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Abstract: Forest structure is an important variable in ecology, fire behaviour, and carbon management.
New spaceborne lidar sensors, such as the Global Ecosystem Dynamics Investigation (GEDI), enable
forest structure to be mapped at a global scale. Virtual GEDI-like observations can be derived
from airborne laser scanning (ALS) data for given locations using the GEDI simulator, which was a
tool initially developed for GEDI’s pre-launch calibration. This study compares the relative height
(RH) and ground elevation metrics of real and simulated GEDI observations against ALS-derived
benchmarks in southeast Australia. A total of 15,616 footprint locations were examined, covering
a large range of forest types and topographic conditions. The impacts of canopy cover and height,
terrain slope, and ALS point cloud density were assessed. The results indicate that the simulator
produces more accurate canopy height (RH95) metrics (RMSE: 4.2 m, Bias: −1.3 m) than the actual
GEDI sensor (RMSE: 9.6 m, Bias: −1.6 m). Similarly, the simulator outperforms GEDI in ground
detection accuracy. In contrast to other studies, which favour the Gaussian algorithm for ground
detection, we found that the Maximum algorithm performed better in most settings. Despite the
determined differences between real and simulated GEDI observations, this study indicates the
compatibility of both data sources, which may enable their combined use in multitemporal forest
structure monitoring.

Keywords: GEDI; simulation; vertical forest structure; light detection and ranging

1. Introduction

Forests are key ecosystems, hosting a large proportion of earth’s plant species [1],
and playing an essential role in climate change mitigation [2]. One factor that determines
a forest’s value for biodiversity and its role as a carbon sink is its vertical structure [3,4].
Research has shown that ecosystem functions and species richness depend on the vertical
arrangement of plant material [4,5]. Furthermore, information on vertical forest struc-
ture enables the modelling of biomass and related variables [6–9], which is essential for
monitoring carbon cycles in the interest of climate change mitigation [10].

To obtain information of vertical forest structure at regional and global scales, a grow-
ing range of spaceborne remote sensing instruments are available. Passive multispectral
sensors provide wall-to-wall imagery on forest dynamics at regular time intervals, with
the Landsat archive reaching back as far as 1972. To identify meaningful trends of forest
dynamics in these data archives, time series analysis tools such as LandTrendr have been
developed [11], exploiting the trajectories of spectral vegetation indices [12]. For instance,
the Normalised Burn Ratio (NBR) index relies on the short wave infrared (SWIR) band,
which has been demonstrated to be relatively sensitive to forest structure [13]. However,
multispectral satellite data archives have limitations in monitoring forest structure for
closed-canopy forests due to signal saturation [14].
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Active remote sensing technologies, on the other hand, are able to penetrate forest
canopies and obtain accurate measurements of the vertical distribution of plant mate-
rial [15,16]. Light detection and ranging (lidar) has become widely used to gather infor-
mation about the three-dimensional structure of vegetation, with sensors deployed on
terrestrial [17], airborne [18,19], and most recently spaceborne platforms [20]. The ICESat
mission carried the first spaceborne lidar system, operating from 2003 to 2009. Despite its
focus on measuring ice shields and cloud heights, its data have been successfully used to
derive measurements of vertical forest structure [8,21,22]. Since 2019, the Global Ecosystem
Dynamics Investigation (GEDI) mission onboard the International Space Station (ISS) has
provided data on forest structure over the Earth’s tropical and temperate forests [20].

Sensors such as ICESat, its successor ICESat-2, and GEDI do not provide wall-to-wall
information but rather act as sampling tools to provide observations of forest structure at a
footprint level. However, their data have been shown to improve the modelling of vertical
structure when used in conjunction with wall-to-wall data from multispectral or Synthetic
Aperture Radar (SAR) sensors [7,9]. Recent approaches have predicted canopy height and
vertical structure over large areas using a combination of Landsat and GEDI [23,24] or
Landsat, ICESat, and SAR [22]. Other research evaluated GEDI’s capabilities to estimate
aboveground biomass (AGB) using simulated GEDI data [9,25], partly in combination
with Landsat imagery [26]. Sanchez-Lopez et al. [15] predicted the time since the last
stand-replacing disturbance, and Marselis et al. [4] modelled species richness in tropical
forests using simulated large-footprint full waveform lidar.

