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Abstract: To explore the fast, accurate, and efficient remote sensing identification method of cultivated
land quality, this study took Shandong Province as the study area, and used measured data to carry
out the soil quality evaluation based on conventional GIS. On this basis, MODIS sequence images
were used as remote sensing data sources, and multi-source data such as topography, meteorology,
and statistical yearbook were fused. Then, according to the Pressure-State-Response framework,
we constructed three kinds of characteristic indicators through distinguishing crop rotation types
and fusing remote sensing data. Finally, the soil quality grade was identified by the random forest
method, and the accuracy analysis was carried out. The results showed that the NDVI peak values
of double-season crops are in mid-April and mid-August, and one-season crops are in mid-August.
Through evaluation, soil quality was divided into three categories, with six grades. Through principal
component analysis, each soil status indicator contains two to three principal components, and
each principal component contains five to eight temporal crop remote sensing information. After
distinguishing crop rotation types and fusing remote sensing images, the identification accuracy
of soil quality is significantly improved. The overall accuracy is 79.18%, 86.12%, and 93.65%, and
the Kappa coefficient is 0.66, 0.77, and 0.90, respectively. This research developed an automatic
identification method for cultivated land quality grade, and it proved that distinguishing crop
rotation types and fusing multi-temporal crop remote sensing information are effective ways to
improve identification accuracy.

Keywords: soil quality; crop remote sensing; random forest; principal component analysis; Shandong
Province; China

1. Introduction

Cultivated land is the material basis for agricultural production [1]. Soil quality is
related to the ability of the cultivated land system to maintain biological productivity,
protect ecological environment quality and promote animal and plant health. It is essential
to ensure food security, protect biodiversity and maintain sustainable socio-economic de-
velopment [2,3]. At present, the quantity decline and quality degradation of cultivated land
resources have become a global problem. China is a country with a large population. It has
become the foundation of sustainable agricultural development to realize the sustainable
intensification of cultivated land and improve the soil quality [4,5]. Therefore, it is urgent
for agricultural production and sustainable development to scientifically evaluate soil
quality and give full play to the potential of cultivated land production.

Soil quality is a complex composed of physical, chemical, and biological environmental
characteristics, and a single soil attribute cannot directly reflect the overall soil quality.
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Its evaluation must consider the inherent properties, dynamic changes, soil processes,
and the interaction with the external environment. At the same time, it is required to
quickly and accurately identify the main limiting factors of crop production. Therefore,
soil quality evaluation is one of the research focuses of soil science [6,7]. At present, soil
quality evaluation has gradually developed from qualitative [8] to quantitative, and the
soil quality index method is the most widely used quantitative evaluation method. For
example, Andrews et al. [9], Xue et al. [10], and Nabiollahi et al. [11] combined multiple soil
properties into a comprehensive soil quality index at different scales and regions. However,
this method requires many field investigations and laboratory tests, and the repeated
observation period is long. Thus, it is difficult to achieve rapid evaluation and dynamic
monitoring of soil quality. How to simplify the evaluation process and realize the rapid
and accurate identification of soil quality has become a hot research topic.

Remote sensing data has the advantages of low cost, wide coverage, and strong period-
icity, making it an indispensable data source for soil quality information identification [12].
Studies have shown that near-infrared spectroscopy, which has a direct spectral response to
soil properties such as organic carbon and water content, is a sensitive spectral segment for
predicting soil quality [13]. Moreover, the multiple spectral combinations of visible light
and near-infrared can more accurately monitor soil’s physical, chemical, and biological
characteristics [14]. Based on this, many scholars have realized soil quality prediction by
using remote sensing images with different resolutions [15,16]. In addition, many scholars
extracted remote sensing spectral indicators from crops for growth monitoring and yield es-
timation, which is also a good reflection of soil quality [17,18]. Among them, the vegetation
index was widely used. For example, Dedeoğlu et al. [19] extracted the normalized different
vegetation index (NDVI), red-edge optimized soil-adjusted vegetation index (RE-OSAVI),
and red-edge modified chlorophyll absorption in reflectance index (REMCARI) from Sen-
tinel images to achieve the classification of soil productivity. Duan et al. [20] integrated
multi-source remote sensing data and created a cultivated land quality evaluation system
using the NDVI index. However, the assessment based on crop remote sensing can only
indirectly obtain soil quality status, ignoring the natural attributes and human impact of
cultivated land quality. A single data source leads to limited identification accuracy, so the
results lack explanatory power.

At present, many scholars try to apply multiple types of data to the soil evaluation field.
For example, Yang et al. [21] and Sciortino et al. [22] realized a land productivity assess-
ment by integrating thematic maps and remote sensing image data. Pullanagari et al. [23],
Liu et al. [24], and Binte Mostafiz et al. [25] fused with satellite indicators and topographic
indices to assess the soil quality of agricultural land. Shi et al. [26] considered human
activities and constructed an evaluation framework of cultivated land quality based on
resource-asset-capital attributes. In general, the soil quality evaluation based on multi-
source data had achieved good results. Still, the current research mostly used a linear
combination between single-temporal remote sensing data and other natural data to evalu-
ate the soil quality, which contains limited spectral information and ignores the influence of
human factors and the nonlinear characteristics of soil quality. It is rarely reported to realize
the automatic identification of soil quality grade by fusing multi-source and multi-temporal
data, which needs further research and exploration.

