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Abstract: With drastic changes to the environment arising from global warming, there has been an
increase in both the frequency and intensity of typhoons in recent years. Super typhoons have caused
large-scale damage to the natural ecological environment in coastal cities. The accurate assessment
and monitoring of urban vegetation damage after typhoons is important, as they contribute to post-
disaster recovery and resilience efforts. Hence, this study examined the application of the easy-to-use
and cost-effective Unmanned Aerial Vehicle (UAV) oblique photography technology and proposed
an improved detection and diagnostic measure for the assessment of street-level damage to urban
vegetation caused by the super typhoon Mangkhut in Shenzhen, China. The results showed that:
(1) roadside trees and artificially landscaped forests were severely damaged; however, the naturally
occurring urban forest was less affected by the typhoon. (2) The vegetation height of roadside trees
decreased by 20–30 m in most areas, and that of artificially landscaped forests decreased by 5–15 m;
however, vegetation height in natural forest areas did not change significantly. (3) The real damage to
vegetation caused by the typhoon is better reflected by measuring the change in vegetation height.
Our study validates the use of UAV remote sensing to accurately measure and assess the damage
caused by typhoons to roadside trees and urban forests. These findings will help city planners to
design more robust urban landscapes that have greater disaster coping capabilities.

Keywords: Unmanned Aerial Vehicle (UAV); urban vegetation; typhoon; coverage; canopy height

1. Introduction

Typhoons, a type of tropical cyclone generated in the Pacific Ocean, are commonly
occurring extreme climatic events that can adversely impact human societies and natural
systems around the world [1–3]. Given the propensity for increasing global climate change,
typhoon intensity is predicted to increase in the foreseeable future and amplify disaster
risks [4,5]. This was ascertained by the super typhoon Mangkhut in 2018, which resulted in
the most severe and widespread ecological damage in Hong Kong, China, in the last three
decades [6]. It caused a direct economic loss of about HK $4.6 billion.

Typhoons are major natural disturbances to urban vegetation. The strong winds can
reduce tree leaves, break branches, and even uproot trees [7]. They not only change the
vegetation composition, structure, and spatial patterns [3,8,9], but also cause intense loss of
native biomass, further affecting carbon storage and productivity in urban ecosystems [10].
Therefore, it becomes critical to designate effective strategies to mitigate the damage to
urban vegetation caused by typhoons. Accurate assessment of urban vegetation damage
after typhoons is an important basis for guiding post-disaster recovery and improving
resilience to disasters [11].
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There is a high degree of heterogeneity in urban surface patterns [12], which makes it
difficult to assess the damage caused to vegetation. In most cases, manual ground-based
survey methods are applied to analyze the impact of typhoon hazards on trees at the
individual level [13–15]. While ground survey methods are capable of acquiring land
surface data with greater accuracy, it is, however, very labor-intensive and expensive [16].
Furthermore, the inefficiency of the methods is usually in contradiction with the urgent
need of cities to recover quickly from disasters. Therefore, it is difficult to provide large-
scale, comprehensive, and timely information on typhoon damage.

The application of remote sensing technology can mitigate the problems of scale and
cost of vegetation damage assessment to some extent [17–19]. Satellite remote sensing
data can provide information on vegetation damage at landscape and regional scales at
a low cost [16,18]. However, many of the commonly available satellite data have low
spatial resolutions (e.g., 500 m for MODIS, 30 m for Landsat-8, and 10 m for Sentinel-2)
which makes it challenging to capture the high heterogeneity of urban surface changes [20].
In addition, such methods are unable to immediately collect cloud-free satellite images,
which are aggravated by the severe weather conditions pre- and post-typhoon [17,21].
Coupled with the limitations of the satellite re-entry period, it is difficult to obtain accurate
vegetation damage information in urban areas within the specified time frame.