These studies have successfully demonstrated the advantage of integrating spaceborne
lidar data into wall-to-wall forest structural mapping. Nearly all approaches have relied on
single-date spaceborne lidar observations. However, forests are dynamic systems subject
to various change agents and disturbance events. Thus, it has been proposed to use
(spaceborne) lidar observations from multiple epochs to improve the monitoring of forest
structural change [27]. This can be particularly beneficial when using lidar observations
from both before and after a disturbance event. Although several recent studies have
begun to explore the potential of bitemporal spaceborne lidar observations [27–29], more
studies need to be carried out to further understand the opportunities of using bitemporal
lidar observations.

Due to the orbit of the ISS, GEDI’s coverage is limited to latitudes between 51.6◦N and
51.6◦ Slatitude. The sensor is predicted to produce about 10 billion cloud-free observations
during its mission, which was initially scheduled for two years. Its three geodetic-class
lasers are split (one beam) and dithered after emission, resulting in four full-power and
four coverage beams. Each beam results in a transect of footprints on the ground, with 60 m
between beam footprints and 600 m between adjacent beam tracks. The nominal diameter
of a footprint is 25 m [30]. GEDI’s Level 1B (L1B) product provides geolocated waveform
data at the footprint level, whereas L2A data offers ground elevation and relative height
(RH) metrics derived from the full returned waveform [20].

Some recent studies relied on simulated GEDI observations due to the limited extent
of available GEDI data [9,15,25–27]. The GEDI simulator is a tool that was created for the
pre-launch calibration of the GEDI instrument. Based on an approach developed by Blair
and Hofton [31], the simulator creates virtual waveform observations for given footprint
locations using point cloud data, aiming to emulate the data acquisition characteristics of
the GEDI sensor [32]. Typically, point clouds from airborne laser scanning (ALS) are used
for the simulation [7,25,26].

The GEDI simulator has been validated in various locations in the United States, Costa
Rica, and Gabon by intercomparison to large-footprint full waveform lidar observations
acquired by the Land, Vegetation and Ice Sensor (LVIS) [32]. However, an independent
validation of the GEDI simulator against real GEDI observations has not been undertaken.
Furthermore, the simulator’s ability to accurately simulate GEDI observations in Australian
sclerophyll vegetation has not been sufficiently evaluated.
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Real GEDI data do not allow for multitemporal analysis of forest structure, as it is
unlikely that any given footprint location is sampled more than once. However, the GEDI
simulator has been proposed as a tool to overcome this limitation and enable bitemporal
observation of forest structure [27,28], provided that sufficient ALS data are available for
the region of interest. In addition, the GEDI simulator may have potential to serve as a
standardisation tool for ALS data sets of different sensors and acquisition parameters, as it
has been shown to minimise the influence of flight altitude and pulse density on the virtual
waveform [32].

In this paper, the accuracy of both real and simulated GEDI observations is evaluated
against ALS baseline data in sclerophyll forests to assess their compatibility for future
combined usage. We compare selected RH metrics and ground elevation observations
to benchmark metrics derived directly from ALS data across four diverse study sites in
southeast Australia. The impact of terrain slope, ALS pulse density, vegetation cover and
height is also assessed.