This paper took the Shandong Province as the study area, and aimed to use character-
istic variables derived from multi-source data to identify the soil quality information and
provide technical support for the utilization and management of cultivated land resources.
The specific objectives were to (1) fuse multi-source data based on the Pressure-State-
Response (P-S-R) framework to construct characteristic indicators and create a new and
automatic soil quality assessment system through the random forest algorithm; (2) analyze
the effect of rotation zoning based on crop maturity system on soil quality identification;
and (3) fuse remote sensing information through principal component analysis and analyze
the effect of multi-temporal remote sensing on soil quality identification.
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2. Materials and Methods
2.1. Study Area

According to the yearbook [27], Shandong Province is located in the eastern part
of mainland China, in the North China Plain (34◦23′–38◦24′N, 114◦48′–122◦42′E). It is
721.03 km from east to west and 437.28 km from north to south, with a total area of
155,800 square kilometers, and contains 16 cities and 137 counties (Figure 1). On the basis
of the Koppen-Geiger climate classification system, it has a cold climate with dry winter
and hot summer (DWA) class [28]. The annual average temperature is 11–14 ◦C. There are
sufficient light resources and the annual average light hours are 2290–2890 h. The annual
average precipitation is 550–959 mm, decreasing from southeast to northwest. Mountains
and hills account for about 29.98% of the province, and plains account for 65.56%. The
areas with a slope less than 2◦ are concentrated in the western plain of Shandong Province,
accounting for 71.02%. However, the central and eastern regions generally have higher
slopes, and the highest elevation is 1532.7 m. Based on the World Reference Base (WRB)
classification [29], fluvisols, leptosols, regosols and luvisols, alisols, and retisols are the
main soil types of cultivated land in Shandong Province. Luvisols, alisols, and retisols are
widely distributed in the eastern and central-southern hills of Shandong Province, and
fluvisols, leptosols, and regosols are mostly distributed in the western plain of Shandong
Province, showing a good regional distribution. The plough layer texture is mainly loam
and sandy loam, the soil texture profile is mainly loamy and intercalated clay soil, and
the plough layer is relatively deep. Shandong is a traditional agricultural province; the
cultivated land area is 7.59 million hectares. There is more cultivated land in the western
and northern plains, mainly irrigated land, and less cultivated land in the eastern and
southern hill areas, mainly dry land. It has a long farming history and high farmland
reclamation rate, a complete range of plant industries, and a wide variety of crops. The
crop maturity system is one to two crops a year, the double-season crop is mainly wheat
and corn, and the common one-season crop is cotton and peanut. According to statistics,
the cultivated land irrigation area is 5.191 million hectares in Shandong Province, the
power of agricultural machinery is 19.542 kW/ha, and the amount of chemical fertilizer is
847.621 kg NPK/ha. The intensity and level of cultivated land development and utilization
rank at the forefront of the country, belongs to intensive agricultural areas with high input
and high output, and the agricultural mechanization and modernization are high [30].
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2.2. Soil Sampling, Analysis, and Data Transformation

(1) Soil Sampling and Analysis

Related data come from the cultivated land quality grade evaluation project of Shan-
dong Province in 2017. Based on the principle of universality, representativeness, and
uniformity, we took the soil species as the basic unit and tried to select fields with similar
crop types. Then, soil sampling points were generally arranged according to the area of
each point is about 250 m × 250 m. At the same time, combined with geographical location
and utilization status, 9673 points were obtained in the end (Figure 1). After the harvest
of autumn crops, the field investigation was carried out simultaneously with the county
as the basic unit by the same soil sampling methods and test standards. Since farming,
fertilization, and other agricultural measures are often carried out in a certain direction.
To enhance the representativeness of mixed soil samples, 15–20 small soil sample points
were selected uniformly and randomly near the sampling points by the “S” route, and the
sampling depth was up to 20 cm. A measure of 1.5 kg soil samples were retained by multi-
point mixed sampling and quartile method, and the surrounding geographical location, soil
properties, farmland facilities, and other information were recorded simultaneously [31].

The soil samples collected in the field were dried, crushed, and sieved to pass a 2 mm sieve
and then analyzed in the laboratory. The test method was shown in Supplementary Table S1 in
Supplementary Materials. Then we used the pauta criterion (3σ criterion) to remove outliers,
and used the inverse distance weighted (IDW) method to interpolate to be consistent with
the resolution of remote sensing images. The IDW takes the distance between interpolation
points and sample points as the weight for the weighted average. The distance is closer,
the greater the weight given to sample points. This method has the advantages of simple
principle, fast calculation speed, intuition, and efficiency, so it is widely used in soil nutrient
interpolation [32].

