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Abstract: Understorey evaluation is essential in wildlife habitat management, biomass storage and
wildfire suppression, among other areas. The lack of a standardised methodology in the field
measurements, and in their subsequent analysis, forces researchers to look for procedures that
effectively extract understorey data to make management decisions corresponding to actual stand
conditions. In this sense, when analysing the understorey characteristics from LiDAR data, it is very
usual to ask: “what value should we set the understorey height range to?” It is also usual to answer by
setting a numeric value on the basis of previous research. Against that background, this research aims
to identify the optimal height to canopy base (HCB) filter–LiDAR metric relationship for estimating
understorey height (UH) and understorey cover (UC) using LiDAR data in the Pokupsko Basin
lowland forest complex (Croatia). First, several HCB values per plot were obtained from field data
(measured HCBi—HCBM-i, where i ε (minimum, maximum, mean, percentiles)), and then they were
modelled based on LiDAR metrics (estimated HCBi—HCBE-i). These thresholds, measured and
estimated HCBi per plot, were used as point cloud filters to estimate understorey parameters directly
on the point cloud located under the canopy layer. In this way, it was possible to predict the UH with
errors (RMSE) between 0.90 and 2.50 m and the UC with errors (RMSE) between 8.8 and 18.6 in cover
percentage. Finally, the sensitivity analysis showed the HCB filter (the upper threshold to select the
understorey LiDAR points) is the most important factor affecting the UH estimates, while this factor
and the LiDAR metric are the most important factors affecting the UC estimates.

Keywords: understorey height and cover estimate; height to canopy base; multi-layered overstorey

1. Introduction

The concept of forest structure refers to the three-dimensional (3D) distribution of all
the elements that configure a forest stand, including species type, size, ages, variety, height
strata and others [1]. Most of the research describing 3D vertical structure properties is
focused on the tree layer, i.e., overstorey layer [2–4], but not the understorey, defined as all
the woody vegetation and suppressed trees growing beneath the forest canopy [5,6]. This
structural information is transcendent to guide a silvicultural program designed to promote
the development of forests with more diverse structures and composition [7]. However,
the lack of spatially explicit 3D structure data in forests, specifically for the understorey
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layer, is a major challenge for ecological management. In addition, understorey vegetation
knowledge is crucial for wildlife habitat and biodiversity [8,9], rainfall interceptions in
watersheds [10], fire behaviour [11] and understanding forest competition dynamics [12].

The direct field-based methods for measurements of understorey vegetation, such
as visual estimations or point-intercept sampling, have an acceptable accuracy, but they
are costly and labour intensive, which limits their application to small areas [5,13]. For
more than three decades, light detection and ranging (LiDAR), an active remote-sensing
technology with applications in a plethora of fields, has demonstrated its usefulness in
the forest sector for stand heights, crown cover density and ground elevation below the
forest canopy estimates over large areas [14]. Nowadays, multiple countries provide full
areal LiDAR coverage [15], and the application of LiDAR data has consolidated its use
in forestry for forest inventory [16–18], wildfire studies [19–21] and assessment of forest
structure attributes [2,22,23], among others.

The estimation of the understorey characteristics, such as the height or cover, using
field explanatory variables has proven to be inherently difficult, and their spatial extents
are often limited to local areas [24,25]. Several authors have studied shrubs as vegetal
formations themselves, not as understorey. For example, Glenn et al. [26] focused on using
LiDAR to measure height and crown area of shrubs at an individual scale. Sankey et al. [27]
estimated individual tree and shrub heights as well as herbaceous vegetation patch height
using LiDAR data. Prošek and Šímová [28] investigated the use of a fusion of Unmanned
Aerial Vehicle (UAV)-borne multispectral and Structure for Motion (SfM)-derived vertical
information for classifying shrub vegetation at the species level and compared its accuracy
with that derived exclusively from multispectral information.

Although the use of LiDAR technology to evaluate the understorey characteristics has
allowed us to overcome some limitations of the traditional methods based on field and/or
passive remote sensing measurements, only several studies focus on measuring understorey
descriptive structural variables. Martinuzzi et al. [29] modelled the distribution (i.e., pres-
ence/absence) of understorey shrubs and snags. Wing et al. [24], Fernández-Álvarez et al. [11]
and Venier et al. [30] studied the understorey vegetation cover, while Andersen et al. [7]
went further and quantified the 3D forest structure by measuring the vegetation cover of
the overstorey, understorey, shrub and ground layers. Fragoso-Campón et al. [31] analysed
the accuracy enhancement in the overstorey and understorey land-cover mapping using
the data fusion of seasonal and annual time series of Sentinel 2 images complemented with
low-density LiDAR and soil and vegetation indexes. In addition, to evaluate the understorey
characteristics, many authors have chosen to use non-parametric models such as Random
Forest [8,29,30] or regression models [32] and, to a lesser extent, the understorey structural
variables were assessed using direct measurements on the filtered point clouds [5].

Over a decade ago, Goodwin et al. [25] and Hill et al. [6] acknowledged the existence
of uncertainty in defining the lower and upper height limits of the understorey strata. To
date, little progress has been made on this issue. Most of the studies cited in the previous
paragraph considered an initial threshold of shrub heights and evaluated LiDAR metrics in a
defined range. These ranges of height were defined based on the understorey species [27],
analysis of frequency histograms [33], predicted crown depth range [6], Boolean Canopy
Height Model [30] or the field assessment of understorey height [8,28,29,31]. However, the
replicability of the majority of these methods depends on the availability of field data and,
sometimes, their use is not possible when the study area is inaccessible. In addition, none of
the studies analysed the influence of these thresholds on the quality of understorey estimates.

Thus, two aspects must be improved when evaluating understorey structure at large
scale and/or management purposes: (i) to automatically establish the height range of the
LiDAR point cloud for understorey analysis and (ii) to use the whole LiDAR point cloud to
define that range in order to allow the production of wall-to-wall mapping of understorey
structure prediction. These two issues could be accomplished by using the height to crown
base (HCB) (the vertical distance between ground surface and the base of the continuous
live crown) as an optimum threshold for understorey height. Static height to crown base
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models have proved to be useful for a precise prediction of missing HCB [34–37] and have
been successfully predicted through LiDAR data [38]. Once HCB models have been created,
they can be applied on other similar areas without the need for field data.

Despite the reliability of HCB prediction results, the HCB estimate through LiDAR data
has some limitations which must be taken into account. It has been found that these HCB
estimates are affected by vegetation vertical profile since individual tree-crown architecture
depends on species, ages, position within the canopy and gap presence between trees [29],
a situation that is aggravated in mixed multi-layer stand since it also varies within each
plot. It also influences the LiDAR sensor settings, pulse frequency and scan angle, which
determines the penetrability capability of the returns [39], influencing the HCB predictions.
Logically, all these constraints also affect the understorey estimates. However, the studies
that have analysed the influence of these or other factors on the understorey estimates are
practically non-existent.

Therefore, the main goal of this research was to identify the optimal HCB filter—
LiDAR metric relationship for estimating understorey height (UH) and understorey cover
(UC) using LiDAR data in a mixed deciduous forest (Pokupsko Basin, Croatia). To achieve
this objective, three secondary goals were established:

(i) Modelling plot-level height to canopy base (HCB) models based on LiDAR data;
(ii) To test the performance of the method using understorey field data and, lastly;
(iii) To analyse the influence of the HCB filter, which is used to select understorey LiDAR

points, LiDAR metrics and other factors on the estimates of the UH and UC.