2. Materials and Methods
2.1. Study Area

From all available GEDI Version 2 data, 15,616 footprint locations were selected
across four diverse study sites in southeast Australia (Figure 1), named Bendigo, Bright,
Canberra and Kosciuszko. The footprints are spread across a variety of forest and terrain
types. Elevations within the study area range from 166 to 2036 m and annual rainfall
from 460 to 1680 mm. Sclerophyll forests of different canopy cover and height are present
across the study sites. Following the definitions used in Australia’s State of the Forests
Report [33], eucalypt forests in the study sites were classified as: woodland (canopy cover
range 20–50%), open (cover range 50–80%), and closed eucalypt forest (canopy cover above
80%). The height categories Low, Medium, and Tall were assigned to eucalypt forests with
a canopy height of less than 10 m, 10–30 m, and above 30 m, respectively. Apart from the
various types of eucalypt forest, softwood plantations, rainforest, and other native forests
covered parts of the study area (Table 1). The forest type classification was obtained on
the footprint level from the Forests of Australia map product [34]. Footprints classified
as non-forested were discarded. Slope information was also derived for each footprint
according to local, high-resolution digital elevation models (DEM) based on ALS data and
classified into seven slope categories, which were binned in 5-degree intervals (Table 2).

Table 1. Number of footprints per forest type.

Forest Type Total Footprints

Casuarina 16
Eucalypt Mallee Open 28

Eucalypt Mallee Woodland 158
Eucalypt Low Woodland 1914
Eucalypt Medium Closed 29
Eucalypt Medium Open 7759

Eucalypt Medium Woodland 1215
Eucalypt Tall Closed 4
Eucalypt Tall Open 3024

Eucalypt Tall Woodland 164
Rainforest 12

Softwood plantation 671
Other native forest 371

Unallocated 251
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Figure 1. The four study sites (red) with selected Global Ecosystem Dynamics Investigation
(GEDI) footprints (black) across the Australia states Victoria, New South Wales, and Australian
Capital Territory.

Table 2. Number of footprints per terrain slope category.

Slope Category (Degree) Total Footprints

0–5 3479
5–10 2010

10–15 1884
15–20 1919
20–25 1882
25–30 1798
>30 2644

2.2. GEDI Data

GEDI L2A data (Version 2) were obtained from the United States’ National Aeronautics
and Space Administration (NASA) Earthdata portal for all four study sites and used to
extract the geolocation information of all footprints (coordinates of the lowest mode of the
waveform) as well as selected metrics of relative height (namely the 50th and 95th relative
height percentiles, RH50 and RH95) and ground elevation. All observations were acquired
between March 2019 and February 2021. We did not apply any seasonal filtering, as the
vertical structure of the investigated evergreen vegetation is not affected by phenological
changes in a strictly periodical way [35].

We filtered the GEDI footprints by the quality flag and degrade flag attributes to
exclude low-quality observations. Furthermore, we only considered footprint locations that
did not experience any type of disturbance after the year 2004 to minimise the impact of
disturbance-related vegetation structural change. The disturbance information was derived
from multispectral Landsat time series data, which were analysed using the LandTrendr
segmentation algorithm [11,36]. The NBR index and an NBR loss threshold of 50 were used
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for the segmentation, closely following the approach of Nguyen et al. [37], with the sole
major variation being the usage of a medoid approach to generate annual composites [38].

2.3. ALS Data

ALS data were used for two purposes: to simulate GEDI observations using the GEDI
simulator, and to establish benchmark values (RH and ground elevation metrics) for the
intercomparison with the real and simulated GEDI metrics. Publicly available ALS data
sets were downloaded from the open data portal Elvis [39]. These data sets originate from
aerial campaigns, which have been carried out using a range of ALS sensors and pulse
densities (Table 3). All GEDI observations used in this study were acquired between 2019
and 2021, and we ensured all ALS data sets were acquired within four years of that time
frame to minimise the effects of forest change. The average ALS point densities across
the four study sites ranged from 0.4 to 23 points/m2. We obtained RH benchmark values
from the ALS point clouds for all footprint locations using the lidar processing package
FUSION [40].

Table 3. Technical specifics of the airborne laser scanning (ALS) data sets from the four study sites.