(2) Basic Maps and Processing

At the same time, we collected and compiled basic maps related to cultivated land qual-
ity evaluation in Shandong Province. Such as soil maps, administrative maps, geomorphic
maps, irrigation zoning maps, etc. Relevant thematic maps were mainly compiled from the
survey results of Counties and Districts in Shandong Province, with a scale of 1:500,000. The
basic information of maps is shown in Supplementary Table S1 in Supplementary Materials.

We extracted the relevant information from basic maps and screened it through the Delphi
and hierarchical cluster methods. The evaluation factors are shown in Supplementary Table S1.
Among them, the hierarchical cluster method is used to screen quantitative indicators. By
clustering and merging similar indicators, it helps to select relatively independent leading
factors. Delphi method is used to screen qualitative indicators and determine the final
indicators according to the experience [33]. Then, the qualitative indicators were quantified
by the Delphi method, and interpolated by the IDW method to be consistent with the
resolution of remote sensing images.

2.3. Acquisition and Processing of Remote Sensing Images and Other Thematic Data

(1) Acquisition and Processing of Remote Sensing Images

Remote sensing data used a MOD13Q1 dataset of 16-day maximum synthesis from
LAADS DAAC (https://ladsweb.modaps.eosdis.nasa.gov, accessed on 1 January 2022),
with a spatial resolution is 250 m. A total of 23 images from 2017 to 2018 were used in
the study. In addition, the GlobeLand30 global surface cover data in 2020 were selected
from China National Geographic Information Center (http://www.globallandcover.com,
accessed on 1 January 2022) to assist in the extraction of cultivated land.

As for remote sensing data, the MODIS Reprojection Tool (version 4.1; https://lpdaac.
usgs.gov/tools/modis_reprojection_tool, the gdalwarp command from the Geospatial Data
Abstraction Library (GDAL) library might be preferred, accessed on 1 January 2022) was
used for image mosaic, band screening, and projection conversion. ArcGIS 10.2 software
(ESRI, Redlands, CA, USA) was used for image clipping, ENVI 5.1 software (Exelis Visual

https://ladsweb.modaps.eosdis.nasa.gov
http://www.globallandcover.com
https://lpdaac.usgs.gov/tools/modis_reprojection_tool
https://lpdaac.usgs.gov/tools/modis_reprojection_tool
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Information Solutions, Boulder, CO, USA) was used for band synthesis, HANTS method
was used for smoothing processing, and NDVI time series data were obtained for the
extraction of cultivated land.

(2) Acquisition and Processing of Thematic Data

Slope data were from the SRTMSLOPE product in Geospatial Data Cloud (http://
www.gscloud.cn, accessed on 15 January 2022). Precipitation and temperature data were
from China’s annal surface climatic data set in China Meteorological Data Network (http:
//data.cma.cn, accessed on 15 January 2022). Agricultural statistical data were obtained
from statistical yearbooks of cities and counties and statistical bulletins of national economic
and social development [27,30].

As for other thematic data, graphic processing was carried out first. The slope map
was obtained by cutting the slope product. In order to reduce the accidental error, as for
meteorological maps, we selected the average meteorological factors values of 121 stations
in the study area in recent five years (2015–2019) to interpolate by the IDW method. Addi-
tionally, for agricultural statistical maps, we linked each county’s average agricultural input
indicators in recent five years (2015–2019) to the vector map. Then quantify the thematic
map, in which the slope was reclassified and quantified according to relevant technical
regulations [31]. The meteorological and agricultural statistical maps were standardized
by the z-score method [34], and divided into five levels of “rich, relatively rich, medium,
relatively lacking, and lacking” by the equidistant method. The indicators were quantified
by the Delphi method, and then rasterized. Finally, the resolution of all raster images was
resampled to 250 m by the bilinear interpolation method.

2.4. Methods

This study introduced the P-S-R framework to construct soil quality characteristic
indicators fusing multi-source data and multi-temporal crop remote sensing information.
According to the acquisition of soil state indicators, it was divided into three types: no
distinction between crop cover types, distinction between crop cover types, and fusion of
multi-temporal data types. Training points of different grades were selected based on the
evaluation results, and the identification of cultivated land quality grades was realized by
the random forest method. The specific technical route is shown in Figure 2.

2.4.1. Cultivated Land Extraction Based on Remote Sensing

Based on the crop ripening system and spectral curve of ground objects in the study
area, the cultivated land was divided into one-season and double-season crop areas, and
sample points were arranged with the help of GlobeLand30 data and Google Earth images.
Through the random forest algorithm provided by ENMAP-BOX software (version 3.0,
EOC of DLR, Cologne, Germany) [35], the cultivated land information was extracted by
long time series MODIS-NDVI data, and the area extraction accuracy was analyzed by
statistical yearbook.

2.4.2. Soil Quality Evaluation Based on Geographic Information System (GIS)

Firstly, the weight (Ci) was determined by the analytic hierarchy process (AHP)
method. AHP is a decision-making method combining qualitative and quantitative, which
can be used to determine the weight of evaluation factors [36]. Secondly, the membership
function and membership degree (Fi) were determined by the Delphi method and fuzzy
statistical method. The fuzzy statistical method is a quantitative method based on the
membership degree theory of fuzzy mathematics, which can be used for the normalization
of indicators [2]. Thirdly, overlaying each indicator layer, the soil quality index (SQI)
was calculated by the Formula (1), and soil types were divided into high (grade 1 and 2),
medium (grade 3 and 4), and low (grade 5 and 6) by the natural breakpoint method [31,37].

