily values is 

indicated by each bar. 

3.3. Forecast Verification 

Next, we examined the impacts of aerosol data assimilation on the forecasts for the 

initial 24 h. Figure 9 compares the correlations and normalized RMSEs (nRMSEs) for the 

surface PM forecasts from NoDA and DA for all seasons. The correlation coefficient was 

also compared with that of the persistence forecast. In the persistence forecast, the forecast 

values were assumed to be identical to the initial observed values for the entire forecasting 

time. Starting from 1.0, the persistence forecast accuracy gradually decreased as the 

forecast lead time increased. The curve of the correlation coefficient for the persistence 

forecast dropped below 0.4 after 24 h for both PM10 and PM2.5 forecasts. Any prediction 

above this persistent curve can be regarded as practically meaningful. However, the 

nRMSE curve tends to increase over time owing to increasing forecast errors, as in the 

persistence forecast.  

The NoDA forecast for PM10 (Figure 9a) displayed poor accuracy with a correlation 

coefficient of approximately 0.4 for the initial 24 h. This is even lower than that of the 

persistence forecast, suggesting that the NoDA forecast is not useful. The NoDA forecast 

for PM2.5 (Figure 9b) showed similar behavior, although the overall correlation coefficient 

was slightly higher than that of the PM10 forecasts for all forecasting lead times. The 

nRMSEs for both PM10 and PM2.5 forecasts (Figure 9c,d) were not changed significantly 

depending on the forecast lead time. When the forecast was initialized with data 

assimilation, both PM10 and PM2.5 forecasts improved significantly. They displayed a 

correlation coefficient of 0.9 or more at the time of data assimilation, and continued to 

maintain a correlation coefficient above 0.5 until 24 h. In particular, the PM2.5 forecasts 

were better performed than the PM10 forecasts, with a correlation coefficient higher than 

0.6 until 24 h. Both correlation coefficient curves from the DA experiments suggest that 

data assimilation is beneficial for PM forecasts. This was statistically evident, at least for 

the initial 6 h. However, the forecasting performance showed some deficiencies, such that 

the correlation coefficients decreased faster than the persistence curve for the initial few 

hours with higher nRMSE values, particularly in the PM10 forecasts. 
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the observations (green), NoDA (blue), and DA (red). The one standard deviation of daily values is
indicated by each bar.

In general, NoDA also reproduced the observed seasonal variations in PM10, with high
values in spring and winter and low values in summer and autumn. One deficiency is a
relatively weak concentration in January, when the observed and simulated values showed
the greatest difference. This suggests that the model underestimates local anthropogenic
sources and transport from the west. NoDA also reproduces the seasonal variations
in PM2.5, but with an overall underestimation in all seasons, as for PM10. DA showed
significantly improved results in terms of the monthly mean values and seasonal variations.
The larger standard deviation of PM concentrations in winter and spring was also well-
represented in both the NoDA and DA.

3.3. Forecast Verification

Next, we examined the impacts of aerosol data assimilation on the forecasts for the
initial 24 h. Figure 9 compares the correlations and normalized RMSEs (nRMSEs) for the
surface PM forecasts from NoDA and DA for all seasons. The correlation coefficient was
also compared with that of the persistence forecast. In the persistence forecast, the forecast
values were assumed to be identical to the initial observed values for the entire forecasting
time. Starting from 1.0, the persistence forecast accuracy gradually decreased as the forecast
lead time increased. The curve of the correlation coefficient for the persistence forecast
dropped below 0.4 after 24 h for both PM10 and PM2.5 forecasts. Any prediction above this
persistent curve can be regarded as practically meaningful. However, the nRMSE curve
tends to increase over time owing to increasing forecast errors, as in the persistence forecast.