2. Materials and Methods
2.1. Study Area

The study area is located in the continental part of Croatia, near Jastrebarsko (35 km
southwest of Zagreb), within the Pokupsko Basin lowland forest complex (≈12,000 ha,
Figure 2). The forests of the study area consist of even-aged pedunculate oak (Quercus robur L.)
stands mixed with other tree species: common hornbeam (Carpinus betulus L.), black alder
(Alnus glutinosa (L.) Gaertn.) and narrow-leaved ash (Fraxinus angustifolia Vahl.). Other tree
species that sporadically occur are Ulmus laevis Pall., Tilia sp., Populus sp., Acer campestre L.,
Betula pendula Roth., Pyrus pyraster (L.) Burgsd., etc. Regarding the main vegetation layer (over-
storey), this forest commonly has a two-layered structure (dominant and suppressed tree layer)
with pedunculate oak in dominant crown-class layer and other tree species in the suppressed
crown-class layer. Below the main vegetation layers, the understorey is dominated by two
shrub species: hazel (Corylus avellana L.) and common hawthorn (Crataegus monogyna Jacq.),
while alder buckthorn (Frangula alnus Mill.) occurs sporadically. Besides shrub species, the
young plants of the main tree species are also present in the understorey layer. The relief
of the study area is mostly flat (105–118 m a.s.l.). Soils are hydromorphic (hypogley, eugley,
pseudogley) on clay parent material. The climate is warm and temperate with the mean
annual temperature of 10.6 ◦C and precipitation of 962 mm y−1 [40].

The pedunculate oak forests of the study area are state owned, and they are actively
managed for sustained timber in 140 year-long rotations, ending with two or three re-
generation fellings during the last 10 years of the rotation. This management approach
provides sustainability in terms of yield, biodiversity and ecosystem stability [41]. It has
been applied for all even-aged pedunculate oak forests in Croatia, where they cover an
area of 225,000 ha (9% of the total forest area) [42] with 2.43% of mean slope and standard
deviation of 2.60%. More detailed information on sustainable management of pedunculate
oak forest in Croatia can be found in Ostrogović Sever et al. [40].

2.2. Datasets
2.2.1. Field Data

Field data on overstorey (trees with a diameter at breast height (dbh) above 10 cm;
dbh ≥ 10 cm) were collected from a total of 112 circular sample plots during 2017 (yellow
circles in Figure 1). The plots were systematically distributed throughout the study area,
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i.e., within the 30 stands of different age classes and with a total area of 576.32 ha. The
radius of plots (8 m, 12 m, 15 m) and systematic distance between the plots (100 m × 100 m,
100 m × 200 m, 200 m × 200 m) were defined in respect to the stand age and size. Positions
of plot centres were recorded during the leaf-off conditions (beginning of March 2017)
using a GNSS receiver (Stonex S9IIIN, Monza, Italy) connected to the network of GNSS
reference stations (Croatian Positioning System—CROPOS Zagreb, Croatia) to achieve high
positional accuracy. The average receiver reported the precision of the plots’ positioning
was 0.13 m [39]. At each plot, tree species and its location were recorded and diameters at
breast height were measured for all trees with dbh ≥ 10 cm. The position of each tree in
the plot was recorded by measuring the distance and azimuth from the plot centre to each
tree using a Vertex III hypsometer and Haglöf compass, respectively. The tree height was
measured for 65% of trees using a Vertex III hypsometer, while heights of the rest of the
trees were estimated using the species-specific dbh-height models fitted with Michailloff’s
function [43]. More details of this process can be found in Martín-García et al. [44]. In
addition to the tree height, the height from the bottom of the tree to the first branch (crown
base) was measured for 63.9% of trees. Martín-García et al. [44] hcb equations were applied
to those trees without field measurements.
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Figure 1. The location of the study area in Croatia (left) and spatial distribution of sample plots
(yellow circles) and sample plots used for validation (yellow circle with an orange dot) within the
study area (right).

The second step, returning to the field to take understorey measurements, was con-
ducted in November 2019 (yellow circles with an orange dot in Figure 1). In order to have
a reliable understory data source, 10 circular plots with a 15 m radius were selected from a
larger set of permanent plots established in 2017, in which understory cover and height
were measured. Moreover, within these plots, the understorey consisted only of shrub
species and small trees with dbh < 10 cm were not present. Since these measurements were
used for understorey evaluation and validation, only plots covered with LiDAR data and
with no cuts and slow growth of the vegetation between 2016 (time of LiDAR data acquisi-
tion) and 2019 (time of understorey field measurements) were considered for selection. In
this way, the selected plots have not undergone modifications in the vegetation structure
and composition. In addition, a visual comparison between the field data and LiDAR data
was also developed in order to check that there were not discrepancies between the two
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datasets. Based on this analysis, it was established that two plots, number 47 and 49, show
apparent discrepancies as: (i) the shrubs detected from LiDAR data were placed on the
edge of the plot; their mass centres were outside the plot (Figure A1, Appendix A), and
unfortunately, they were not measured and (ii) LiDAR data show understorey shrubs that
do not appear in the field data, respectively. Then, plots 47 and 49 were regarded as “outlier
plots” (hereinafter referred to as “outlier plots”). Details of this analysis were included in
Appendix A.

The selected plots were located in oak stands of different age ranging from 58- to
93-year-old stands. More precisely, three plots were located in 58-year-old stands, one
in a 68-year-old stand, three in 73-year-old stands, and three plots in a 93-year-old stand.
Within each plot, the understorey (shrub) species were recorded. To estimate the under-
storey coverage in the plots (%), for each shrub in the plot two perpendicular lengths (the
largest and the smallest) representing the shrub extent were measured using a Vertex III
hypsometer as a horizontal distance measurer. Furthermore, for each shrub, the top height
was measured using a Vertex III hypsometer.

A summary of the main forest attributes (overstorey) for the plots used to estimate
HCB at plot level, as well as for the subsample of 10 plots used for understorey validation
(see Section 2.3.3.), is presented in Table 1.

Table 1. Summary of the main plot-level forest attributes for 112 sample plots used to estimate the
height to canopy base at plot level (overstorey) and 10 sample plots used for understorey estimation
and validation.

Dataset No of
Plots Forest Attribute Mean Min Max SD

Overstorey—
to estimate

HCB at
plot level

112

Age (years) 75 43 163 34
dbhM (cm) 27.0 17.0 39.9 5.5

HL (m) 24.9 18.2 32.4 3.1
N (trees·ha−1) 620 311 1840 293
G (m2·ha−1) 32.2 15.4 67.0 8.0
V (m3·ha−1) 400.6 158.0 1020.1 136.1

Understorey
estimation

and
validation

10

Age (years) 74 58 93 15
dbhM (cm) 29.9 24.2 37.8 3.6

HL (m) 24.9 21.8 29.6 2.5
N (trees·ha−1) 417 340 622 90
G (m2·ha−1) 29.1 24.0 41.4 7.0
V (m3·ha−1) 371.8 258.4 617.9 128.5

UHM (m) 6.19 1.90 8.71 1.98
UCM (%) 17.29 3.95 37.22 9.54

Forest attributes: dbhM—measured diameters at breast height (cm); HL—Lorey’s mean height (m); N—stem
density (trees ha−1); G—stand basal area (m2 ha−1); V—stand volume over bark (m3 ha−1); UHM—measured
understorey height; UCM—measured understorey cover.