SQI =
n

∑
i=1

(Ci × Fi); (1)

http://www.gscloud.cn
http://www.gscloud.cn
http://data.cma.cn
http://data.cma.cn
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where Ci represents the combined weight of the ith indicator, and Fi represents the mem-
bership degree of the ith indicator.
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2.4.3. Construction of Soil Quality Characteristic Indicators Based on P-S-R Framework

The Pressure-State-Response model, namely the P-S-R model, is suitable for analyzing
the relationship between environmental pressure, current situation, and response and land
assessment [38]. Based on the P-S-R framework theory, this study selected characteristic
indicators to construct the cultivated land quality evaluation system from the environmental
pressure, the existing quality status, and the behavior response of cultivated land users.

(1) Production Press Indicators

Production press indicators (PPI) were designed to reflect the natural endowment
and limiting factors of soil in the study area, mainly obtained from thematic maps. The
geomorphic types are complex, and the terrain fluctuates greatly in the study area. Slope
is an important factor limiting the development of soil quality. In addition, there are
significant differences in temperature and precipitation in the study area due to its vast
territory, which leads to spatial variation of soil quality to a certain extent. Therefore, slope,
annual mean precipitation, and annual mean temperature were selected as PPI.
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(2) Soil Status Indicators

Soil status indicators (SSI) were designed to reflect the soil fertility and degradation
risk in the study area, mainly obtained from remote sensing data. Normalized difference
vegetation index (NDVI) can reflect vegetation coverage and biomass, indirectly reflect soil
fertility, and can be used as a soil fertility indicator. Difference vegetation index (DVI) is
sensitive to water change and can reflect soil moisture, which can be used as a soil moisture
indicator. Ratio vegetation index (RVI) is sensitive to soil ecological environment stress
and can reflect the degree of soil degradation, which can be used as a soil degradation
indicator [39]. The specific description of indicators is shown in Table 1.

Table 1. Description of soil status indicators.

Indicators Expression Reference

Soil fertility indicator NDVI ρNIR−ρR
ρNIR+ρR

[39]Soil moisture indicator DVI ρNIR − ρR
Soil degradation indicator RVI ρNIR

ρR

Note: ρR and ρNIR are the red and near-infrared bands of MODIS data, respectively.

(3) Social Action Indicators

Social action indicators (SAI) were designed to reflect the agricultural input and
management level of soil in the study area, mainly obtained from statistical data. The input
of basic agricultural factors such as labor, agricultural machinery, irrigation equipment,
and fertilizer indirectly reflects decision-makers’ behavior response to cultivated land and
is an important human factor affecting soil quality.

This study constructed SAI based on statistical data of counties in recent five years
(2015–2019), including agricultural labor indicator (ALI), agricultural mechanization indica-
tor (AMI), agricultural irrigation indicator (AII), and agricultural fertilizer indicator (AFI).
They represent the average level of the rural labor resources, the total power of agricultural
machinery, the effective irrigated area, and the chemical fertilizer consumption. The specific
description of indicators is shown in Table 2.

Table 2. Description of social action indicators.

Indicators Expression Units Reference

ALI Rural labor resources
Total population %

[30]
AMI Total power o f agricultural machinery

Cultivated land area kW/ha

AII E f f ective irrigated area
Cultivated land area %

AFI Consumption o f chemical f ertilizer
Cultivated land area kg NPK/ha

Note: Total population refers to the total number of people alive at a certain point of time within a given area.
Cultivated land area refers to the area extracted by remote sensing. Rural labor resources refer to those who
can participate in production and business activities above working age in the rural population. Total power of
agricultural machinery refers to total mechanical power of machinery used in farming, forestry, animal husbandry,
and fishery. Effective irrigated area refers to cultivated area with some water sources, which is smooth, provided
with irrigation engineering or equipment and capable of normal irrigation in the latter half of general year.
Consumption of chemical fertilizer refers to the quantity of chemical fertilizers applied in agriculture in a year,
including nitrogenous fertilizer, phosphate fertilizer, potash fertilizer, and compound fertilizer, which is calculated
to convert the gross weight into weight containing 100% effective component.

2.4.4. Extraction of Soil Status Indicators under Three Situations

To distinguish the influence of crop remote sensing on soil quality grade identification
in different situations, this study divided SSI into three types: no distinction between crop
cover types, distinction between crop cover types, and fusion of multi-temporal data types.
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(1) No distinction between crop cover types (Method A)

It is composed of SSI in a single period. According to the time series curves of NDVI,
Synthetic period with the most abundant biomass was selected as the sensitive period
to highlight crop information and reflect the soil quality state more fully. The SSI was
constructed based on a single sensitive period of MODIS synthetic images.

(2) Distinction between crop cover types (Method B)

It is composed of SSI in two periods. The crop cover area was divided into one season
and double season crop areas according to the extraction results of cultivated land, and SSI
was constructed based on two sensitive period of MODIS synthetic images, respectively.