The NoDA forecast for PM10 (Figure 9a) displayed poor accuracy with a correlation
coefficient of approximately 0.4 for the initial 24 h. This is even lower than that of the
persistence forecast, suggesting that the NoDA forecast is not useful. The NoDA forecast for
PM2.5 (Figure 9b) showed similar behavior, although the overall correlation coefficient was
slightly higher than that of the PM10 forecasts for all forecasting lead times. The nRMSEs
for both PM10 and PM2.5 forecasts (Figure 9c,d) were not changed significantly depending
on the forecast lead time. When the forecast was initialized with data assimilation, both
PM10 and PM2.5 forecasts improved significantly. They displayed a correlation coefficient
of 0.9 or more at the time of data assimilation, and continued to maintain a correlation
coefficient above 0.5 until 24 h. In particular, the PM2.5 forecasts were better performed than
the PM10 forecasts, with a correlation coefficient higher than 0.6 until 24 h. Both correlation
coefficient curves from the DA experiments suggest that data assimilation is beneficial
for PM forecasts. This was statistically evident, at least for the initial 6 h. However, the
forecasting performance showed some deficiencies, such that the correlation coefficients
decreased faster than the persistence curve for the initial few hours with higher nRMSE
values, particularly in the PM10 forecasts.
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Figure 9. (a,b) Correlation coefficient and (c,d) normalized RMSE (nRMSE) curves for initial 24 h for
the PM10 and PM2.5 forecasts with NoDA (blue) and DA (red). The persistence curves (black dotted)
are included as a baseline prediction for comparing the accuracy with numerical forecasts. RMSE
is normalized by the observed mean values for PM10 and PM2.5. The color shading indicates the
variability of the correlation coefficient and nRMSE shown as one standard deviation value calculated
using 100,000 bootstrap iterations.

The dependence of the forecast accuracy on the season is shown in Figure 10. The
superior accuracy for the PM2.5 forecasts is evident in all seasons compared with those of
the PM10 forecasts. The positive impacts of DA on aerosol forecasts were also statistically
clear for at least the initial 6 h, regardless of the season. The forecast accuracy also exhibited
pronounced seasonal variations in terms of the correlation and normalized RMSEs. The
forecast accuracy worsened in spring (April) and improved in summer (July) for both PM10
and PM2.5 forecasts. As discussed in Section 3.1, the poor forecast accuracy in spring seems
to be mainly due to the misrepresentation of natural dust processes by the model, which
exaggerates dust transport in this region (not shown). The model showed great difficulty
in data assimilation for both PM10 and PM2.5, as indicated by the relatively low correlation
even at the time of initialization. The rest of the season demonstrated higher accuracy. For
example, the DA forecasts in winter (January) outperformed the NoDA and persistence
forecasts throughout the initial 24 h. Considering the higher PM2.5 concentrations in winter
than in spring (Figure 8), this result indicates that the problem of simulating natural dust
affects the accuracy of background PM10 concentration the most.
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Figure 10. (a–h) Correlation coefficient and (i–p) normalized RMSE (nRMSE) curves for the NoDA
(blue) and DA (red) forecasts and persistence curves (black dotted) in each month. Other parameters
are the same as in Figure 9.

3.4. Bias Correction

As shown above, the impact of data assimilation lasts mostly for the initial hours, after
which the forecast error grows and degrades the forecast accuracy owing to the systematic
model bias. Systematic bias is caused by various factors, such as deficiencies in chem-
istry and aerosol parameterization, emissions, and simulated meteorological conditions,
and is often characterized by the differences in the time mean and variance between the
observed and forecast values [61]. While improving the forecast accuracy by improving
the model itself is challenging, the accuracy can be substantially improved by statistically
correcting the forecast values. A straightforward method is to replace the mean and stan-
dard deviation of the forecast values with the observed statistics based on Equation (2).
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Figure 11 highlights the systematic bias in the current WRF-Chem forecasts, where the
NoDA forecasts significantly underestimate both PM10 and PM2.5 concentrations. Although
the forecasts initialized by DA improved the histogram for PM2.5, systematic bias remained
in PM10 forecasts. Simple bias correction in the mean and standard deviation (BiasC) pro-
vides a better agreement in PM10 and PM2.5 histograms, enabling forecasts for the observed
high values.
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Figure 11. Histograms of the PM10 (left) and PM2.5 (right) concentrations from the forecasts by
(a,b) NoDA, (c,d) DA, and (e,f) the bias correction (BiasC). All forecasts are the values after 24 h from
the start. The solid lines with closed dots indicate the observed values.