Site Name Scanner Average Point
Density (Points/m2) Year Horizontal/Vertical

Accuracy
Number of
Footprints

ALS Data
Source

Bendigo Trimble AX60 22 * 2020 0.3 m/0.1 m 2582 [41]
Bright Trimble AX60 22 * 2020 0.3 m/0.1 m 1203 [41]

Canberra Riegl VQ780i 23 2020 0.3 m/0.1 m 3191 [42]

Kosciuszko Leica ALS50 0.4 2017 0.8 m/0.3 m
(95% confidence) 8640 [43]

* Values have been manually determined from the dataset, as accurate metadata was unavailable.

A high-resolution DEM was also obtained for each study site, which was generated
from the respective point cloud. The mean DEM elevation within each GEDI footprint
served as a benchmark for the intercomparison with GEDI- and simulator-derived ground
elevation values. As all DEM data were referenced to the local Australian Height Datum
(AHD71), we used a Geoid model to convert the elevation values to ellipsoidal heights,
which conform to the vertical datum of GEDI.

2.4. Simulated GEDI Data

Simulated GEDI observations were created for the 15,616 footprint locations.
The simulation process consists of two main steps: the first generates a virtual waveform
from the ALS data within a given footprint (gediRat tool), and the second derives the GEDI
metrics, such as the relative heights and ground elevation, from the simulated waveform
(gediMetrics tool) [32]. The simulated RH metrics, along with the actual GEDI observations,
were later compared against the benchmark values, which were extracted from the ALS
data through FUSION tools [40].

The GEDI simulator provides three different algorithms to determine the ground
elevation. The Gaussian method is based on fitting gaussian functions to the simulated
waveform to identify the ground return. The Maximum method marks the lowest peak
of the simulated waveform as ground signal, whereas the Inflection algorithm derives the
ground elevation from the second derivative of the waveform [32]. Thus, the choice of
ground detection algorithm has a vital impact on all simulated RH metrics, as these heights
are computed in reference to the detected ground elevation.

2.5. Intercomparison

Vertical forest structure can be described using many different metrics. In this study,
we focus on RH95, which is a widely used measure of canopy top height [24,28], and RH50,
the average height of the footprint [32,44,45].
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To assess the performance and compatibility of real and simulated GEDI observations,
we compared both data sets against our ALS-derived benchmarks on a footprint level.
The assessment included the Pearson correlation coefficient (r), root mean square error
(RMSE, Equation (1)), and bias (Equation (2)) of the 50th and 95th percentile RH metrics, as
well as the ground elevation metric.

RMSE (m) =

√
∑n

i=1(ALSi − GEDIi)
2

n
(1)

Bias (m) =
∑n

i=1 ALSi − GEDIi

n
(2)

where GEDI can be real or simulated observations of RH95, RH50, or ground elevation,
and ALS can be the corresponding metric, respectively, with values derived directly from
ALS point cloud data via FUSION tools [40].

For a qualitative investigation of potential error sources, a small number of randomly
chosen outliers was examined in detail, using high-resolution aerial imagery (0.1 m) avail-
able for the Canberra study site [46]. The results from all three ground detection functions
of the GEDI simulator (Gaussian, Maximum, and Inflection algorithm) were assessed,
as their performance has a direct impact on the determination of RH metrics. A direct
intercomparison of absolute ground elevation metrics between real and simulated GEDI
and the ALS-derived DEM was also undertaken.

3. Results
3.1. Performance of GEDI Simulator Algorithms across Different Lidar Point Densities

To assess the performance of the GEDI simulator’s ground detection algorithms
(Gaussian, Maximum, Inflection), we compared the RH95 and RH50 metrics for different
ALS point densities against the ALS benchmark.

The results for the RH95 metric (Figure 2) demonstrate that the observations simulated
using the Maximum and Inflection algorithms both show smaller deviations from the
benchmark values across most ALS point density categories than the Gaussian method.
The interquartile ranges (IQR) of residuals produced by these two algorithms were also
lower. Nevertheless, all three algorithms systematically overestimate RH95 values in lower
point densities. In higher point densities (above 9 points/m2), the overestimation effect
only persists for the simulator’s Gaussian algorithm. For the density range between 4 and
8 points/m2, the dataset contained few data points (n < 10, per density category); thus, no
reliable conclusions could be drawn for this range.