(3) Fusion of multi-temporal data types (Method C)

It is composed of SSI in multiple periods. Principal component analysis (PCA) is
a popular data dimension reduction method. It is a multivariate statistical method that
converts multiple variables into a few principal components under the premise of losing as
little information as possible [40]. This study took the county as the unit to calculate the
weighted average value of SSI and used the SSI at the sensitive period of MODIS synthetic
images as the baseline to conduct correlation analysis. The remote sensing images with
significant correlation and correlation coefficient greater than 0.3 were screened. After
that, we conducted KMO and Bartlett tests on the selected factors after correlation analysis.
When KMO is greater than 0.5 and the significant level of the Bartlett test is less than 0.05,
it is considered to pass the test [41]. Finally, the SSI fused with multi-temporal information
(MT-SSI) was constructed by PCA.

2.4.5. Identification of Soil Quality Grade Based on Multi-source Data

(1) Acquisition of Training Samples

The study area was divided into 10 km × 10 km grids, and the soil quality evaluation
grade based on GIS was extracted by the grid center point to obtain training points of
different grades.

(2) Identification of Soil Quality Grade

Based on training points and multi-source data in the above three situations, the
random forest classification method provided by ENMAP-BOX software was used to
identify the soil quality grade. The tree node (ntree) was set to 500, and the feature number
(mtry) was set to “square root”. The median filtering method (the convolution kernel size
was set to 5 × 5) was used for smoothing processing to enhance the classification effect and
eliminate salt and pepper noise.

(3) Verification of Identification Accuracy

By comparing the identification results based on multi-source data and the evaluation
results based on GIS, the spatial distribution accuracy was verified by comparing the spatial
distribution differences of soil types in different grades, and the area identification accuracy
was verified by comparing the area differences of soil types in different grades. The verifi-
cation point identification accuracy took the sample points of cultivated land extraction as
the verification points, the evaluation grade as the real data and the identification grade
as the classification data. Then the confusion matrix was constructed to calculate the user
accuracy (UA), producer accuracy (PA), overall Accuracy (OA), and Kappa coefficient to
analyze the identification accuracy of high-, medium-, and low-grade soil types.

3. Results and Analysis
3.1. The Results of Cultivated Land Information Extraction Based on Remote Sensing

Figure 3a shows the distribution of sample points and cultivated land extraction
results, the sample points include 179 one-season crop points and 275 double-season crop
points. The NDVI spectral curves of different ground objects are different (Figure 3b), in
which the double-season crop has typical bimodal characteristics, reaching the peak values
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in mid-April (point A) and mid-August (point B), respectively; the one-season crop is a
unimodal curve, peaked in mid-August (point C), and has a good distinction with other
ground objects. It has been verified that the extracted accuracy of cultivated land area is
87.75%. The one-season crop area is mainly distributed in the eastern and central-southern
hills of Shandong Province, and the double-season crop area is mainly concentrated in the
western plain of Shandong Province and Jiaolai Plain, which are widely distributed and
can better meet the research needs.
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and cultivated land; (b) NDVI spectral curves of different ground objects. Note: A and B are the
NDVI peaks of double-season crop, respectively, and C is the NDVI peak of one-season crop.

3.2. The Results of Soil Quality Evaluation Based on GIS

The descriptive statistical characteristics of soil quality evaluation indicators and
their weight values are shown in Supplementary Table S2 in Supplementary Materials.
According to the typical characteristics and agricultural background of the cultivated land
system in Shandong Province, six physical indicators, five chemical indicators, and two
biological and environmental indicators were selected. The evaluation results of cultivated
land quality are shown in Figure 4. The spatial distribution of different soil quality grades
is related mainly to topographic factors. The high grades are mostly distributed in the
northwestern plain of Shandong Province, Jiaolai Plain, and the southern part of the central
and southern hills of Shandong Province, the medium grades are mostly distributed in the
western plain of Shandong Province and Yellow River Delta, and the low grades are mostly
distributed in the central and southern hills of Shandong Province and Jiaodong hills.

3.3. Construction and Analysis of Soil Quality Characteristic Indicators
3.3.1. Construction Results of Soil Quality Indicators under Three Multi-Source
Data Situations

According to the NDVI spectral curves of one-season crops and double-season crops
(Figure 3b), point A (97–112 days, from April 7 to April 22) and point B (225–240 days, from
August 13 to August 28) are the two sensitive periods corresponding to double-season crops,
respectively, and point C (225–240 days, from August 13 to August 28) is the sensitive
period corresponding to one-season crops. Accordingly, the soil quality characteristic
indicators constructed under three different situations are shown in Table 3.
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Table 3. Characteristic indicators under three multi-source data situations.