2.2.2. LiDAR Data

The ALS data were acquired under leaf-on conditions within several surveys between
29 June and 25 August 2016 using an Optech ALTM Gemini 167 laser scanner mounted on
the Pilatus P6 aircraft. The average flying height was 720 m above ground level with an
average flying speed of 51 m·s−1. The laser pulse repetition frequency was 125 Hz, and
the field of view was ±25◦. The scanner recorded multiple returns (maximum 4 returns
per pulse) resulting in an average point density for the study area of 13.6 points·m−2.
According to the data provider, the horizontal accuracy of the recorded points was 15 cm,
and the vertical accuracy was 8.3 cm. The ALS point cloud was classified into ASPRS
Standard LiDAR Point Classes [45] using TerraScan software [46].

The ALS data were provided by the Hrvatske Vode Ltd. (Zagreb, Croatia)., whereas
the acquisition and pre-processing were conducted by the Institute for Photogrammetry
Inc. (Zagreb, Croatia) and Mensuras Ltd. (Maribor, Slovenia).
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2.3. Methodology

Figure 2 shows an outline of the methodology proposed in this research. This study
has been divided into several procedures depending on the data processed and their
combination. First, plot metrics were calculated from overstorey field data (Table 2).
Then, different distribution statistics of the individual hcb were evaluated to procure a
representative value of HCB per plot, hereupon called measured HCB (HCBM). In addition,
understorey height and understorey horizontal cover were extracted from understorey field
data (UHM and UCM, respectively). Parallel to field-data processing, LiDAR metrics were
calculated over the point cloud with standardised density (see Section 2.3.1.). Plot-level
HCB models were generated using HCBM and LiDAR metrics as input data (LiDAR metrics
with an orange star in Figure 2), and the estimated HCB (HCBE) were obtained. Finally,
HCBM and HCBE were applied as filters (the list of HCBs is included in the blue table
of Figure 2) to obtain understorey point clouds, and LiDAR metrics were recalculated.
The estimated understorey height (UHE) and understorey horizontal cover (UCE) were
evaluated over the filtered point clouds (LiDAR metrics with a green and purple star
in Figure 2 were used to estimate the UH and UC, respectively). The final step was the
validation of these results with the understorey field data.

2.3.1. Processing LiDAR Data

Due to the heterogeneity in point density in the LiDAR dataset, point filtering was
used to standardise the point density to 6 points·m−2 following Buján et al.’s algorithm [47].
This is particularly relevant in the case of HCB estimation, as a uniform return density of
the LiDAR data along the vertical profile is essential [38], since it facilitates that all derived
LiDAR metrics have the same representativeness throughout the entire study area.

LiDAR data processing was performed with easyLaz® [48], a proprietary tool based on
the FUSION/LDV software [49]. To characterise the vertical distribution of vegetation, the
first step was to classify laser pulses into ground and non-ground classes with GroundFilter
algorithm implemented in the FUSION software. This method is an adapted version
of the Iterative Robust Interpolation algorithm of Kraus and Pfeifer [50]. Classification
resulted in 1.09 mean ground points per square meter which were interpolated using the
GridSurfaceCreate algorithm implemented in the FUSION software (resolution = 2 m, in
this way a mean of 4 points were used to calculate the value of each pixel). Afterwards,
the GridSurfaceCreate interpolation function was also used to normalise the LiDAR point
cloud. Secondly, a suite of grid metrics was created from the pulse data with the whole
range over 10 cm minimum height to remove non-detected soil returns and in 1 m bins up
to 20 m in height using the total number of returns (LiDAR metrics with an orange star in
Figure 2). The basic concept behind height bins analysis in a vertical profile is to detect in
which position the frequency of returns decreases [24,25]. Such a technique is dependent
on the “shape” or distribution of return frequencies stratified by height [5]. The goal of this
procedure is to search for a relationship between different statistics of height and density of
LiDAR pulses focused on a definite interval and the height to the canopy base.
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Table 2. The goodness of fit parameters and regression coefficients for predicting HCB.

HCB Model
Equation
(n◦ plots)

RMSE (m)
Relative

RMSE (%)
Bias p.Bias R2 EF VIF Parameter Est. p-Value

HCBMIN
Equation (2)

(111)

1.51 m
40.31%

−0.0664 1.7719 31.12 7.01 2.58 Intercept 1.560 ***
LHSK 0.345 *

LHMAD−MEDIAN −0.115 **
B21RP 1.121 ***

HCBP10
Equation (1)

(104)

1.33 m
23.67%

−0.0131 0.2321 36.05 12.07 2.95 Intercept 0.821 **
log(LHP10) −0.148 **
log(LHP25) 0.452 ***
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Table 2. Cont.

HCB Model
Equation
(n◦ plots)

RMSE (m)
Relative

RMSE (%)
Bias p.Bias R2 EF VIF Parameter Est. p-Value

HCBP20
Equation (1)

(95)

1.00 m
14.62%

−0.0016 0.0238 55.10 29.17 1.15 Intercept 2.567 ***
log(LHP10) −0.053 *
log(B11TRC) −0.127 ***

HCBP25
Equation (1)

(95)

1.05 m
14.05%

0.0002 0.0023 66.89 43.47 2.23 Intercept 2.887 ***
log(ALLTOTAL) −0.165 ***

log(LHP10) −0.127 ***
log(LHP30) 0.275 ***

HCBP30
Equation (1)

(101)

1.23 m
15.09%

0.0004 0.0046 70.50 49.09 1.00 Intercept 3.420 ***
log(S17TRC) −0.186 ***
log(S19RP) 0.12895 ***

HCBP40
Equation (2)

(110)

1.59 m
16.06%

−0.0011 0.0107 73.65 53.34 1.36 Intercept 2.490 ***
LHL3 −0.249 ***
LHP20 −0.020 ***
B17TRC −0.001 ***

HCBP50
Equation (2)

(112)

1.70 m
14.86%

−0.0137 0.1194 72.79 51.91 1.65 Intercept 2.728 ***
LHL3 −0.395 ***
LHP30 −0.0329 ***
B18TRC −0.001 ***

HCBMEAN
Equation (2)

(111)
1.07 m 9.42%

−0.0032 0.0281 69.30 47.06 1.32 Intercept 1.936 ***
LHL3 −0.126 ***

ALLFIRST 0.003 ***
B16TRC −0.001 ***

HCBP60
Equation (2)

(108)

1.64 m
12.53%

−0.0146 0.1118 65.81 42.08 1.07 Intercept 2.029 ***
LHP10 −0.014 ***

ALLMEAN−FIRST 0.008 ***
B16TRC −0.001 ***

HCBP70
Equation (2)

(109)

1.59 m
11.22%

−0.0160 0.1125 65.26 41.25 2.84 Intercept 1.950 ***
ALLMEAN−FIRST 0.008 ***

B14TRC 0.001 ***
B16TRC −0.002 ***

HCBP75
Equation (2)

(107)

1.51 m
10.11%

−0.0087 0.0584 62.27 37.51 2.78 Intercept 2.106 ***
ALLMEAN−FIRST 0.007 ***

B14TRC 0.001 ***
B16TRC −0.001 ***

HCBP80
Equation (2)

(107)

1.55 m
9.94%

−0.0076 0.0490 58.93 33.44 2.84 Intercept 2.420 ***
LHP75 0.016 ***
B14TRC 0.001 ***
B16TRC −0.001 ***

HCBP90
Equation (2)

(110)

