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Abstract: Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder
(MHS) data have been widely assimilated in operational forecasting systems. However, effective
distinction between cloudy and clear-sky data is still an essential prerequisite for the assimilation of
microwave observations. Cloud detection over the Tibetan Plateau has long been a challenge owing
to the influence of low temperatures, terrain height, surface vegetation, and inaccurate background
fields. Based on the variations in the response characteristics of different channels of AMSU-A to
clouds, five AMSU-A window and low-peaking channels (channels 1–4 and 15) are chosen to establish
a cloud detection index. Combined with the existing MHS cloud detection index, a cloud detection
scheme over the Tibetan Plateau is proposed. Referring to VISSR-II (Stretched Visible and Infrared
Spin Scan Radiometer-II) and CALIPSO (The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation) cloud classification products, the detection rate of cloudy data and the rejection rate of
clear-sky data under different cloud index thresholds are evaluated. Results show that the new cloud
detection scheme can identify more than 80% of cloudy data on average, but this decreases to 72% for
area with terrain higher than 5 km, and the false deletion rate remains stable at 45%. The detection
rates of mixed clouds and cumulonimbus are higher than 90%, but it is lower than 50% for altostratus
with an altitude of about 7–8 km. Comparative analysis shows that the new method is more suitable for
areas with terrain higher than 700 m. Based on the cloud detection results, the effects of terrain height
on the characteristics of observation error and bias are also discussed for AMSU-A channels 5 and 6.

Keywords: AMSU-A; MHS; Tibetan Plateau; cloud detection

1. Introduction

The Tibetan Plateau is a sensitive area in terms of global climate, and its surroundings
also serve as a key precursor-signal area regarding the occurrence of major disastrous
events in China. Therefore, meteorological research in the Tibetan Plateau region is of
critical importance. Multiple reanalysis datasets provide spatial and temporal continuity
for studying the characteristics of changes in weather and climate over the Tibetan Plateau.
However, from the numerous results published on the applicability of reanalysis data to
the Tibetan Plateau, it can be seen that, although reanalysis data incorporate many ground-
based and airborne observations, the errors of these reanalysis data are still significantly
higher in the Tibetan Plateau region than in surrounding areas [1–10]; plus, there are
considerable differences among different reanalysis datasets, and no single reanalysis
dataset can generally be regarded as better than other data sources.
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As a sensitive region for weather forecasting in China, the accuracy of the initial field
in numerical models in the Tibetan Plateau region inevitably affects the level of numerical
forecasting of high-impact catastrophic weather in the downstream region of the plateau. In
the 1990s, Eyre et al. directly assimilated the data from satellite-based vertical atmospheric
sounders within the framework of variational data assimilation, which led to a new era
of applying satellite data in numerical forecasting [11,12]. This helped to address the
problem of a lack of observational data in data assimilation studies, and the assimilation
of various types of satellite observations has since significantly improved the accuracy of
the initial field in numerical forecasting. Among many types of satellite data that have
been assimilated, microwave-sounding data have the longest history, and specifically,
AMSU-A (Advanced Microwave Sounding Unit-A) data have become the most influential
microwave-sounding observations in all operational forecasting systems [13–15]. However,
the improvement and extended application of assimilation techniques for microwave-
sounding data is still a key priority in assimilation research. Currently, such research
focuses on developing more detailed quality-control methods [16,17], how to assimilate
microwave-sounding surface channels [18–20], and assimilation techniques for satellite data
in cloudy areas [21–24]. This latter topic is aimed at quantitatively assessing the variability
of the simulation bias in cloudy areas and clarifying the error covariance characteristics of
the fast radiative transfer pattern in cloudy areas, which is one of the main difficulties in
the assimilation of microwave-sounding data in cloudy areas [25–28].

Since satellites observe the Earth from outer space, AMSU-A can penetrate non-
precipitating clouds, but the instrument is still inevitably affected by cloud radiation,
scattering, and reflection of cloud radiation to the ground surface. Therefore, scientists have
developed different assimilation methods for clear-sky data and cloudy data. However,
first, for both cloudy and clear-sky data assimilation, it is necessary to effectively distinguish
between cloudy and clear-sky data, so an efficient cloud detection method is very important
toward improving the assimilation of AMSU-A data.