Method A

Method B Method C

One-Season
Crop Area

Double-Season
Crop Area

One-Season
Crop Area

Double-Season
Crop Area

PPI Slope, Annual average precipitation, Annual average temperature

SSI

Soil fertility indicator NDVI225–240 NDVI225–240 NDVI097–112 MT-NDVI225–240 MT-NDVI097–112

Soil moisture indicator DVI225–240 DVI225–240 DVI097–112 MT-DVI225–240 MT-DVI097–112

Soil degradation indicator RVI225–240 RVI225–240 RVI097–112 MT-RVI225–240 MT-RVI097–112

SAI ALI, AMI, AII, AFI

Note: Method A, Method B, and Method C are the no distinction between crop cover types, distinction between
crop cover types, and fusion of multi-temporal data types, respectively. PPI, SSI, and SAI are the production press
indicators, soil status indicators, and social action indicators, respectively. NDVI097–112, DVI097–112, and RVI097–112
are the SSI constructed by the synthetic images on 97–112 days; NDVI225–240, DVI225–240, and RVI225–240 are the
SSI constructed by the synthetic images on 225–240 days; MT-NDVI097–112, MT-DVI097–112, and MT-RVI097–112
are the fusion of multi-temporal SSI constructed based on synthetic images of 97–112 days; MT-NDVI225–240,
MT-DVI225–240, and MT-RVI225–240 are the fusion of multi-temporal SSI constructed based on synthetic images of
225–240 days. ALI, AMI, AII, and AFI are the agricultural labor indicator, agricultural mechanization indicator,
agricultural irrigation indicator, and agricultural fertilizer indicator, respectively.

As for SSI, the synthetic remote sensing data of 225–240 days were used for Method
A. The synthetic remote sensing data of 225–240 days and 97–112 days were used for
one-season and double-season crop areas in Method B. Based on synthetic remote sensing
data of 225–240 days and 97–112 days, respectively, other images with strong correlation
were selected to form a multi-temporal data set by PCA in Method C.
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3.3.2. The Analysis of PPI and SAI

The descriptive statistical characteristics of PPI and SAI are shown in Supplemen-
tary Table S3 in Supplementary Materials. At the same time, Figure 5 shows the spatial
distribution after PPI and SAI pretreatment. From the perspective of PPI, the natural
resource endowment is good. The mean value of slope is 1.36◦, the mean value of annual
average precipitation is 722.43 mm, and the mean value of annual average temperature is
13.98 ◦C. Cultivated land is generally gentle with little slope fluctuation, which is suitable
for agricultural farming. Moderate precipitation and temperature ensure water and heat
resources needed for crop growth [42]. From the perspective of SAI, the mean value of ALI
and AII are 47.59% and 62.64%, respectively, the mean value of AMI is 14.34 kW/ha, and the
mean value of AFI is 653.14 kg NPK/ha. The agricultural resources input and management
level of cultivated land is higher, which is conducive to the sustainable development of
agriculture and the increase in crop production and income [43]. The overall SAI shows the
spatial distribution law of high in the west and low in the east. Among them, the input of
agricultural labor resources is mainly concentrated in the northwest and south, the input of
agricultural fertilizer is mainly concentrated in the northeast and south, and the level of
agricultural mechanization and irrigation is significantly higher in the plain area.

3.3.3. The Construction Results of MT-SSI

Table 4 shows the construction results of MT-SSI. After PCA, MT-SSI in different crop
rotation areas contains two to three principal components, and each principal component
contains five to eight temporal remote sensing information. The cumulative variance contri-
bution rates are greater than 70.25%, which contains most of information in multi-temporal
data. After KMO and Bartlett test, KMO > 0.607, Sig. = 0.000, the PCA results are ideal. The
specific principal component analysis expression is shown in Supplementary Table S4 in
Supplementary Materials. Finally, through grid operation, the descriptive statistical char-
acteristics of SSI are shown in Supplementary Table S3 in Supplementary Materials. The
mean soil fertility indicators are between 0.68 and 0.79, the mean soil moisture indicators
are between 0.29 and 0.36, and the mean soil degradation indicators are between 2.99 and
8.54. At the same time, the spatial distribution of SSI is shown in Figure 6.

3.4. Identification Results of Soil Quality Grade
3.4.1. The Analysis of Spatial Distribution Accuracy for Soil Quality Grade Identification

Figure 7a is the spatial distribution map of training points, which shows complete
grades and uniform distribution, it can meet the research needs. By comparing the evalua-
tion results based on GIS (Figure 4) and the identification results based on multi-source
data (Figure 7b–d), it was found that the soil quality grade has similar spatial distribution
rules, that is, the medium and high grades were mostly concentrated in plain areas, while
the low grades were mostly concentrated in hilly areas. From the spatial distribution of
each grade, the identification results in Method C have the highest similarity with the
evaluation results, followed by Method B, and the difference in Method A is significant.

3.4.2. The Analysis of Area Accuracy for Soil Quality Grade Identification

Table 5 compares the area of each grade in the evaluation results based on conventional
GIS and the identification results based on multi-source data. Among them, the error of
Method A is the largest, which the maximum area ratio errors of grades 6 and 3 are
12.45% and 4.84%, respectively. After distinguishing crop rotation types, the area ratio
errors of grades 6 and 3 are less than 4.83% and 2.68%, respectively, indicating that the
area identification accuracy is significantly improved. The area identification accuracy of
Method C is the highest, and the area ratio errors of grades 6 and 3 are less than 1.31% and
1.13%, respectively.
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Table 4. Principal component analysis results of soil state indicators.