1.49 m
8.91%

−0.0031 0.0185 63.62 39.36 2.76 Intercept 2.407 ***
LHP75 0.019 ***
B14TRC 0.001 ***
B16TRC −0.001 ***

HCBP95
Equation (2)

(111)

1.47 m
8.31%

−0.0017 0.0096 70.75 49.12 2.83 Intercept 2.350 ***
LHP75 0.023 ***
B14TRC 0.001 ***
B16TRC −0.001 ***

HCBP99
Equation (2)

(107)

1.40 m
7.46%

−0.0012 0.0062 76.91 58.34 2.93 Intercept 2.118 ***
LHAAD 0.052 ***
LHP20 0.018 ***

ALLFIRST 0.002 **

HCBMAX
Equation (2)

(107)

1.48 m
7.73%

−0.0010 0.0054 78.35 60.61 1.42 Intercept 2.272 ***
LHP75 0.020 ***

ALLFIRST 0.003 ***
ALLMEAN−FIRST −0.003 *

Notes: RMSE—absolute (m) and relative (%); bias—in percentage; p.bias—bias p-value; R2—coefficient of
correlation of observed versus predicted in percentage; EF—model efficiency in percentage; VIF—highest variance
inflation factor present in the model; parameter—independent variables of the model (see acronyms in Figure 2);
Est.—estimated coefficient; p-value—p-value of the variables in the model (*, p-value ≤ 0.05; **, p-value ≤ 0.01;
***, p-value ≤ 0.001).The Equation refers to the models explained in Section 2.3.2 (Equation (1)—potential and
Equation (2)—exponential).

2.3.2. Estimates of HCB Models

Firstly, it needs to be clarified that in this study, as in previous studies [5,38], the
understorey was defined as suppressed trees and shrubs growing beneath an overstorey
canopy. The hypothesis of this study is the lower height of that overstorey canopy may
be set from HCB. That said, several HCB were calculated per plot (HCBM) from the field
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data (112 plots—yellow circles in Figure 1). The list of HCBs is included in the blue table of
Figure 2. These HCBM will be hereupon called “filters”, as they will be used as such for the
LiDAR point cloud. Then, potential (Equation (1)) and exponential (Equation (2)) models
were tested to find the optimal empirical relationships between the different HCBM and
LiDAR metrics (LiDAR metrics with an orange star in Figure 2). Parameters ai are to be
estimated and xi are LiDAR metrics.

HCB = a0·
n

∏
i=1

xai
i (1)

HCB = ea0+∑n
i=1 ai·xi (2)

We used the linearised form of both equations to fit the models with ordinary least
squares with lm function from stats package v.4.1.0 [51] in R software v.3.6.2 [52]. The
inherent systematic bias of the prediction when undoing the linearisation was corrected
following Sprugel [53]. Variable selection was performed with the function regsubsets of the
package leaps v.3.1 in R software v.3.6.2 [52].

Models were selected and inspected graphically, and evaluated numerically through
the root mean squared error (RMSE), both absolute and relative (in meters and percent-
age, respectively); mean error (bias) in percentage and its p value to assess whether it is
significantly different from zero; the coefficient of determination (R2) of observed versus
the predicted percentage; and the model efficiency (EF) percentage, which is commonly
used to assess the model performance (values nearer to one indicate a model with more
predictive skill). Finally, to avoid overfitting, the vif function of the package car v.3.0-10 [54]
was applied to select the most parsimonious model.

2.3.3. Understorey Analysis and Assessment

The process of understorey analysis consisted of three steps. First, the original point
cloud relating to the 10 plots with understorey field data was filtered using both the mea-
sured and the estimated HCB as upper thresholds. Each HCB (measured or estimated)
produced different filters and generated different understorey point clouds. Secondly, sev-
eral metrics were calculated on the filtered point cloud with easyLaz® for each understorey
point cloud filtering (the LiDAR metrics with a green and purple star in Figure 2). We
established a lower threshold of 10 cm for point cloud returns to remove noise, herbaceous
and non-detected ground points. Finally, the estimation of UH was calculated through the
mean height and the height percentiles collated in the orange table in Figure 2 (metrics
with a green stars) of the filtered point cloud. To estimate UC, LFCC, LFCCALL, LFCCMEAN,
LFCCAMEAN, LFCCMODE and LFCCAMODE metrics were evaluated (see acronyms in the
orange table in Figure 2—metrics with a purple star). Martinuzzi et al. [29] found the
use of two understorey airborne LiDAR metrics along with a common slope-aspect trans-
formation variable that could accurately estimate the presence of shrub cover (accuracy:
83%). The two understorey LiDAR metrics utilised in their study were the percentage of
ground points and percentage of points between 1 and 2.5 m compared to all plot points.
Additionally, most of the studies consulted used variables related to the number of points to
estimate UC [11,24,29,30]. For this reason, in our study the variables related to percentage
of points were used to estimate UC.

To assess which combination of metrics and HCB filters get the best UH and UC pre-
dictions, we validated the results with the field data by calculating the RMSE (absolute and
relative) and bias of the differences between observed and predicted values (UHM—UCM vs.
UHE—UCE). In addition, a sensitivity analysis based on the relative RMSE was performed in
order to evaluate the influence of several factors on the UH and UC estimate. For this purpose,
the plot.design function on graphics package v 3.2.1 [53] was used. This function plots the
magnitude of the effect of each factor on the dependent variables, in this case represented
by the relative RMSE. This plot is calculated by considering the levels of the different factors
independently: the factors are plotted on the x axis, while the levels for each of these factors
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are plotted as a vertical line. The longer this vertical line, the greater the influence of the
factor on the quality of UH and UC estimates. In addition, the relative RMSE average is
represented by a horizontal line [47]. The following factors and their levels were analysed:
HCB filters (levels: HCB included in blue table of Figure 2), plots used (levels: all plots and
sample without outlier plots), type of HCB (levels: measured and estimated) and metrics
(levels: LiDAR metrics with a green and purple star in Figure 2).

3. Results and Discussion
3.1. Estimates of HCB Filters

Figure 3 displays the statistical summary (mean, minimum, maximum and standard
deviation) for the dependent (HCBM) (Figure 3a) and independent variables (LiDAR met-
rics) present in the models (Figure 3b). LiDAR metrics can be grouped into three blocks:
variables that describe the number of returns (ALLTOTAL, ALLFIRST, ALLMEAN-FIRST), verti-
cal profile descriptive variables of the total vegetation (LHPx) and descriptive variables by
bins (Bix). The HCBM filters with the highest variability are HCBP50, HCBMAX and HCBP40,
while ALLTOTAL, LHP20 and B18TRC are the independent variables with the highest variabil-
ity. On the other hand, the dependent and independent variables with the lowest variability
are HCBP20 and B19RP, respectively.

Table 2 presents HCB models of the different filters using LiDAR metrics. Residual
versus predicted plots are attached in Figure A4, Appendix B. Relative RMSE values range
between 7.73% for HCBMAX and 40.31% for HCBMIN; the absolute RMSE is lower than
1.70 m in all cases. HCB metrics using percentiles equal or above the mean (HCBMEAN,
HCBP60, HCBP70, HCBP75, HCBP80, HCBP90, HCBP95, HCBP99 and HCBMAX) are predicted
more accurately by the LiDAR metrics than the other HCB models. The efficiency (EF)
varies between 7.01% (HCBMIN model) and 60.61% (HCBMAX model). None of the models
showed significant bias (p-value > 0.05). Finally, the results show a slight overestimation in
14 of the HCB models. Within each plot, several species and different stages of development
coexist as it is a mixed, mostly two-layered forest, making the measurement of the HCB
per plot imprecise. A mean measurement of the individual HCB values is not sufficient to
capture the existing variability.