Over ocean areas, since the surface emissivity of the ocean surface is significantly lower
than that of clouds, various cloud parameter inversion algorithms have been developed
to perform cloud detection based on the inversion results [29–31]. However, the situation
over land areas is more complicated. The surface emissivity of the land surface is closer to
that of clouds, making it difficult to determine whether anomalous changes in the observed
brightness temperature (BT) are caused by surface emissivity or by clouds. Several major
previously developed cloud detection methods for microwave sounding data over land are
given in Table 1. Scientists developed many empirical statistical methods for AMSU-A and
MHS (Microwave Humidity Sounder) cloud detection methods over land areas [32–35],
but these approaches demand background field information, and the detection results are
highly dependent on the accuracy of the pattern background field. Moreover, it is difficult
to obtain accurate model background fields for the Tibetan Plateau region, where short-term
convective systems are prevalent. Aires et al. [36] used the MSG-SEVIRI (Meteosat Second
Generation–Spinning Enhanced Visible and Infrared Imager) cloud product as a reference
to train AMSU-A/B observations with a neural network algorithm and proposed a land
and ocean cloud classification method. Neural network algorithms rely on a vast number
of accurately labeled datasets to train microwave information. This method is prone to
overfitting and increases the computational burden, leading to poor feasibility in business
applications. Given the low accuracy of the model simulation of BT, many scientists
have proposed various schemes to invert the surface temperature and surface emissivity,
which have markedly improved the clear-sky assimilation of terrestrial observations [37,38].
However, most of these schemes rely on cloud inversion products from other satellite-based
instruments (e.g., MODIS cloud). Thus, in summary, how to eliminate the influence of
surface emissivity in cloud detection remains one of the key challenges in research on
terrestrial cloud detection by AMSU-A and MHS.

In the Tibetan Plateau region, with its high altitude, the process of cloud detection also
faces the influence of several other problems, such as the lower surface temperature and
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ground snow, resulting in more-complicated variations in surface emissivity. Moreover,
short-term convective systems are commonplace in the Tibetan Plateau region, which
requires the development of fast cloud detection algorithms that only depend on satellite
observations. Wu et al. [39] developed an AMSU-A cloud index for the plain area based on
the differences in the response characteristics of different channels of AMSU-A to clouds
and selected five AMSU-A windows and low-peaking channels (channels 15 and 1–4).
The results showed that the AMSU-A cloud index can detect most convective clouds but
misses cirrus and some cirrostratus clouds; however, after adding the matched MHS cloud
index, most of the clouds missed by the AMSU-A index could be compensated for. The
new method only depends on the observation data, which can well avoid the influence
of background field error on the cloud detection method. Using the data of a single
observation point can well eliminate the influence of surface emissivity, which is difficult to
estimate accurately. The calculation is simple and efficient and also ensures that the method
can effectively meet the needs of data assimilation. Therefore, this method has a good
application prospect in the study of plateau data assimilation. However, the effectiveness of
this cloud detection method in areas with low surface temperatures, such as high latitudes
or glacial surfaces, was not evaluated. Accordingly, this paper attempts to apply the cloud
detection method to the Tibetan Plateau region to test the effectiveness of the AMSU-A
cloud detection index over the Tibetan Plateau region. Based on the accurate identification
of clear-sky data, the error and bias characteristics of the AMSU-A mid-peaking channels
in the Tibetan Plateau region are evaluated for different surface types and terrain heights,
and a foundation is laid for establishing a more effective bias-correction scheme.

The structure of the paper is as follows: Following this introduction, Section 2 in-
troduces the study area and data; Section 3 describes the cloud detection method for the
Tibetan Plateau region; Section 4 assesses the cloud detection results and evaluates the error
and bias characteristics of the AMSU-A mid-peaking channels under clear-sky conditions;
and Section 5 provides a summary and some further discussion.

Table 1. Similar cloud detection techniques and main parameters.

Author Ferraro et al. [35] Bennartz et al. [32] Geer et al. [40] Aires et al. [36]

Region The West Coast of the
United States The Baltic region 60◦N to 60◦S 120◦W–60◦E

50◦N–50◦S

Method

BTs differences
between AMSU-A
channel 1 and 15 and
between AMSU-B
channel 1 and 2.

BTs differences
between AMSU-A
channel 1 and AMSU-B
channel 2.

Differences between
the observed (O) and
simulated (B) BTs of
AMSU-A channel 4.

Relationship between
the cloud product and
observed BTs of all of
AMSU-A/B channels

Application AMSU-A/B AMSU-A/B AMSU-A AMSU-A/B

Other
Supplementary Data

A monthly rainfall
climatology [41] based
on 11 years of SSM/I
measurements
(1987–1998)

None Simulated BTs

MSG-SEVIRI (Meteosat
Third
Generation–Spinning
Enhanced Visible and
Infrared Imager)

Surface
Classification Land only Different for ocean,

land, and coast
Different for ocean
and land

Different for ocean
and land

2. Materials
2.1. Study Area

The Tibetan Plateau, often referred to as the “roof of the world”, is the largest plateau
in China and the highest in the world. It is located south of the Himalayas, north of the
Kunlun and Altun Mountains, west of the Pamir Plateau, east of the Qinling Mountains,
and connects with the Loess Plateau. Its length is ~2800 km, its width is ~300–1500 km,
and the total area is ~2.5 million km2. According to the terrain, it can be divided into
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six parts: Qiangtang Plateau, Southern Tibet Valley, Qaidam Basin, Qilian Mountains,
Qinghai Plateau, and Sichuan–Tibet Plateau Valley. It is an important task to study and
monitor the meteorology of the Tibetan Plateau. In this paper, the Tibetan Plateau and
the nearby highlands above 500 m were selected as the study area, in order to maintain
topographic coherence; scattered regions located north of 35◦N that were lower than 500 m
were also included as the study area. The topographic distribution of the study area is given
in Figure 1, and the elevation data were 2-Minute Gridded Global Relief Data (ETOPO2) v2
from the NCEI (National Centers for Environmental Information).