Scheme Indicator Principal
Component Synthetic Period of Images

Cumulative
Variance

Contribution Rate
KMO Sig.

One-
season crop area

MT-NDVI
PC1 177–192, 193–208, 209–224, 225–240,

241–256

55.33%
0.610 0.000

PC2 83.49%

MT-DVI
PC1 177–192, 193–208,

209–224, 225–240,
241–256, 257–272

53.08%
0.681 0.000

PC2 82.93%

MT-RVI
PC1 193–208, 209–224,

225–240, 241–256,
257–272

55.75%
0.607 0.000

PC2 81.18%

Double-
season crop area

MT-NDVI

PC1
065–080, 081–096, 097–112, 113–128,
129–144, 273–288, 289–304, 337–352

52.42%

0.724 0.000PC2 70.25%

PC3 83.57%

MT-DVI
PC1

065–080, 081–096,
097–112, 113–128,
129–144, 145–160,

177–192

57.11%
0.736 0.000

PC2 71.43%

MT-RVI

PC1 065–080, 081–096,
097–112, 113–128,
129–144, 273–288,
289–304, 337–352

52.33%

0.714 0.000PC2 69.69%

PC3 83.50%

Note: MT-NDVI, MT-DVI, and MT-RVI are the fusion of multi-temporal soil fertility indicator, soil moisture
indicator, and soil degradation indicator, respectively. PC1, PC2, and PC3 represent principal components 1, 2, and
3, respectively.

Table 5. Area comparison of soil quality evaluation and identification.

Grade
Evaluation Method A Method B Method C

Area Ratio % Area Ratio % Difference Area Ratio % Difference Area Ratio % Difference

High 1
47.31

19.13
52.15

11.52
4.84

7.61
48.17

15.16
0.86

3.97
47.78

18.64
0.47

0.49
2 28.18 40.63 12.45 33.01 4.83 29.14 0.96

Medium
3

37.98
23.43

37.11
21.33

0.87
2.10

39.80
22.03

1.82
1.40

36.85
22.60

1.13
0.83

4 14.55 15.78 1.23 17.77 3.22 14.25 0.30

Low
5

14.71
9.88

10.74
8.05

3.97
1.83

12.03
8.04

2.68
1.84

15.37
11.19

0.66
1.31

6 4.83 2.69 2.14 3.99 0.84 4.18 0.65

Summation 100.00 100.00 - 100.00 - 100.00 -

Note: Method A, Method B, and Method C are the no distinction between crop cover types, distinction between
crop cover types, and fusion of multi-temporal data types, respectively.

3.4.3. The Analysis of Verification Points Accuracy for Soil Quality Grade Identification

Table 6 shows the identification accuracy of soil quality grade based on verification
points. After distinguishing crop rotation types and fusing multi-temporal information,
from the perspective of the UA and PA, the mean UA of high, medium, and low grades soil
types increased from 75.88% to 91.88%, and the mean PA increased from 80.11% to 93.29%;
from the perspective of the OA, it increased from 79.18% to 86.12% and 93.65%; from the
perspective of the Kappa coefficient, it increased from 0.66 to 0.77 and 0.90.
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Figure 6. The soil status indicators map under three multi-source data situations. (a,d,g) are indicators
of the no distinction between crop cover types; (b,e,h) are indicators of the distinction between crop
cover types; (c,f,i) are indicators of the fusion of multi-temporal data types.
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Table 6. Identification accuracy evaluation of verification points.

UAmean PAmean OA Kappa

Method A 75.88% 80.11% 79.18% 0.66
Method B 84.14% 86.90% 86.12% 0.77
Method C 91.88% 93.29% 93.65% 0.90

Note: Method A, Method B, and Method C are the no distinction between crop cover types, distinction between
crop cover types, and fusion of multi-temporal data types, respectively. UAmean and PAmean represent the mean
values of user accuracy and producer accuracy, OA represents the overall accuracy, and Kappa represents the
value of the Kappa coefficient.

In conclusion, Method C has the highest identification accuracy, followed by Method
B, and the effect of Method A is the worst.

4. Discussion

(1) By analyzing the multi-temporal NDVI spectral curves of different crop rotation sys-
tems, we obtained the most abundant period of crop biomass, that is, the mid-April
and mid-August of two-season crops and the mid-August of one-season crops. Re-
ferring to previous research experience [19,44], we used three vegetation spectral
indicators (NDVI, DVI, and RVI) as soil status indicators to construct the soil quality
indicator system, which indirectly realized the identification of cultivated land quality.
The research shows that crop remote sensing images of several sensitive periods
have obvious advantages in soil quality identification, which reflects the application
potential of crop remote sensing in cultivated land quality and has important signifi-
cance for soil quality prediction at a regional scale. However, the lack of relationship
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analysis between soil quality and multi-temporal crop spectrum is the deficiency of
this study, which needs to be further optimized.