The HCBP70 and HCBP75 models have selected the same predictor variables
(ALLMEAN-FIRST, B14TRC and B16TRC). The same situation is found in the HCBP80, HCBP90
and HCBP95 models, whose predictor variables are also common (LHP75, B14TRC and
B16TRC). This phenomenon can be explained by the summary statistics proximity collected
in Figure 3 for these HCB filters. On the other hand, though at least one metric describing
the entire vertical profile of the vegetation (LHi) enters in 80% of models, the bin metric
(e.g., B16TRC and B14TRC) are the most explanatory variables. The combination of percentile
and the fraction of points in several LiDAR bin metrics has been used to fit regression
models in previous studies [38].

The HCB estimate through LiDAR metrics have presented a wide range of correlation
coefficients (R2) between 31.12% for the HCBMIN model and 78.35% for the HCBMAX model.
Our results are similar to the research conducted by other authors. Maguya et al. [55]
obtained high RMSE and low consistent RMSEcv with HCB LiDAR models based on
traditional percentile due to the high degree of correlation among the variables. Their best
result was 65% of R2 with 1.62 m RMSE. Luo et al. [56] evaluated HCB models based on
different tree-height groups (less than 15 m; 15 to 25 m; 25 to 35 m and >35 m) obtaining
correlations between 52% and 86%, which improved as the height of the group of trees
studied increased. These results improve those obtained by Stefanidou et al. [38], who
found a correlation of 15%, applying voxel-based estimation, and 75% applying a linear
regression model.
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3.2. Understorey Evaluation
3.2.1. Understorey Height Evaluation

To evaluate the UH, 15 LiDAR metrics per filtered point cloud were analysed. Figure 4
shows the performance of different LiDAR metrics with respect to HCB filters, both mea-
sured (first column in Figure 4) and estimated (last column), to estimate the UH using all
plots (first row in Figure 4) and a sample without outlier plots (last row) (without taking
account plots 47 and 49).
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Figure 4. Results of estimated UH: relative RMSE (%) (y axis) for HCB models (filters applied) and
for each metric appraised (x axis) using all plots and a sample without outlier plots (rows in facet
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set of metrics in UH evaluation and their errors are included in Supplementary Materials—Table S1.

In general, for HCBM-i and HCBE-i filters, the metrics appraised present two types
of behaviour: (i) if HCB filters ε (HCBMIN, HCBP10, HCBP20, HCBP25, HCBP30), Figure 4
shows an inverse relationship between relative RMSE and LiDAR metrics, i.e., the relative
RMSE decreases as the percentile of LiDAR metric increases and (ii) if HCB filters ε

(HCB40, HCBP50, HCBMEAN, HCBP60, HCBP70, HCBP75, HCBP80, HCBP90, HCBP95, HCBP99,
HCBMAX), Figure 4 shows an inverse and direct relationship between relative RMSE and
LiDAR metrics, where LHMEAN metric is the inflection point. Although the plots have
similar ecological characteristics, the overlap of tree and shrub canopies varies among
plots, which visibly influences the estimates obtained. For this reason, if we apply filters of
the higher percentiles or the maximum value of HCB, submerged crowns could be kept,
and the understorey measurements overestimated. On the contrary, when filters of the
lower percentiles or the minimum value of HCB are applied, returns belonging to the larger
bushes may be eliminated and underestimate the measurements, excluding returns that
remain between the filter made and the actual crown base height. For the metric 10th
percentile, all the HCB filters have a relative RMSE close to 100%. So, the metric LHP10 is
the least sensitive to the establishment of height thresholds. From this metric to the metric
LHP60 (along the x-axis in Figure 4), their sensitivity in the face of HCB filter variations
is very similar. However, it increases considerably until it reaches its maximum value
using LHMAX. This metric is the most sensitive to variations in the HCB filter. In the last
case, the use of the HCBP25 filter shows a relative RMSE that ranges from 25% to 75%
(using estimated HCB filters—without outlier plots and using estimated HCB filters—all
plots, respectively), while the HCBMAX filter shows a relative RMSE that varies between
160% (using estimated HCB filters—without outlier plots) and 225% (using measured HCB
filters—all plots).

Although the trends observed above are independent of measured/estimated HCB
filters and all plots/without outlier plots, Figure 4 shows the relative RMSE decreases in all
UH evaluations using a sample without outlier plots; however, the same RMSE is obtained
using measured/estimated HCB filters.
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Estimates of the mean understorey height were calculated from estimated and mea-
sured HCB filters using all plots and a sample without outlier plots and were compared to
field measurements. The best results of this analysis were included in Table 3. Considering
these results, LiDAR metrics—specifically LHP75, LHP80 and LHP95—utilising the point
cloud filtered with HCBP25 were generally effective for quantifying the mean understorey
height. Interestingly, RMSE decreased more using the estimated filters than the measured
filter without outliers. In a specific way, the results using the estimated HCBP25 filter and
the LHP95 LiDAR metric show the highest correlation (R2 = 0.80; p-value = 0.0179) and the
lowest RMSE (RMSE = 0.88 m). These results improve the estimates obtained in previous
research, setting aside the differences between those studies. For example, Sumnall et al. [5]
found a high correlation between filtered point clouds and field measurements for esti-
mating the maximum understorey height (R2 = 0.75; RMSE = 2.90 m), thereby improving
the results reported by Goodwin et al. [25] or Su and Bork [33], where no relationship
between LiDAR metrics and field data for calculating the maximum UH was found. The
point density is one of the main differences between these studies (Sumnall et al. [5],
10 pulses/m2; Goodwin et al. [25], 1 point/m2; Su and Bork [33], 0.54 points/m2). However,
Hill and Broughton [6] linked these results with the fact that the dominant trees form a dense
and closed canopy, preventing the laser pulses from penetrating the overstorey canopy.

Table 3. Understorey height: Summary error statistics produced by assessing field measurements
and LiDAR metrics.

Filter LiDAR
Metric Plots Model

Significance RMSE RMSEr

Estimated
HCBP25

LHP75 All plots R2 = 0.68
p-value *

2.10 m 33.90%

LHP95
Without
outliers

R2 = 0.80
p-value *

0.88 m 12.63%

Measured
HCBP25

LHP75 All plots R2 = 0.77
p-value **

2.46 m 39.74%

LHP80
Without
outliers

R2 = 0.76
p-value *

2.29 m 32.83%

Notes: RMSE and RMSEr—absolute (m) and relative (%); R2—coefficient of correlation of observed versus
predicted; p-value—p-value of the variables in the model (*, p-value ≤ 0.05; **, p-value ≤ 0.01).