Figure 1. Topographical map of the study area.

2.2. AMSU-A and MHS

In this paper, the observed BTs of AMSU-A and MHS carried by NOAA19 were taken
as the study data, and the time range was from August 1 to 31, 2019. The NOAA-19
satellite was launched on 6 February 2009 aboard the Delta-2 launch vehicle 7320-10C from
Vandenberg Air Force Base Launch Complex 2. NOAA-19 carries a range of instruments
that provide data for climate and weather prediction. Similar to previous satellites in
the series, NOAA-19 provides global images of cloud and surface characteristics and the
vertical distribution of atmospheric temperature and humidity for application in numerical
prediction models of weather and oceans. In addition, the distribution of ozone in the
upper atmosphere and near-Earth space is also measured, which is crucial in the fields of
oceanography, aviation, power generation, and agriculture. This paper makes use of data
from the AMSU-A and MHS instruments onboard NOAA-19. Table 2 details each channel
of AMSU-A and MHS.

AMSU-A has 15 channels: channels 1, 2, 3, and 15 are four window channels corre-
sponding to 23.8, 31.4, 50.30, and 89.0 GHz, respectively, mainly used for detecting rain
clouds and providing surface temperature and emissivity information; channels 4–14 are
11 oxygen absorption channels with a frequency distribution of 50–60 GHz, used for detect-
ing atmospheric temperature profiles from the troposphere to the stratosphere. MHS has
five channels: channels 1 and 2 are two window channels (89 and 157 GHz), and channels
3–5 are three water vapor channels, corresponding to frequencies of around 181.3 GHz,
mainly observing water vapor and providing information on rain clouds in the lower and
middle troposphere, which are more sensitive to clouds, especially those with ice particles.
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Table 2. NOAA-19 AMSU-A and MHS channel characteristics.

Instrument Channel Central
Frequency (GHz) Polarization

Height of Peak
Energy

Contribution (hPa)
NE∆T (K)

AMSU-A

1 23.80 V Window 0.30
2 31.40 V Window 0.30
3 50.30 V Window 0.40
4 52.80 V 850 0.25
5 53.59 ± 0.115 H 700 0.25
6 54.40 H 400 0.25
7 54.94 V 270 0.25
8 55.50 H 180 0.25
9 f0 = 57.29 H 90 0.25
10 f0 ± 0.217 H 50 0.40
11 f0 ± 0.322 ± 0.048 H 25 0.40
12 f0 ± 0.322 ± 0.022 H 12 0.60
13 f0 ± 0.322 ± 0.010 H 5 0.80
14 f0 ± 0.322 ± 0.004 H 2 1.20
15 89.00 H Window 0.50

MHS

1 89.0 V Window 0.37
2 157.0 V Window 0.84
3 183.31 ± 1.0 V 300 1.06
4 183.31 ± 3.0 H 500 0.70
5 190.0 V 800 0.60

AMSU-A and MHS are both cross-orbit scans with sub-stellar point resolutions of
around 48 and 17 km, with the latter having approximately three times the resolution of
the former. In one scan line, there are 30 and 90 fields of view (FOVs), respectively, which
is comparable to one AMSU-A FOV translating to around nine MHS FOVs. The width of
AMSU-A is around 2226.8 km, whereas the width of MHS is approximately 2348 m. The
gap between the two widths is negligible when compared to the observation height of more
than 800 km, and similar widths can practically assure the overlap of the two FOVs under
different scanning angles. Moreover, both AMSU-A and MHS are installed on the same
polar-orbiting satellite. Thus, the time deviation between them is negligible, so the FOVs of
both are approximately overlapping.

2.3. VISSR-II Cloud Classification Product

In order to verify the effectiveness of the proposed cloud detection method, the cloud
product data of geostationary satellites were selected as the verification data. Specifically,
this paper selected the cloud classification products of the Stretched Visible and Infrared
Spin Scan Radiometer-II (VISSR-II), which is onboard China’s FengYun-2H satellite. VISSR-
II includes one visible light and four infrared channels, which can provide real-time cloud
images and dozens of remote-sensing products, such as atmospheric radiation, cloud wind,
and dust, thereby providing reference data for weather forecasting, disaster warning, envi-
ronmental monitoring, etc. It can also enrich the data sources for global numerical weather
forecasting. The spatial resolution of the cloud classification products is 5 km, and the
temporal resolution is 30 min. The cloud classification products are effective at identify-
ing cumulonimbus, stratocumulus, mid-height cloud, cirrus, and other cloud types with
meteorological significance. Table 3 describes the VISSR- II cloud classification products.