Finally, we compared the categorical forecasting accuracy for each forecasting method
(Figure 12). The hit rate (HR) for the NoDA forecasts for PM10 and PM2.5 remained below
50%, and even lower than 10% for the polluted cases, indicating a low forecast accuracy.
Regardless of the forecast lead time, the false-alarm rates (FAR) for PM10 and PM2.5 were
higher than 80% and 60%, respectively. In addition, no systematic changes in HR or FAR
accuracy of the NoDA forecasts were observed with an increase in forecast lead time,
implying that the forecast skill is almost insignificant. On the other hand, both DA and
BiasC forecasts exhibited systematic changes with a decrease in HR and an increase in
FAR over time, as the influence of initial conditions on the forecast diminished. Overall,
DA forecasts showed significantly improved forecast performance compared with NoDA
because of the improvement in initial conditions due to data assimilation. However, this
indicated a poor HR of less than 50% for the polluted cases for PM10, although the PM2.5
forecasts performed slightly better. The BiasC forecasts improved the accuracy in all cases
compared with the DA forecasts. The bias correction particularly improved the PM2.5
forecasts for the polluted cases, with a HR higher than 50% for the 6 h forecast.
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Figure 12. Categorical forecast accuracy for NoDA, DA, and BiasC for PM10 (left) and PM2.5 (right)
as measured by (a) the hit rate (HR), (b) HR for the polluted cases, and (c) false-alarm rate, (d) Heidke
Skill Score (HSS), and (e) HSS for the polluted cases. The color bars indicate the accuracy after 6 h
(red), 12 h (orange), and 24 h (blue) after initialization. The polluted cases are those when the PM10

(PM2.5) concentration is above 80 (35) µg m−3.

Note that BiasC increases HR and FAR. As shown in Figure 12, the DA forecasts
generally underestimated the observed high concentration values. False alarms can also
occur when high concentration forecasts increase because of bias correction. In this regard,
the comparison of HSS can be more objective while comparing the forecast performance, as
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it considers both the accuracy and false alarms. The HSSs were close to zero for all forecast
lead times in the NoDA forecasts, which indicates poor forecasting accuracy. When data
assimilation was applied to initialize the forecast model, the HSS for forecasts increased to
0.37 for 6 h forecasts and remained above 0.2 until the 24 h forecasts for PM10 (Figure 12d).
The HSS for PM2.5 was slightly higher than that for PM10. The DA forecasts maintained
comparable HSS for the polluted cases, with a greater improvement in PM2.5. The bias
correction of the DA forecasts contributed to an increase in HSS for all forecast lead times
and for both PM10 and PM2.5. In particular, the HSS from the BiasC forecasts maintained
a HSS above 0.4 up to 24 h in the polluted PM2.5 cases. The results suggest that even a
simple bias correction of the forecast outputs can substantially increase the prediction skill,
in addition to the proper initialization of the numerical forecast model by the DA.

4. Discussion

This study clearly shows that the assimilation of satellite and ground-based data
for use in numerical air quality forecasting models can significantly improve surface PM
forecasts. However, its beneficial impact lasts for a few hours from the start of the forecast,
and then tends to gradually decrease due to forecast biases. Specifically, the 24 h forecasts by
the current model present a lower concentration than those observed, thereby limiting the
accuracy beyond a day, particularly for polluted cases. This study attempted a simple bias
correction method to help reduce the underestimation bias, but the hit rate for the polluted
cases remained less than 50% after 24 h of forecast. This problem represents the fundamental
difficulty in state-of-the-art air quality forecasting systems. In our study, the systematic
biases of the model forecasts also varied according to seasons, and the developed model
showed a pronounced seasonal variation in the quality of aerosol analysis and forecast
accuracy. Therefore, systematic model biases should be carefully understood by rigorously
testing the model under various conditions and examining the baseline representation of
the formation, transport, and deposition of major aerosol species.