(2) The soil quality grade identification method proposed in this study fuses terrain,
meteorological data, remote sensing data, statistical yearbook, etc. Compared with
previous studies [21,24,25], it is found that MODIS data synthesized by 16-day max-
imum not only reduced the influence of clouds, but also ensured the temporal and
spatial continuity of earth observation data. It could more completely express the
spectral characteristics of crops in each growth cycle and more accurately reflect the
cultivated land quality [45,46]. At the same time, incorporating human activity fac-
tors into the soil quality identification system through agricultural statistics data can
indirectly reflect the agricultural input and management level and help to improve
the identification accuracy. The fusion of multi-source and multi-temporal data will
be an effective means to identify the cultivated land quality grade.

(3) By comparing the identification results under two situations, after distinguishing
crop rotation types, the maximum area ratio error decreased from 4.84% to 2.68%,
the overall accuracy of verification points increased by 6.94%, and the identification
accuracy of soil quality grade was improved. It is considered that the partition of
crop rotation types reduces the spectral confusion problem and enhances the purity of
spectral information, thereby improving the identification accuracy [47,48]. However,
the identification accuracy of soil quality based on crop rotation zoning is limited. It is
necessary to further use higher resolution Sentinel or Landsat data to distinguish crop
types. Accurate classification and partition identification based on crops will also be
an effective way to improve the identification accuracy of soil quality.

(4) By comparing the identification results between the fusion of multi-temporal data
types and the other two situations, it is found that the former results are more similar
to the evaluation results. Compared with only distinguishing crop rotation types,
the maximum area ratio error decreased from 2.68% to 1.13%, the overall accuracy of
verification points increased by 7.53%, and the identification accuracy of soil quality
information was significantly improved. It is mainly due to the fusion of multi-
temporal remote sensing data through principal component analysis, which makes
the spectral information of soil quality more abundant, and changes from static crop
state information to dynamic crop spectral characteristics. It effectively avoids the
disadvantages of single-temporal image information and being susceptible to external
factors, and enhances the stability of remote sensing data sources, thereby improving
the identification accuracy of soil quality grade [49,50].

(5) This study used the random forest algorithm to identify soil quality grades. Compared
with the evaluation method based on GIS, this method does not require field sampling
and indoor laboratory analysis and avoids the large consumption of human, material,
and financial resources [51]. It overcomes the dependence of traditional evaluation
on different spatial interpolation methods and can more objectively reflect the spatial
distribution information of cultivated land quality [52]. Compared with previous
studies [21,25,26], the algorithm fully excavates the nonlinear relationship between
multi-source data and has the advantages of high generalization performance, strong
fault tolerance and anti-interference ability, and good robustness [53]. It avoids the
disadvantages of traditional linear combination methods with strong subjectivity, can
fully reflect the comprehensive, random, and nonlinear characteristics of soil quality,
and is proved to be an effective method for automatic identification of soil quality
grade. In the future, the proposed method can be applied to the rapid interpretation
of soil quality grade, assist in establishing long-term monitoring, evaluation, and early
warning mechanism of cultivated land quality, and guide agricultural management
according to local conditions. To avoid the degradation of cultivated land, maintain
and improve the cultivated land quality, and ensure the sustainable use of cultivated
land resources.
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5. Conclusions

In this paper, the P-S-R framework was used to construct soil quality characteristic in-
dicators fused with multi-source and multi-temporal data, and the random forest algorithm
was used to realize the rapid and accurate identification of soil quality grade information.
The main conclusions are as follows:

(1) The NDVI time series curve of double-season crop shows a typical bimodal charac-
teristic, with the peak in mid-April and mid-August, respectively. In comparison,
the one-season crop is a unimodal curve, with the peak value in mid-August. Then,
through evaluation, the cultivated land quality was divided into three categories
(high, medium, and low), with six grades.

(2) Three different situations were constructed to extract SSI. Synthetic images of 225–240 days
were used to the no distinction between crop cover types, synthetic images of 225–240 days
and 97–112 days were used to the distinction between crop cover types. Additionally,
the fusion of multi-temporal data types was based on the two sensitive periods,
and other highly correlated images were selected to form a multi-temporal data set.
Through principal component analysis, it contains two to three principal components, and
each principal component contains five to eight temporal remote sensing information.

(3) Distinguishing crop rotation types has a significant gain on the identification accuracy
of soil quality grade. Specifically, the spatial distribution of soil types is more similar
to the evaluation results, the maximum area ratio error decreased from 4.84% to 2.68%,
the overall accuracy increased from 79.18% to 86.12%, and the Kappa coefficient
increased from 0.66 to 0.77.

(4) Fusion of multi-temporal remote sensing data is the best method for soil quality
information extraction. Specifically, the spatial distribution of soil types is more
similar to the evaluation results, the maximum area ratio error decreased from 2.68%
to 1.13%, the overall accuracy of verification points increased from 86.12% to 93.65%,
and the Kappa coefficient increased from 0.77 to 0.90.

This paper fused multi-source and multi-temporal crop remote sensing data and
provided a fast and efficient method for soil quality grade identification based on a random
forest algorithm, which provided a new technical means for the utilization and management
of cultivated land resources and the sustainable development of agriculture.
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Supplementary Table S4: Principal component analysis results of soil state indicators.
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