Because of the differences in the temporal and spatial resolution of the observed BT
of AMSU-A and cloud classification products of VISSR-II, it is necessary to match the two
in time and space. Cloud types, unlike air pressure and temperature, are not continuous,
and there is, frequently, more than one type of cloud in the same AMSU-A FOV. As a
result, the cloud type that occurs the most in a scanned AMSU-A FOV was selected as the
representative cloud type for this FOV, and the diameter of the FOV was chosen as 25 km
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based on the size of the scanned AMSU-A FOV. In terms of time, the closest time between
the two observations was selected, and the maximum time error was within 3 h to ensure
that the cloud system did not change dramatically within the time error. From Figure 2a,b,
it can be seen that the matching method only ignored some broken clouds in the clear-sky
area, and the main cloud systems were well matched.

Table 3. Description of 2VISSR-II cloud classification products.

Cloud Class Definition Cloud Abbreviation

Clear ocean Clear
Clear land Clear

Mixed pixels Mixed
Nimbostratus or altostratus Ns and As

Cirrostratus Cs
Cirrus dens Ci

Cumulonimbus Cb
Stratocumulus or altocumulus Sc and Ac

Figure 2. The (a) VISSR-II cloud classification products, (b) matched cloud classification products,
and (c) spatial distribution of O−B (unit: K) of AMSU-A channel 3 over the Tibetan Plateau region at
1200 UTC 12 August 2019.

2.4. CALIPSO LIDAR Level 2 Version 4.2, 1 km Cloud Layer

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is
an Earth-observing satellite project initiated and executed by NASA’s Langley Research
Center and the National Space Research Center of France in 2006. It orbits the Earth
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at 705 km altitude, 1.55◦, and 96 min orbital parameters, respectively, for 16 days to
retrieve data on a three-dimensional distribution of the cloud and aerosol layers around the
globe [42]. The CALIOP lidar is a key instrument of the CALIPSO satellite as it provides
polarization backscattering vertical profile data for clouds and aerosols between south and
north latitude 82◦ on a 532 nm channel and attenuation scattering vertical profile data
on a 1064 nm channel [43,44]. CALIOP can be used to accurately reconstruct the vertical
distribution of clouds and aerosols as well as to quantify their size, irregularity, and type of
aerosol particles, by considering vertically resolved backscattering coefficients with high
resolution. This study used the CALIPSO LIDAR Level 2 Version 4.2, 1 km Cloud Layer
and matched it to AMSU-A using the same space–time matching method as the VISSR-II
Cloud Classification Product.

3. Methods

This study used the Community Radiative Transfer Model (CRTM) developed by the
Joint Center for Satellite Data Assimilation to simulate the BT of each channel of AMSU-A,
with FNL (final analysis) data as the background field, and the NPOESS (National Polar-
orbiting Operational Environmental Satellite System) dataset as the land-surface type of
each FOV. The BT of each channel of AMSU-A was simulated against the background
of clear-sky conditions, and the distribution of the difference between the observed and
simulated BT (O–B) of each channel was calculated. Affected by the scattering and ab-
sorption properties of water and ice particles within the clouds, the irradiance emitted
from the surface is weakened to different degrees when passing through clouds, while the
surface emissivity is generally around 0.9, which is significantly higher than that of clouds,
resulting in the irradiance received by the satellite in cloudy regions being significantly
lower than the simulated clear-sky irradiance. As a result, the O−B in cloudy regions will
show negative values but with large absolute values. Comparing Figure 2a,c, it can be seen
that, over the Tibetan Plateau region, the O–B of window channel 3 did not show negative
values with large absolute values over the cloudy region, nor did it show significantly
smaller absolute values over the clear-sky region. This was because the simulation error of
the model was substantial over the plateau region, due to many complex factors such as
surface temperature and vegetation type. Therefore, cloud detection methods that depend
heavily on the accuracy of the background field information are not applicable over the
plateau region.

Although microwave radiation can penetrate non-precipitating clouds, the radiation
from clouds and the scattering and reflection of ground-based radiation from clouds still
have a significant effect on the observed BT of AMSU-A. The frequency of each channel
of AMSU-A is different, and therefore, the response of each channel to clouds also differs.
In the window channels of AMSU-A, the weighting function peak heights are located at
the ground, and the observed radiation intensity of the channels depends mainly on the
surface emitted radiation, that is, it depends mainly on the surface temperature and is
affected by both the surface emissivity and atmospheric transmittance. For deep cloud
systems, when the peaking height of the channel’s weighting function is lower than the
height of the cloud top, the observed radiation intensity of the channel mainly comes from
the thermal radiation of the cloud itself, so these channels mainly detect the information of
the cloud top.