Figure 2. Deviation from true RH95 for the simulator’s Gaussian algorithm (left), Maximum al-
gorithm (centre), and Inflection algorithm (right). Only observations with a terrain slope below
5 degrees were considered for this figure. Note that the density categories between 3 and 9 points/m2

have low (<30) numbers of samples. Positive values indicate an overestimation of RH95.
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Simulated GEDI height metrics also overestimated RH50 observations (Figure 3),
particularly in lower point densities (below 2 points/m2). In higher point densities, the
Maximum and Inflection methods outperformed the Gaussian algorithm markedly, al-
though a slight systematic overestimation remained observable.

Figure 3. Deviation from true RH50 for the simulator’s Gaussian algorithm (left), Maximum al-
gorithm (centre), and Inflection algorithm (right). Only observations with a terrain slope below
5 degrees were considered for this figure. Note that the density categories between 3 and 9 points/m2

have low (<30) numbers of samples. Positive values indicate an overestimation of RH50.

3.2. Performance of GEDI and Simulator across Forest Structural Types

In all eucalypt forest settings, simulated RH95 observations had a lower RMSE
and a higher correlation with the ALS benchmark than those from the GEDI sensor
(Table 4, Figures 4 and 5). Furthermore, the simulator’s Maximum algorithm outperformed
the Gaussian and Inflection method across all forest conditions with consistently lower
RMSE and higher Pearson correlation values (Figure 4), hence why it was chosen to graphi-
cally examine the relationship between simulated and ALS benchmark heights (Figure 5).

Table 4. RMSE, Pearson correlation r, and bias of real and simulated (Sim) GEDI data (RH95) in
different eucalypt forest types.

Eucalypt Low
Woodland

Eucalypt
Medium Woodland

Eucalypt
Medium Open

Eucalypt Tall
Woodland

Eucalypt Tall
Open

RMSE (m) GEDI 9.47 5.19 8.46 8.64 14.03
Sim Gauss 5.39 2.84 5.44 5.47 7.23
Sim Max 3.34 1.58 4.27 3.28 5.80
Sim Infl 6.23 2.75 6.22 5.44 8.46

r GEDI 0.45 0.55 0.54 0.29 0.42
Sim Gauss 0.88 0.93 0.87 0.77 0.91
Sim Max 0.91 0.97 0.88 0.89 0.92
Sim Infl 0.84 0.92 0.85 0.78 0.89

Bias (m) GEDI −4.54 −0.55 −1.36 −0.46 −1.60
Sim Gauss −4.13 −1.93 −2.97 −2.19 −4.28
Sim Max −1.76 −0.70 −1.26 −0.50 −1.76
Sim Infl −4.58 −1.54 −3.32 −2.63 −5.51

In eucalypt forests of medium canopy height (10–30 m), both real and simulated
GEDI observations were more accurate than in tall or low canopy forests (Figures 4 and 5).
The results also show that lower canopy cover (e.g., in the woodland category) leads to
more accurate results from both GEDI and the simulator.
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Figure 4. RH95 from GEDI compared to ALS benchmark heights, for eucalypt forests with canopy
height/cover: (a) Medium/Open, (b) Tall/Open, (c) Low/Woodland, (d) Medium/Woodland,
(e) Tall/Woodland.

Figure 5. RH95 from the simulator’s Maximum algorithm compared to ALS benchmark heights, for
eucalypt forests with canopy height/cover: (a) Medium/Open, (b) Tall/Open, (c) Low/Woodland,
(d) Medium/Woodland, (e) Tall/Woodland.