Taking into account the results of filter-metric combinations included in Supplemen-
tary Materials—Table S1 at plot-level, plot 49 had higher overestimation errors (mean
error = −3.15 m: HCBE-P25-LHP95 error = −4.84 m; HCBM-P25-LHP80 error = −1.46 m). The
causes of these discrepancies have already been described in Section 2.2.1. These errors
explain why the elimination of the outlier plots reduced the RMSE in both measured and
estimated HCB filters, and why the RMSE decreased more in the estimated filter than in the
measured filter. In addition, the major underestimation errors occurred in plot 58 (mean
error = 2.53 m: HCBE-P25-LHP75 error = 2.86 m; HCBE-P25-LHP95 error = 1.12 m; HCBM-P25-
LHP75 error = 3.23 m; HCBM-P25-LHP80 error = 2.89 m) and plot 134 (mean error = 2.67 m:
HCBE-P25-LHP75 error = 3.34 m; HCBE-P25-LHP95 error = 1.64 m; HCBM-P25-LHP75
error = 3.07 m; HCBM-P25-LHP80 error = 2.65 m). This finding is consistent with the re-
ported tendency for shrublands by Su and Bork [33]. These errors were attributed to LiDAR
points which usually intersect the sides of the shrub canopy, but not the shrub top. In
addition, previous studies have shown the inverse relationship between the canopy cover
and the accuracy of understorey estimates [25,30,33]. This is principally related to the fact
that the number of LiDAR returns from the lower strata is reduced as the canopy perme-
ability decreases [5]. Although the impact of the canopy cover on the understorey estimates
has not been analysed in our study, it is noteworthy that the previous plots (plots 58 and
134) have the highest percentages of ground points, i.e., the highest permeability (7.62%
and 8.97%, respectively) (Figure A3, Appendix A). These values show that a higher point
density is required for the analysis of sub-canopy features. Theoretically, if the permeability
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is 10%, then it is necessary for a density of 10 pts/m2 to reach 1 ground/sub-canopy point
per m2.

Goodwin et al. [25] showed the relationship between the ability to estimate understorey
structure and the percentage of first returns (FR) recorded from the understorey layer when
the percentage of FR is greater than 50%. In our study, 3.6% (mean value) of all FR are
placed in the understorey layer and this percentage is 3.89% and 7.47% in the plots 58 and
134, respectively. Despite the fact that these plots also have the highest percentages of FP
in the understorey layer, those values are less than 50% observed by Goodwin et al. [25]
and that relationship was not found in our study. However, these circumstances have
been relegated to second place because the field mean height records (7.58 and 8.71 m,
respectively) are greater than the upper height thresholds using HCBP25 filter (6.99 and
7.67 m, respectively), which really might explain the underestimation errors. In the same
way, Stefanidou et al. [38] found an underestimation of the HCB, with the consequent
underestimation of the understorey, since this vegetation layer creates a continuous vertical
point distribution. In either case, as it is a mixed forest, these errors are compensated
throughout the plot by the inherent variability of these formations. In addition, a part
of the error in our measurements is probably due to the time lapse between the LiDAR
measurements (2016) and the understorey field-data collection (2019). However, it can be
assumed that dimensions (height, diameters) of understorey (shrubs) were not changed
significantly during this period. First of all, a dense and closed canopy layer that prevents
greater penetration of light to the understorey is present in all observed plots. Furthermore,
in the period 2016–2019, there were no cuts of large trees from the overstorey layer within
the observed plots that could provide more light for the understorey and greater stimulus
to its growth.

On the other hand, Andersen et al. [7] reported a correlation coefficient of 53 and 9%
under Douglas fir stands between 95 and 65 years old, which were the worst results in
the youngest stands. In this work, understorey was the vegetation between 1.8 m and the
base of the overstorey. Latifi et al. [8] found 80% R2 in shrub, considering this layer as
the understorey without herb or moss. Venier et al. [30] found an explained variance of
87%, a cross-validation error of 15.6% using a voxel-based model, and explained 74.4%
of the variance with 12.9% cross-validation error employing a Random Forest model. In
this research, the understorey layer was all vegetation under 4 m. These results reflect
the variability of criteria regarding which vegetation to include as part of the understorey.
Although the differences seen are due to the different floristic composition of each studied
stand, the state of development and topography, among other aspects, it would be necessary
to standardise the nomenclature to be applied, creating more than one layer of sub-canopy,
shrubby understorey vegetation and herbaceous understorey. The defined layers could be
studied independently of the existence of all of them in the same study area.

3.2.2. Understorey Cover Evaluation

Six LiDAR metrics per filtered point cloud were studied in the UC evaluation. Figure 5
shows the evolution of the RMSE in the six metrics used to evaluate UC according to the
HCB filters used. Organised in the same order as Figure 4, measured HCB filters are in
the first column, estimated HCB filters are in the second, and sample without outlier plots
(plots 47 and 49) are in the last row.

In general, Figure 5 shows a relative RMSE decrease for the LFCCMEAN and LFCCAMEAN
metrics in all applied filters and, although in a lower degree, also in LFCCMODE for the
HCBP10 and HCBMIN filters, and LFCC for the HCBMIN filter. For the rest of the HCB filters
(HCBP20, HCBP25, HCBP30, HCB40, HCBP50, HCBMEAN, HCBP60, HCBP70, HCBP75, HCBP80,
HCBP90, HCBP95, HCBP99, HCBMAX) the relative RMSE values remained almost constant
in the LFCC, LFCCALL, LFCCMODE and LFCCAMODE metrics. In all cases, the RMSE was
greater in the filters that represented a higher HCB, although in the LFCCMEAN metric in
HCBM filters ε (HCBP50, HCBMEAN), the RMSE decreased in values lower than the result
obtained for the HCBP20 filter. For the HCBE filters ε (HCBP50, HCBMEAN, HCBP60), the
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RMSE decreased similarly to the result obtained for HCBP10. The elimination of the outliers
(plots 47 and 49) reduced the RMSE in all filters. RMSE decreased more in the estimated
filter than in the measured filter without outliers.
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Figure 5. Results of estimated UC: relative RMSE (%) (y axis) for HCB models (filters applied) and
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metrics in UC evaluation and their errors are included in Supplementary Materials—Table S2.

There are two factors that trigger the relative RMSE to values between 400 and 650. The
first is to use the HCB filters that reflect higher heights and the second is to apply metrics that
consider a higher percentage of pulses when evaluating the understorey. In these cases, the
lower branches of higher trees as well as submerged trees are included in UC, overestimating
the actual value measured in the field. The use of lower height filters, together with statistics that
count pulses from a lower height, LFCCMEAN and LFCCAMEAN, mitigates this overestimation.
As in the estimation of UH, this is due to the different overlap of tree and shrub canopies from
plot to plot, despite the study area having similar ecological characteristics.

All metrics present constant sensitivity throughout the different applied filters, except
the LFCCMODE metric, which presents a greater variation depending on the applied filter.
Relative RMSE increases slightly in LFCCMODE for the filters corresponding to the higher
percentiles (HCBP90, HCBP95, HCBP99, HCBMAX); it remains constant for the filters (HCBP60,
HCBP70, HCBP75, HCBP80) and decreases for those of lower height (HCBMIN, HCBP10, HCBP20,
HCBP25, HCBP30, HCBP40, HCBP50, HCBMEAN). Relative RMSE in the LFCC metric presents
sensitivity in the HCBMIN filter, which highly decreased. On the other hand, the LFCCAMEAN
metric is the one that offers more stable and lower values for all applied filters.

There are no significant differences between measured and estimated filters, except for
the HCBMIN and, to a lesser extent, for HCBP10 filters, where the relative RMSE decreases
drastically when considering the measured instead of the estimated filters. Relative RMSE
decreases considerably when removing outliers in both measured and estimated filters.

Tables 3 and 4 show the best results of the mean UC derivatives of estimated and
measured HCB filters estimates using all plots and a sample without outlier plots (without
plots 47 and 49) and compared to field measurements.
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Table 4. Understorey cover: summary error statistics produced by assessing field measurements and
LiDAR metrics.