The window channels of AMSU-A are more sensitive to the presence of clouds and
precipitation [45]. In areas where convection is strong, the water content in the cloud is
high, and other solid precipitation particles may exist. Due to the strong scattering and low
emissivity of the cloud, the observed BT in cloudy areas will be significantly reduced. As
shown in Figure 3a–e, in the cloudy area, the observed BTs of AMSU-A channels showed
obvious low-value centers. Based on the different responses of channel 15 and channel 3
to clouds (channel 15 responds more strongly than channel 3), Wu et al. [39] selected five
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low-peaking channels (channels 1–4 and 15) of AMSU-A to construct an AMSU-A cloud
index, and the AMSU-A cloud index was defined as follows:

Aindex =
Tnormalized

b,3

1
10×e(

Tb,15−200
50 )

;

Tnormalized
b,3 =

Tb,3−µ
σ ;

µ = 1
5

5
∑

i=1
Tb,i, σ =

√
1
5

5
∑

i=1
(Tb,i − µ)2.

(1)

where Tb,i is the observed BT of the ith channel of the five channels 1–4 and 15 of AMSU-A.

Figure 3. Spatial distribution of the observed BT of AMSU-A (a) channel 15 and (b–e) channels 1–4
(unit: K) over the Tibetan Plateau region at 1200 UTC 12 August 2019.

Comparing Figure 3a,e, it can be seen that the observed BT of AMSU-A channel 15
was significantly lower than that of channel 3 over the cloudy region, indicating that the
sensitivity of channel 15 to clouds was also stronger than that of channel 3 over the Tibetan
Plateau region, meaning this AMSU-A cloud index is also applicable to the Tibetan Plateau
region. Wu et al. [39] showed that the AMSU-A cloud index can detect most of the deep
convective clouds but misses cirrus and some cirrostratus clouds; however, after adding
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the matched MHS cloud index, most of the clouds missed by the AMSU-A cloud index
could be compensated for, and most of the cloudy observations could be eliminated. The
MHS cloud index is not easily affected by the low temperature of the plateau but reflects
more of the water vapor change. Thus, the MHS cloud index can still play an important
role over the Tibetan Plateau region. Referring to the study of Wu et al. [39], this paper
attempted to use the AMSU-A cloud index and MHS cloud index for cloud detection over
the Tibetan Plateau region. The MHS cloud index is defined as follows:

Mindex =
Tnormalized

b,1

1
2×
(

Tb,2
100 −1

)3 ;

Tnormalized
b,1 =

Tb,1−µ
σ ;

µ = 1
5

5
∑

i=1
Tb,i, σ =

√
1
5

5
∑

i=1
(Tb,i − µ)2.

(2)

where Tb,i is the observed BT of the ith channel of the five channels, 1–5, of MHS. The
MHS cloud index was matched to the FOV of AMSU-A according to the instrumental
characteristics of one MHS FOV corresponding to nine AMSU-A FOVs.

Figure 4 shows the cloudy and clear-sky areas identified based on the old thresholds
of the two cloud indices. It is clear that the old thresholds were not effective in detecting
clouds over the Tibetan Plateau region. The AMSU-A cloud index was established by the
BTs of the window and low-peaking channels. The overall temperature of the Tibetan
Plateau region is significantly lower than that of the plains; thus, the observed BT of channel
15 in the denominator of the AMSU-A cloud index is also significantly lower. However,
the numerator of the AMSU-A cloud index (the normalized observed BT of channel 3)
does not differ significantly between the plains and the plateau region. Therefore, it
is the low temperature in the Tibetan plateau region that causes the old threshold to
become inapplicable and require modification. The MHS cloud index is barely affected
by the low temperature of the plateau, and the old threshold can still detect some cloud
systems, so only a small adjustment of the threshold of the MHS cloud index is needed.
Therefore, it is necessary to provide reasonable thresholds for the cloud indices based
on the practical circumstances of the plateau, and this study utilized the following two
quantitative assessment criteria for the threshold adjustment analysis:

Pd = Nd
Ncld × 100%;

Pclr = Nclrm
Nclr × 100%;

(3)

where Pd is the “detection rate”, i.e., the proportion of cloud data detected by the AMSU-A
and MHS cloud indices, Pclr is the “rejection rate”, i.e., the proportion of clear-sky data
rejected by both cloud indices, Nd represents the number of collocated FOVs determined
as cloudy by both the method and VISSR-II, Nclrm represents the number of collocated
FOVs classified as cloudy by the method but clear by VISSR-II, Ncld and Nclr represent the
number of collocated FOVs that are, respectively, identified as cloudy and clear by VISSR-II.