Real and simulated GEDI observations overestimated RH95 across all eucalypt forest
types, with the simulator’s Maximum algorithm showing the smallest overestimation
among all three ground detection methods. The bias using the Maximum method was
frequently the closest to the bias of the GEDI instrument compared with the simulator’s
other algorithms. Overall, simulated GEDI RH95 observations were more accurate (RMSE:
4.2 m, Bias: −1.3 m) than those of the actual GEDI sensor (RMSE: 9.6 m, Bias: −1.6 m).
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Results for the RH50 metric were similar to those of RH95 (Table 5). When compared to
the observed RMSE for the RH95 metric, one notable difference was that the RMSE of simulated
GEDI RH50 observations generally were more similar to those of real GEDI. Furthermore, real
GEDI observations outperformed the simulator’s Gaussian and/or Inflection algorithms across
many forest types (Table 5). Pearson correlations for GEDI’s and the simulator’s RH50 metric
generally were lower across all forest types in comparison with RH95.

Table 5. RMSE, Pearson correlation r, and bias of real and simulated (Sim) GEDI data (RH50) in
different eucalypt forest types.

Eucalypt Low
Woodland

Eucalypt
Medium Woodland

Eucalypt
Medium Open

Eucalypt Tall
Woodland

Eucalypt Tall
Open

RMSE (m) GEDI 5.12 2.83 5.78 4.27 8.20
Sim Gauss 4.75 2.74 5.75 4.84 7.54
Sim Max 2.93 1.45 4.61 3.20 5.94
Sim Infl 5.57 2.57 6.42 4.76 8.75

r GEDI 0.28 0.18 0.36 0.25 0.14
Sim Gauss 0.62 0.70 0.72 0.38 0.71
Sim Max 0.67 0.83 0.72 0.41 0.72
Sim Infl 0.57 0.68 0.70 0.40 0.67

Bias (m) GEDI −2.77 −0.70 −1.60 −1.15 −3.25
Sim Gauss −3.51 −2.02 −3.48 −2.06 −4.95
Sim Max −1.14 −0.78 −1.77 −0.37 −2.43
Sim Infl −3.96 −1.63 −3.83 −2.50 −6.18

3.3. Impact of Terrain Slope

When analysing the impact of slope on real and simulated GEDI metrics, our results
indicate an almost linear relationship between the RMSE of real and of simulated GEDI
metrics with terrain slope, respectively. That is, the steeper the terrain, the less accurate the
measurements (Figure 6).

Figure 6. Impact of the terrain slope on RMSE (a,c) and bias (b,d) for real GEDI observations (red)
and simulated GEDI observations of RH95 (a,b) and RH50 (c,d) using the Gaussian (blue), Maximum
(green) and Inflection algorithm (black).
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The RMSE of real GEDI RH95 data is consistently higher than the RMSE of simulated
RH95 observations (Figures 6a and 7). However, for the RH50 metric on slopes larger
than 30 degrees, GEDI outperformed the simulator’s Gaussian and Inflection algorithms
(Figure 6c). The same two algorithms also show a greater overestimation (i.e., negative
bias) of both RH95 and RH50 values than real GEDI for almost all slope categories.
The Maximum algorithm not only demonstrated less overestimation but also emulated the
bias of real GEDI observations the most accurately (RH95 and RH50).

Figure 7. Intercomparison of GEDI (left column), Gaussian simulator (centre column), and Maximum
simulator (right column) with the RH95 benchmark values, for terrain slopes of 0–5 degrees (bottom
row), 15–20 degrees (centre row), and >30 degrees (top row).

For the accuracy of the ground elevation metric of real and simulated GEDI, we found
that the simulator’s Maximum ground detection algorithm remained highly accurate even
on slopes above 25 degrees, with biases indicating a constant slight underestimation of
terrain elevation (Figure 8). Ground elevations from real GEDI observations, on the other
hand, were susceptible to the effects of terrain slope, with large RMSE (>16 m) even for
small slopes. We noted a slight overestimation (around 2 m) for slopes below 10 degrees,
whereas medium slopes (10 to 15 degrees) produced an underestimation of a similar
magnitude. The underestimation became more apparent for large slopes (25 to 30 degrees)
with a bias of 10.1 m.
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Figure 8. Ground elevation residuals for simulated (Maximum algorithm, blue) and real (orange)
GEDI observations. A positive difference indicates an overestimation.