Filter LiDAR
Metric Plots Model

Significance RMSE RMSEr

Estimated
HCBP10

LFCCAMEAN All plots R2 = 0.84
p-value **

18.64% 141.58%

LFCCAMEAN
Without
outliers

R2 = 0.81
p-value *

17.53% 107.55%

Measured
HCBP10

Measured
HCBMIN

LFCCAMEAN All plots R2 = 0.70
p-value *

13.35% 101.36%

LFCCMEAN
Without
outliers

R2 = 0.69
p-value • 8.76% 53.73%

Notes: RMSE and RMSEr: absolute (cover percentage) and relative (%); R2: coefficient of correlation of observed
versus predicted; p-value: p-value of the variables in the model (•, p-value ≤ 0.1; *, p-value ≤ 0.05; **, p-value ≤ 0.01).

The values of LFCCAMEAN and LFCCMEAN metrics obtained from the point clouds
filtered with estimated and measured HCBP10 and measured HCBMIN filters showed the
best results in the UC calculation. Contrary to what happens in the case of the UH, the RMSE
decreases more when the plots with anomalous values are eliminated in the measured
filters, instead of estimated filters.

Specifically, LFCCAMEAN obtained from the point cloud filtered with HCBP10 have
the highest correlation (R2 = 0.84; p-value = 0.0022) using all the plots in the calculation
of UC. The LFCCMEAN metric estimated from the filtered cloud with HCBMIN without
anomalous plots has obtained the highest precision (53.73% relative RMSE), but this anal-
ysis is biased (p-value = 0.0548). Since no analysis excels in all the parameters studied,
we have considered the combination of HCBP10 filter and LFCCAMEAN metric with the
elimination of plots with outliers as the best result, presenting a high correlation (R2 = 0.81;
p-value = 0.0144), although the relative RMSE is high (107.55%). Similar results were ob-
tained by Goodwin et al. [25], with R2 values between 0.68 and 0.87 in a multi-use forested
area where Western hemlock (Tsuga heterophylla) is the dominant species; by Skowroski
et al. [57], with R2 values of 0.74 in Pitch Pine lowlands and 0.59 in mixed hardwoods;
Wing et al. [24], with R2 values of 0.70–0.80 in ponderosa pine (Pinus ponderosa Dougl.),
stands accompanied by other secondary species, and Sumnall et al. [5] found R2 values of
0.82 (unfiltered data) and to 0.83 (filtered data) at plot level in multi-layered Loblolly pine
(Pinus taeda L.) forest.

Considering the results of filter–metric combinations included in Supplementary
Materials—Table S2 at plot level, the major overestimation errors in cover percentage
occurred in the plot 47 (Mean error = −18.92: HCBE-P10-LFCCAMEAN error = −14.67;
HCBM-MIN-LFCCMEAN error = −23.17). As in UH calculation, outlier-plots elimination
reduces the RMSE in estimated HCB filters and, to a lesser extent, in measured HCB filters.
In addition, the plot 134 (Mean error = −16.46: HCBE-P10-LFCCAMEAN error = −18.35;
HCBM-P10-LFCCAMEAN error = −15.96; HCBM-MIN-LFCCMEAN error = −13.19) also shows
a very high overestimation.

Results accuracy is conditioned by two factors: (1) the vertical distribution of vegeta-
tion in multi-layered overstorey, and (2) the penetrability of the LiDAR pulses. Previous
research shows that plots where understorey canopy layers and dominant layers intermix
were more prone to errors [5,24] and higher overstorey canopy densities typically occlude
laser [5,6,58], which makes it difficult to discriminate 3D point cloud information into
recognisable structures within a forest context [5,59]. In our study area, the combination of
these two factors has negatively influenced the result.

The decrease in LiDAR pulses in the understorey due to canopy occlusion is more evi-
dent at lower pulse densities, such as in Su and Bork [33], with densities of 0.54 points m−2,
although it also negatively affects studies with higher LiDAR densities, as in Wing et al.
2012 with 5.4 points m−2. However, Venier et al. [30] found larger errors in the highest un-
derstorey stratum (2.5–3.5 m) than in the lowest (0.5–1.5 m) with 11.69 points m−2, suggest-
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ing that there was no reduction in the estimations associated with potential occlusion [30].
This is consistent with our work, since no relationship was found between a lower point den-
sity and an increase in estimates error with mean understorey pulse density of 1.28 points m−2

(15.59% of total returns). Nevertheless, LiDAR acquisition during overstorey leaf-off condi-
tions and understorey leaf-on conditions to increase understorey LiDAR point densities
would be recommended, but this is difficult in areas with dense overstorey conditions that
would also increase acquisition costs [24].

The relationship among understorey species, height and size for each plot has been
analysed (Figure A2, Appendix A). Although plot 134 is the one with the highest un-
derstorey height (8.71 m), there is no clear relationship between understorey height and
understorey cover estimate. Likewise, no relationship between field coverage and the
errors obtained has been seen. In contrast, Sumnall et al. [5] actually found that uncertainty
increased as horizontal cover and height increased. In addition, no relationship was ob-
served between the understorey species and the errors observed. This is consistent with
the research by Venier et al. [30] that did not observe any influence of the vegetation on
the understorey cover predictions, which allows the understorey to be predicted only from
LiDAR, reducing field work and its cost.

Plot size also influences the relationship between measurement and estimation from
LiDAR variables. Goodwin et al. [25] (R2 0.87 at plot level and 0.68 at subplot level) found
that this relationship became weaker as the size of the plots decreased. Understanding the
effects of increasing plot size on model variability would help to determine the most efficient
sampling design [24]. Although all our plots were the same size, it seems reasonable to think
that by applying the models to larger study areas, the mean errors would be compensated
and therefore predictions would be improved.

There is a great deal of research studying the understorey characteristics below a given
height (Skowronski et al. [57] between 1 and 4 m height; Gopalakrishnan et al. [60] from
ground less than 3 m; Venier et al. [30] from 50 cm to 4 m). This type of methodology
is conditioned to the forest type, and its application is less reliable in larger areas. The
methodology proposed here has the advantage of adapting to the peculiarities of complex
forest formations and could be extended to larger extensions of the territory. Similar studies
have been used successfully, e.g., Riaño et al. [59] performed cluster analysis to determine
crown base height, and thus, tree and understorey heights for estimating fuel loads.

3.3. Effects of Factors on the Quality of UHE and UCE

Figure 6 shows the results of the sensitivity analysis produced by the plot.design
function. The factors are plotted on the x axis, while the levels of each of these factors are
plotted on a vertical line. In addition, the length of the vertical line indicates the influence
of factors in relation to RMSE, and the mean value of this measure is represented by the
horizontal dashed line. According to this information, the HCB filter, which was used as the
upper height threshold to select the understorey LiDAR points, is the most important factor
affecting the estimates of UH (Figure 6a), while this factor and the LiDAR metric are the
most important factors affecting the estimates of UC (Figure 6b). Despite the importance
of the HCB filter for the estimates of UH and UC, the distributions of HCB-filter levels
along their vertical lines are different. While in the second case (UC—Figure 6b) the LiDAR
metrics are almost as important as the type of filter when determining the precision of
the estimates, LFCCAMEAN and LFCCMEAN are clearly better than the rest of the metrics
when estimating UC. The type of filter, measured vs. estimated, is less important than in
the UH case study, although it is noteworthy that in this case the measured filters offer
better results.
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On the other hand, the type of HCB (estimated or measured) and plots used (all plots
or without outlier plots) have much less influence on the estimates of UH and UC than the
other factors considered. In both cases (UH and UC estimates), the use of a sample without
outlier plots slightly improves the results of the understorey estimates. These results also
show how the use of estimated HCB filters, against the use of measured HCB, does not
significantly influence the accuracy of the estimates. Even in the case of UH estimates, the
results using estimated HCB filters are better, which was evidenced in the previous section
(Figure 4). Considering these results, the use of upper height thresholds using estimated
HCB filters would facilitate the applicability of this method and also allow field works to be
dispensed, with the consequent reduction in costs, in regions with similar characteristics.