From Figure 5a, it can be seen that, as the two thresholds increased, the detection rate
and rejection rate decreased. The new thresholds need to meet the high detection rate and
low rejection rate. When the old threshold of 0.35 was used for the MHS cloud index, the
rejection rate exceeded 60%, while the detection rate was high (detection rate greater than
80%), resulting in too much clear-sky data being rejected. When the old threshold of 0.1
was used for the AMSU-A cloud index, the detection rate basically exceeded 80%, but the
rejection rate even exceeded 70%. In order to reduce the rejection rate, the MHS cloud index
threshold needs to be lowered and the AMSU-A cloud index threshold needs to be raised.
When the MHS cloud index threshold was reduced to 0.3 and the AMSU-A cloud index
threshold was increased to 1.0, the detection rate of cloudy data was 79.20%, which is close
to 80%; the rejection rate of clear-sky data was merely 46.57%. These thresholds can detect
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most of the cloudy data and reject only a small amount of the clear-sky data. If the MHS
cloud index threshold continued to be lowered, the rejection rate of clear-sky data became
higher with the same AMSU-A cloud index threshold. Similarly, when the MHS cloud
index threshold remained unchanged, continuing to increase the AMSU-A cloud index
threshold resulted in a lower detection rate of cloudy data. In summary, 0.3 and 1.0 were
chosen here as the new thresholds of the cloud indices, i.e., when the MHS cloud index >0.3
or the AMSU-A cloud index >1.0 in the FOV, the FOV was considered as a cloudy FOV.

Figure 4. Clear-sky FOVs (white circles) and cloudy FOVs detected by the AMSU-A cloud index
only (black circles), by the MHS cloud index only (blue circles), and by both cloud indices (black
dots) along with the matched VISSR-II cloud classification products at the same moment—1200 UTC
12 August 2019 (AMSU-A cloud index >0.10 or MHS cloud index >0.35 is the threshold to identify
cloudy FOVs).

Figure 5. Detection rate of cloudy data (contours) and rejection rate of clear-sky data (colors) with
(a) and without (b) channel 4 under different cloud index thresholds from 1 to 31 August 2019. The
horizontal axis is the threshold of the AMSU-A cloud index, and the vertical axis is the threshold of
the MHS cloud index.

Channel 4, an oxygen absorption channel, was also included here, and to demonstrate
the importance of channel 4 to the AMSU-A cloud index, we also calculated the index
without channel 4. Figure 5b shows the detection rate of cloudy data and the rejection
rate of clear sky data without channel 4. Comparing Figure 5a,b, it can be found that
when the MHS index was greater than 0.4, that is, the MHS index has little detection effect,



Remote Sens. 2022, 14, 2116 11 of 17

if channel 4 were included, the detection effect basically did not change with the MHS
index. However, if we did not include channel 4, the detection effect rapidly decreased
with the increase of the MHS index threshold, which means that removing channel 4 will
significantly reduce the independent detection ability of the AMSU-A index. Therefore, it
was necessary to include channel 4 in the calculation of the AMSU-A cloud index.

4. Results
4.1. Effectiveness of the Cloud Detection Method

From Figure 6a,b, it can be seen that the AMSU-A cloud index can detect most of
the cloudy areas—for instance, in Figure 6a, the banded deep convective cloud system
over the southern part of the central Tibetan Plateau and the stratiform cloud system over
the west; and in Figure 6b, the deep convective cloud system over the central Tibetan
Plateau and north of the plateau. However, the AMSU-A cloud index also had some missed
detections—for example, the cumulus clouds at the edge of the cloud system are clearly
missed. However, the addition of the MHS cloud index made up for the missing detection
of the AMSU-A cloud index. As shown in Figure 6a, the cumulus clouds scattered to the
north of the Tianshan Mountains and the southern Tarim Basin, and the cumulonimbus
clouds in the southern Himalayas; and in Figure 6b, the stratocumulus and high cumulus
clouds distributed near the Qilian Mountains, north of the Tianshan Mountains, and in the
southern Himalayas, were all detected by the MHS cloud index. In both cases, the detection
rate of cloudy data surpassed 80%, the rejection rate of clear-sky data was around 40%, and
the cloud index detection was reliable. It is, therefore, demonstrated that, with the new
threshold, the AMSU-A cloud index and MHS cloud index can detect major cloudy data,
and the structure and edges of the cloud system can be detected more accurately.

Figure 6. Clear-sky FOVs (white circles) and cloudy FOVs detected by the AMSU-A cloud index (black
circles) and MHS cloud index (blue circles), along with the matched VISSR-II cloud classification
products at the same moment: (a) 1200 UTC 12 August; (b) 0000 UTC 16 August (AMSU-A cloud
index >1.00 or MHS cloud index >0.30 is the threshold to identify cloudy FOVs).

Table 4 shows the detection rates of different cloud types over the study area in
August 2019, and it can be seen from the figure that the detection rate of mixed clouds
was the largest with over 95%. These were followed by cumulonimbus, stratocumu-
lus/altocumulus, with detection rates of 92.3% and 85.8%, respectively. The cloud detection
method worked worst for cirrostratus, followed by cirrus, nimbostratus/altostratus. The
cirrostratus and cirrus clouds are mainly composed of ice crystals, the nimbostratus and
altostratus are mainly ice-water mixed clouds. Microwave radiation can easily bypass these
small ice particles, which may be the reason for the low effect of cloud detection.