4. Discussion
4.1. Impact of Forest Type

Our investigation into the impact of forest type on the performance of real and simu-
lated GEDI data showed two main trends: firstly, increased canopy cover led to a decreased
performance. Secondly, real and simulated GEDI observations were more accurate in
eucalypt forests of medium canopy height (10–30 m) than in low and tall eucalypt forests,
as shown in Tables 4 and 5. The bias of real and simulated RH95 observations was high-
est (i.e., largest overestimation) in low woodland forests, which is in agreement with the
observations made for real GEDI data by Potapov et al. [24].

Generally, real GEDI RH metrics demonstrated higher RMSE and lower correlation
with the benchmark compared to simulated observations. This was partly due to the
absence of noise in the simulated data, as our approach did not employ the simulator’s
noise function. A second cause was the geolocation uncertainty of the GEDI sensor [29],
which has been determined to be 10.3 m for GEDI Version 2 data [47].

To further explore the reasons for GEDI’s underperformance compared to the simulator
in the context of our study, we investigated a selection of outliers (Figure 9) with GEDI
RH95 residuals larger than 20 m by comparing against high-resolution aerial imagery and
terrain contour information.

One common cause for outliers was heterogenous forest structures with large gaps
in the canopy, as seen in many images in Figure 9a,c,d,f. Similar observations were made
by Guerra-Hernández and Pascual [29] and Roy et al. [28]. Furthermore, our investigation
suggests that large dead-standing trees (Figure 9b,d) pose a challenge to GEDI’s detection
of RH95, as these ”bare” objects stand out from the green canopy and thus stretch the
distribution of waveform return energy representing the top of the canopy, which increases
the potential magnitude of RH95 residuals. A similar effect has also been described
by Hancock et al. [32] for all RH metrics where 1 minus canopy cover is close to the
corresponding relative height percentile (e.g., RH75 for 25% canopy cover or RH25 for 75%
canopy cover). Dead-standing trees are common in Australian eucalypt forests [48]; thus,
this effect might require consideration depending on the intended application.
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Figure 9. Six example outliers with a large deviation of GEDI RH95 from true RH95. These were
randomly selected from all observations from the Canberra site that deviated more than 20 m from
the benchmark value. The GEDI footprint is represented by a white circle, the orange lines represent
terrain contours in 5 m vertical intervals. (a,b) show examples of dead-standing trees, whereas in
(c–f) steep slopes and gaps in the canopy are likely reasons for large RH95 residuals. High resolution
aerial photography (0.1 m) shown to aid investigation, reprinted with permission from Jacobs Group
Australia Pty Ltd [46].

4.2. Impact of Slope

Large-footprint lidar sensors are prone to struggle in locations with steep terrain
slope [16]. Our results show that this is not only the case for real GEDI data but can also be
found in simulated GEDI observations. We found a near-linear relationship between terrain
slope and RMSE, both for real and simulated RH50 and RH95 metrics, respectively. Similar
observations were made for the biases, with proportionally larger RH overestimation in
steeper slopes (Figure 6). These findings generally align with the results from real GEDI
data in other studies [49,50]. The outliers investigated (Figure 9) also support this, as most
of them were found in locations with steeper slopes. Furthermore, in our study, terrain
slope had a large impact on the ground detection accuracy of real GEDI observations,
with a mean underestimation of ground elevation of more than 10 m for slopes above
25 degrees, which is a finding similar to Guerra-Hernández and Pascual [29]. GEDI’s
detected ground elevations serve as the reference heights to which all RH metrics are
computed. Therefore, an underestimation of ground elevation leads to an overestimation
of RH values. It can be expected that the observed bias in ground detection explains a
portion of the RH overestimations seen in our results. Liu et al. [51], however, observed the
opposite effect, using an overestimation of ground elevation to explain an underestimation
of GEDI canopy height metrics. Differences in the study sites and the respective local forest
types might explain these opposing results and demonstrate the need for more research
into the impact of slope on GEDI observations.