A few deficiencies were identified for this specific model in our examination of the
seasonal dependence of the forecast performance. The model forecasts were especially
poor in spring, when natural dust transport prevails in East Asia. The current natural dust
scheme implemented in GOCART is based on Ginoux et al. [62], and parameterizes the dust
emission flux with surface wind and topographical complexity. Considering its significant
contribution in spring, the parameterization uncertainty should be carefully examined
using comprehensive observational and independent reanalysis data. In particular, the
sensitivity of dust emissions to meteorological forcing should be investigated. The current
study specified the forecasted meteorological fields using the Korea Meteorological Ad-
ministration unified model, which is not likely to be accurate because of weather forecast
errors. In our preliminary test, the model showed reduced dust emissions and weaker
long-range transport when we specified atmospheric reanalysis data instead of unified
model forecasts.

Another deficiency of the GOCART scheme is that secondary aerosol formation is not
considered despite its importance in Northeast Asia. In particular, secondary nitrate aerosol
formation, known for its importance in major cities in Korea [63], was not represented
in the scheme. Sensitivity experiments concerning aerosol schemes, particularly in the
context of secondary aerosol formation, are underway, using other schemes that consider
secondary aerosols in more detail, such as MADE/VBS [64].

Finally, there is a substantial uncertainty in the current anthropogenic emissions,
which should be specified in the model. The current system uses EDGAR-HTAP data
based on the inventory archived in 2010. This is obviously outdated, considering the strong
countermeasures against anthropogenic emissions in recent years in Korea and China.
However, when this study tested other emission data with an updated emission inventory
in Northeast Asia in 2015, the results did not change significantly. Bottom-up emission
data may contain substantial uncertainties, the reliability of which should be quantitatively
discussed using inverse modeling techniques suggested in recent studies [65].
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5. Conclusions

In this study, an aerosol data assimilation system was developed which assimilates
satellite AODs from MODIS and GOCI and ground-based PM10 and PM2.5 observations
in Northeast Asia. The WRF-Chem model with interactive meteorology and chemistry
simulates the entire domain with a horizontal resolution of 27 km, covering China, Korea,
and Japan, with a nested domain over South Korea at a finer resolution of 9 km. The data
assimilation used the 3D-VAR method applied every 6 h to enable aerosol analysis, and the
impacts of aerosol data assimilation on the forecast skill for up to 24 h were evaluated for
all seasons by conducting data assimilation and forecasting experiments in January, April,
July, and October 2017.

Without aerosol data assimilation, the baseline forecasts (NoDA) showed a large
discrepancy from the observed PM10 and PM2.5 variations in time and space. They also
provided poor initial conditions for the forecasting model, which substantially degraded
the forecasting accuracy. Data assimilation with satellite and ground-based observations
significantly improved surface PM10 and PM2.5 analyses with a higher correlation with the
observed data than that in the case without data assimilation. It also showed beneficial
impacts on the PM10 and PM2.5 forecasts over South Korea up to 24 h from the initial
state. This study also highlighted that the analysis quality improvement induced by data
assimilation varied significantly depending on the season, resulting in seasonal forecast
accuracy changes. As the dominant aerosol species and prevailing atmospheric circulation
differ across seasons, data assimilation and forecast quality showed distinctive seasonal
variations. Specifically, the forecast accuracy was significantly degraded in spring, pre-
sumably because of the poor initialization of natural dust. The model performed better in
winter when anthropogenic sources were dominant.

As the DA forecast progressed over time, its accuracy tended to decrease due to the
systematic model bias. Current WRF-Chem forecasts with DA significantly underestimate
both PM10 and PM2.5 concentrations. Simple bias correction (BiasC) in the mean and
standard deviation of the DA forecasts provided better agreement with the observed
distributions of PM10 and PM2.5 concentrations. The bias-corrected forecasts improved the
accuracy in the total and polluted cases compared to the DA forecasts. They particularly
improved PM2.5 forecasts for polluted cases with a HR higher than 50% for the 6 h forecast.
The bias correction of the DA forecasts also improved the HSS for all forecast lead times. In
particular, the HSS after bias correction maintained a value above 0.4 for up to 24 h in the
polluted cases for PM2.5. The HSS increased by 37% through data assimilation and further
improved by 10% through bias correction.
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