Remote Sens. 2022, 14, 2116 12 of 17

Table 4. The detection rates of different cloud types over the study area in August 2019.

Cloud
Abbreviation Mixed Ns and As Cs Ci Cb Sc and Ac

Pd (%) 95.3 76.4 72.5 75.6 92.3 85.8

Figure 7 shows the cloud detection results of the new and old thresholds of the two
cloud indices above different topographic heights in East Asia during August 2019. It can
be seen that the rejection rate of the clear-sky data for the old threshold remained around
70% before the topographic height increased to 700 m. When the altitude was higher than
700 m, the rejection rate of the old threshold began to increase significantly, this proves that
the high detection rate of the old threshold was achieved by eliminating a large number
of useful data. On the contrary, the rejection rate of the new threshold remained stable
at about 45%. Although the detection rate of cloudy data decreased with the increase of
terrain height due to the fact that there mainly exist cloud types with lower detection rates,
such as cirrus, in high-terrain areas, especially the region above 5 km. From the above
statistical results, the new threshold may be more suitable for the observations in areas
with topographic height above 700 m.

Figure 7. Detection rate of cloudy data (solid curves) and rejection rate of clear-sky data (dashed
curves) for the new thresholds (black curves) and old thresholds (blue curves) above different
topographic heights in East Asia from 1 to 31 August 2019.

Figure 8 shows the detection of cloudy data at different cloud base altitudes and cloud
top altitudes over the study area in August 2019. As shown in Figure 8, the cloud indices
were generally effective in detecting low and high clouds but poor in detecting cloud types
with cloud base altitude and cloud top altitude located at 7–8 km, and the detection rates
were lower than 50%. The statistical results show that most of the clouds appearing at this
height were altostratus, which is mainly composed of ice crystals. The radiation in the
microwave band can easily bypass these small ice particles, resulting in low detection rate,
but it also shows that these clouds may not significantly affect the observed BTs of those
microwave channels, nor will they affect the assimilation application of these BTs.

4.2. Evaluation of Bias and Error Characteristics

Different from the pure cloud detection research, the cloud detection method proposed
in this paper mainly aimed to provide the assimilation system with fast and accurate clear
sky data in the process of data assimilation, so that the data assimilation system can correct
the bias effectively and set the appropriate observation error for the observation data. In
order to verify the effect of the cloud detection method, the bias and error characteristics of
clear-sky data identified by the new cloud detection method were also analyzed.
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Figure 8. The data count of cloudy data in the CALIPSO product (orange bar), and that detected
by the cloud index (bisque bar), red curves are for the detection rate of cloudy data varying with
(a) cloud base altitudes and (b) cloud top altitudes in August 2019.

The substantial increase in terrain height in the Tibetan Plateau region caused more
of the original high-altitude channels to become near-ground channels; plus, the simula-
tion error increased, and the characteristics of the increase in error also varied with the
difference in peak height of the weighting function and the terrain height. This required a
re-evaluation of the error and deviation characteristics of the observed and the simulated
BTs of different channels in the Tibetan Plateau region, providing a basis for establishing a
more effective topographic deviation revision scheme.

The BT is mainly affected by the surface emissivity, surface temperature, atmospheric
temperature, water vapor profile, various trace gases, and clouds. To minimize the effects
of surface emissivity and surface temperature, this study selected the mid-peaking channels
(channels 5 and 6) of AMSU- A for simulation error analysis. In addition to the influence of
clouds, terrain height and vegetation type are also major sources of AMSU-A simulation
errors. Therefore, this study analyzed the simulation error characteristics of each mid-
peaking channel of AMSU-A, for each vegetation type, at different terrain heights, based
on the accurate identification of clear-sky data.

This study used the NPOESS land surface classification scheme to determine the land
vegetation type of each FOV and selected the five vegetation types with the largest number
of observed samples in the study area—namely, grass, sand, pine forest, broadleaf pine
forest, and scrub—while other vegetation types were not considered because of the small
number of observed samples. The highest elevation of the samples in the study area was
around 5800 m, and the topographic heights of the samples were classified into 500–1000,
1000–2000, 2000–3000, 3000–4000, 4000–5000, and above 5000 m. Observations with a
sample size of less than 100 in each classification were excluded.