Considering the effect of the HCB filter on the mean UH estimates, the influence of
this factor on the estimates of the understorey maximum height could be much higher,
especially when the HCB filter is smaller than the maximum UH, which may result in
an underestimation of UH. It is important to note, however, that this is just one possible
interpretation of the results, which might be affected by other issues, such as the design
of multi-return LiDAR systems (“blind spot”), the point density, the canopy penetrability,
the overlapping vertical layers, the vertical continuity of vegetation, among others [5,24].
Moreover, despite the importance of the upper height threshold, to our knowledge, this
factor has not been analysed in previous studies. On the other hand, the effect of other
factors, such as the terrain slope, on the estimates of UH and UC has been analysed in
previous studies, although a relationship between the slope and the understorey estimates
has not been found [26]. In our study, the slope has not been analysed; however, our results
show no evidence of the influence of this factor, since the field plots show a large enough
number of ground points to accurately model the bare ground (Figure A3, Appendix A).

4. Conclusions

In this study, plot-level UC and UH were estimated for an even-age mixed deciduous
forest based on airborne LiDAR data. The novelty of our approach is to use HCB models,
derived from field measurements and LiDAR metrics, as point cloud filters to remove
canopy layer noise to obtain more accurate UC and UH estimations. Since several species
and different stages of development coexist, a mean measurement of the individual HCB
values is not sufficient to capture the existing variability. The developed HCB models have
the advantage of adjusting throughout the forest horizontal area depending on its structure
and could be extrapolated to higher study areas. HCB models in the larger percentiles
have shown fairly robust behaviour, both in terms of goodness-of-fit parameters and
consistency in the selected independent variables, since those HCB models whose values
were close (e.g., HCBP80, HCBP90, and HCBP95) share the same independent variables and
their accuracy improved with the filter height.

The two sets of filters, measured and estimated HCB, have given similar results,
proving that both methods are comparable. In view of the performance of both validations,
we can state that it is possible to estimate the understorey with LiDAR data, obtaining
similar precisions in the UC and UH estimations. This represents cost savings when
obtaining information on the structure of the understorey and the possibility of generalising
the output for a whole stand on a wall-to-wall basis. In addition, the fact that the UH
obtains better results with estimated HCB filters gives way to reduce field inventory tasks,
or even downscale them to a verification of the results obtained. In general, the RMSE
tendency in the filter–metric combinations study does not change with the HCB filter
applied. However, the RMSE magnitude does depend on the HCB filter.

Finally, the sensitivity analysis has been shown to be a very useful tool. The key finding
of this analysis was that the upper thresholds (HCB filters) used to select understorey
LiDAR points have the same importance in the quality of the UH and UC estimates as
the LiDAR metrics. While further studies are necessary to substantiate these results, this
will be a key issue in the development of studies for understorey UH and UC detection,
estimation and analysis. The future of the research on the quantification of the vegetation
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under the canopy layer is also linked to the use of LiDAR data with a greater capacity to
penetrate the main canopy, with a higher density of points per square meter, i.e., attached
to unmanned aerial vehicles.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs14092095/s1; Table S1: Set of metrics in UH evalua-
tion and their errors; Table S2: Set of metrics in UC evaluation and their errors.
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Abbreviations
The following abbreviations are used in this manuscript:
dbh Diameter at breast height.
hcb Individual height to crown base.
HCB Height to canopy base.
HCBM/HCBE Height to canopy base models using measured and estimated data, respectively.
UHM/UHE Measured and estimated understorey height.
UCM/UCE Measured and estimated understorey cover.

Appendix A. Comparison between the Field Data and LiDAR Data

Figure A1 show the location and field characteristics of the trees using field data. In
addition, the understorey LiDAR height and cover for each plot were also included in these
Figures. These layers were calculated using a conservative height of 10 cm (30 cm for plots
48 and 52) as a threshold between LiDAR ground and vegetation returns. The use of this
threshold was based on the LiDAR vertical accuracy. On the other hand, the upper height
threshold was fit using the maximum value of understorey height measured in each plot.
Finally, the cells in which number of LiDAR returns was more than two were considered
understorey vegetation. This condition was previously used by Glenn [26].

https://www.mdpi.com/article/10.3390/rs14092095/s1
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Appendix B. Quantitative Results

Table A1. Statistical summary of dependent variables (HCBM) and predictor variables of the HCB
models (LiDAR metrics) (see acronyms in Figure 3). Data used to create Figure 4.

Parameter Mean Min Max SD

HCBMIN 3.75 0.93 7.39 1.57
HCBP10 5.63 2.69 9.91 1.42
HCBP20 6.84 4.48 10.90 1.19
HCBP25 7.51 5.29 12.10 1.40
HCBP30 8.14 4.85 14.02 1.72
HCBP40 9.92 6.23 16.24 2.33
HCBP50 11.44 7.24 16.60 2.45

HCBMEAN 11.35 7.17 15.51 1.47
HCBP60 13.07 8.00 17.32 2.15
HCBP70 14.20 8.39 17.87 2.08
HCBP75 14.94 8.76 19.05 1.91
HCBP80 15.55 8.97 19.54 1.89
HCBP90 16.77 11.17 21.10 1.92
HCBP95 17.69 13.38 22.78 2.06
HCBP99 18.81 14.35 24.67 2.17

HCBMAX 19.07 14.40 25.50 2.36
ALLFIRST 162.74 118.13 193.34 16.89

ALLMEAN−FIRST 94.30 62.34 111.57 8.19
ALLTOTAL 4897.66 1622.00 6063.00 1647.01

LHAAD 6.11 2.68 8.90 1.31
LHL3 −0.67 −1.39 0.68 0.40

LHMAD−MEDIAN 4.62 0.94 9.32 1.71
LHSK −0.71 −2.77 1.45 0.52
LHP10 6.19 0.39 15.29 3.39
LHP20 10.37 1.93 19.50 3.62
LHP25 12.03 2.73 20.79 3.47
LHP30 13.89 3.42 22.06 3.24
LHP75 22.90 9.15 31.01 3.37
B11TRC 110.54 6.00 309.00 61.27
B14TRC 135.35 15.00 308.00 71.21
B16TRC 157.40 23.00 391.00 81.40
B17TRC 189.57 29.00 456.00 90.07
B18TRC 206.03 31.00 666.00 105.10
B19RP 0.06 0.01 0.20 0.04
B21RP 0.39 0.01 0.77 0.16
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Figure A4. Residuals versus predicted values plots of: (a) HCBMIN model; (b) HCBP10 model; (c) 
HCBP20 model; (d) HCBP25 model; (e) HCBP40 model; (f) HCBP40 model; (g) HCBP50 model; (h) HCB-
MEAN model; (i) HCBP60 model; (j) HCBP70 model; (k) HCBP75 model; (l) HCBP80 model; (m) HCBP90 
model; (n) HCBP95 model; (o) HCBP99 model; and (p) HCBMAX model. 
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