4.3. Impact of ALS Point Density

Our results demonstrate that high point density ALS data facilitates more accurate RH
estimates (Figures 2 and 3), which is consistent with the findings from Hancock et al. [32].
Due to a lack of data from 2–9 points/m2, we could not draw reliable conclusions for
that density range. However, in favourable terrain conditions (i.e., low terrain slope), our
results indicate that even low point densities (<2 points/m2) lead to acceptable accuracies
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when applying the thresholds (absolute median bias of 1.5 m, and IQR of 3 m) set by
Hancock et al. [32]. Between the simulator’s three ground detection methods, our investi-
gation showed that the simulator’s Maximum algorithm produces more accurate RH95
and RH50 estimates than the Gaussian algorithm, both for high (>9 points/m2) and low
(<2 points/m2) ALS point densities (Figures 2 and 3).

The findings from this paper assist in paving the way towards using both real and
simulated GEDI data in fusion approaches for structural forest monitoring, as suggested
in other studies [9,27,28]. While the GEDI simulator seems well suited to complement
real GEDI data by emulating bi- or multitemporal observations at the footprint level, the
scarcity of historical high-density ALS point cloud datasets is a limitation. However, low-
density ALS data are more readily available. Our findings suggest the preferred use of
the Maximum algorithm over the Gaussian algorithm in future applications, in contrast to
the approaches by Roy et al. [28] and Boucher et al. [27], as it produced the most reliable
results even at lower point densities. Furthermore, its performance was superior to that
of the Gaussian and Inflection algorithms across a large range of forest and terrain slope
categories. In addition, observations simulated with the Maximum algorithm showed the
most similar bias to real GEDI observations in most settings.

4.4. Limitations of Intercomparison

Our results indicate that the GEDI simulator compared well against the ALS bench-
mark data, outperforming the GEDI instrument. This was expected as both the simulated
GEDI metrics and ALS benchmark metrics were derived from the same point cloud infor-
mation. We acknowledge this is not an ideal approach to validation, where traditionally,
independent data are preferred. However, in absence of ground truth datasets for study
sites of large geographic extent, an intercomparison of real [29,50,51] or simulated [52]
GEDI observations with ALS metrics is an approach that has been widely adopted.

5. Conclusions

This study assessed the performance of real and simulated GEDI observations across
various sclerophyll forest types and terrain conditions by footprint-level intercomparison
with an ALS-derived benchmark. The results indicate that despite the absence of noise and
geolocation uncertainty in simulated data, the simulator’s Maximum algorithm provided
emulated GEDI observations that have similar characteristics compared to the original.
ALS point cloud data were utilised to conduct the simulations, and the results show that
in level terrain conditions, even low-density ALS (<2 points/m2) is sufficient to obtain
consistent results. However, in steeper slopes, both real and simulated GEDI data start
to markedly overestimate canopy height, which is partly due to a decline in the ground
detection accuracy. Higher canopy cover was another cause for decreased performance,
while an irregular horizontal forest structure with larger gaps in the canopy proved most
challenging for real GEDI data. The most accurate results were observed in medium height
(10–30 m) eucalypt forests, where both GEDI and the simulator performed better than in
low or tall forests.

The findings from this paper indicate the compatibility of real and simulated GEDI
data for combined use in modelling approaches, paving the way towards a new facet of
GEDI-aided sensor fusion methods. The GEDI instrument collects observations as a series
of samples and does not directly allow for multitemporal monitoring. However, simulated
observations for the same footprint locations from different points in time can be used
to overcome this limitation. Such bi- or multitemporal footprint-level GEDI observations
could be leveraged to improve the capturing of forest structure change over time in fusion
approaches with complementary wall-to-wall remote sensing datasets such as multispectral
or SAR data.
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