From Figure 9a,b, it can be seen that the simulated BT deviations of both channels
were positive at all heights except 500–1000 m. In channel 5, the simulated BT deviation
was within 1.5 K for all vegetation types except pine forest distributed at 3000–4000 m. The
deviation of the simulated BT in channel 6 was relatively larger, and the deviation of the
simulated BT in pine forest distributed at 3000–4000 m was the largest, exceeding 4.0 K.
The deviation of the simulated BT in the remaining vegetation types was within 3.0 K. The
deviation of the simulated BT in the height range below 2000 m was within 1.0 K. The
deviation exhibited an increasing trend with increasing terrain height, especially when
the terrain height was higher than 2000 m. In the GSI (Gridpoint Statistical Interpolation)
assimilation system, the terrain height of 2000 m was also taken as the dividing line, and
different deviations and error coefficients were given to the observations above this height,
which is consistent with the findings of this paper [46].
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Figure 9. Histograms of (a,b) the average O−B and (c,d) standard deviation of clear-sky observations
for AMSU-A (a,c) channels 5 and (b,d) channel 6 for five vegetation types at different topographic
heights over the Tibetan Plateau region on 1–31 August 2019.

The standard deviation of the two channels’ O–B varied more obviously with terrain
height. The standard deviation of channel 5 increased remarkably with terrain height for
all vegetation types, but especially grass, and the standard deviation increased with terrain
height from 0.8 to 2.0 K. In contrast, the standard deviation of channel 6 was relatively
smaller, basically maintaining at around 1.0 K. Moreover, the standard deviation of channel
6 had a clear difference with terrain changes. The standard deviation did not show regular
changes for grass and scrub, but it appeared to increase with topography for both pine
forest and broadleaf pine forest. This also indicates that, despite the different observation
weights set in the GSI assimilation system with the height of 2000 m as the dividing line,
the actual assimilation may still need to be further adjusted according to the vegetation
type and topography to optimize the assimilation of AMSU-A data in plateau areas.

5. Discussion and Conclusions

Short-term convective systems are commonplace over the Tibetan Plateau, and the
spatial and temporal variability of surface emissivity is also influenced by factors such
as terrain height and surface type, meaning cloud detection using AMSU-A and MHS
data has been a challenging task in this region. In this paper, the cloud detection method
established by Wu et al. [39], which relies only on the observations by merging the AMSU-
A data and MHS data, was applied to the Tibetan Plateau region, but the original cloud
index thresholds led to severe over-detection due to the low surface temperature in the
Tibetan Plateau region. This study collected NOAA19 AMSU-A and MHS observations
continuously for one month and evaluated the detection rate of cloudy data and the rejection
rate of clear-sky data under different cloud index thresholds with reference to the VISSR-II
cloud classification product, to verify the new cloud index thresholds relatively objectively.
With the new thresholds, the AMSU-A and MHS cloud indices could distinguish more than
80% of cloudy data on average, but the detection rate decreased with the increase of terrain
height, and the detection rate was about 72% in the area of terrain higher than 5 km, but
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the false deletion rate basically did not change with the terrain height and remained stable
at about 45%.

Cases revealed that the AMSU-A cloud index identified most convective cloud systems
but missed the cumulus clouds obviously, the addition of the MHS cloud index compen-
sated for the missed detection by the AMSU-A cloud index. Result of the batch test showed
that the detection rates of mixed clouds and cumulonimbus were higher than 90%, but
the new thresholds had a low detection rate for cirrostratus owing to the fact that these
clouds are mainly composed of ice particles, which have little effect on microwaves. The
new thresholds performed much better than the old thresholds in areas where the terrain
height was higher than 700 m, so it is recommended to apply the new thresholds in areas
higher than 700 m.

With the accurate identification of clear-sky data, this study evaluated the error and
bias characteristics of the AMSU-A mid-peaking channels in the Tibetan Plateau region for
different vegetation types and terrain heights. The results demonstrated that the deviation
of simulated BT of channel 5 was basically within 1.5 K, and the standard deviation within
2 K. For the simulated BT of channel 6, the deviation is basically within 3 K, and the
standard deviation within 1 K. The deviations and standard deviations of the simulated
BT of the AMSU-A mid-peaking channels basically exhibited an increasing pattern with
increasing terrain height. Among the five vegetation types analyzed, the standard deviation
and deviation of the mid-peaking channels were found to be the smallest for sand and
the largest for pine forest at 3000–4000 m. For the standard deviation of the simulated BT,
channel 5 was larger for grass and broadleaf pine forest above 3000 m, and channel 6 was
largest for broadleaf pine forest at 3000–4000 m.

It is important to acknowledge that the present cloud detection method has a certain
limitation insofar as the experimental data were concentrated in summer, so the scheme
may generate bias in other seasons. In addition, this paper only studied the Tibetan Plateau
region, with no comprehensive analysis having been conducted yet for other high-terrain
regions. Therefore, more data from different seasons and regions are needed in subsequent
studies, considering the combined effects of each index. In terms of the capability of the
data, the new threshold of the cloud index was confirmed by referring to the VISSR-II cloud
classification product in this paper, but the time difference between the AMSU-A, MHS,
and VISSR-II instruments will also influence the test results. Furthermore, the validity of
the new cloud detection method needs to be examined by assimilation experiments.
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