The development of Unmanned Aerial Vehicle (UAV) technology offers potential
advantages to accurately measure the urban vegetation damage. The UAV-based methods
are cheaper and more efficient compared to ground-based survey methods and can provide
detailed vegetation damage information at the street level. Other significant advantages of
UAV technology are its ability to fly under clouds and its relatively higher spatiotemporal
resolution compared to satellite remote sensing [22,23], which are more suitable for complex
urban landscapes. UAV technology has already been applied in studies related to vegetation
disturbance, such as assessment and recovery after forest fires [24,25], bark beetle damage
assessments in urban forests [26], and forest windthrow estimations after strong wind
disturbances [27]. Despite its superior advantages in monitoring changes to and disturbance
of vegetation, the application of UAV technology in urban vegetation damage assessments
after typhoons has remained limited.

The assessment of urban vegetation damage requires more refined and comprehen-
sive indicators as compared to natural vegetation. So far, most prior studies have used
the changes in various Vegetation Indices (VIs) or other derived variables pre- and post-
typhoon as indicators to estimate the natural vegetation damage [16,17]. For example, the
Normalized Difference Infrared Index (NDII) calculated from MODIS remote sensing data
were used to study the forest damage caused by hurricane, which is another kind of tropical
cyclonic storm generated in the Atlantic Ocean [19]. The change in the Normalized Differ-
ence Vegetation Index (NDVI) calculated from Landsat-8 was used to quantify biomass
loss [28]. However, the knowledge of typhoon-induced disturbance to natural vegetation
may not be applicable to urban environments due to the large differences between urban
surfaces and natural landscapes [9]. Meanwhile, some VIs could introduce bias to estimated
vegetation damage—for example, NDVI reaches saturation in dense vegetation canopies,
which may cause an underestimation of biomass [29]. A reasonable assessment from ecolog-
ical knowledge such as vegetation structural indicators, i.e., vegetation coverage and height,
may bring new insights into the study of urban vegetation damage. UAV technology, with
its flexible acquisition and ultra-high-resolution data, offers a possibility to obtain these
indicators. In particular, the UAV photogrammetry and mounted LiDAR sensors have the
ability to generate three-dimensional point clouds of vegetation [30,31], which can provide
more indicators for assessing vegetation damage. However, there are relatively few studies
that aim to measure vegetation damage based on such comprehensive parameters as those
produced by UAV sensors.

This study aims to test the capability of UAV technology in the assessment of ur-
ban vegetation damage after typhoons. The study seeks to achieve this by evaluating
the effect of the super typhoon Mangkhut, which hit the city of Shenzhen, China, on
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16 September 2018. The UAV oblique photography technology was adopted to collect the
data, after which a change detection technique was used to estimate the damage to the
urban vegetation caused by the typhoon. The main objectives of this study are: (1) estab-
lishing and validating a UAV oblique photography-based method at the street level to
assess urban vegetation damage; (2) studying the decimeter-scale resolution to evaluate the
reliability of the two indicators (i.e., vegetation coverage and height) used in estimating the
damages caused by the typhoon; and (3) using the obtained damage distribution map to
analyze the factors affecting urban vegetation.

2. Materials and Methods
2.1. Study Site

The study site selected for this research is the Shenzhen University Town located in
Shenzhen city, Guangdong province, China (113◦46′–114◦37′E, 22◦27′–22◦52′N), which
has an area of 0.8 km2 (Figure 1). Shenzhen has a typical subtropical maritime climate,
with an average temperature and precipitation of 23.0 ◦C and 1935.8 mm, respectively. It
is affected by typhoons on average 4–5 times a year, with the dominant wind direction
being South-East to East. There are typical subtropical urban landscape components in
the area, including roadside trees, artificial landscape forests, natural forests, buildings,
roads, rivers, bridges, and other elements. The vegetation mainly includes arbors, lawns,
and few shrubs. In particular, the main species found on the site are Ficus concinna,
Bambusa vulgaris, Terminalia neotaliala, Araucaria cunninghamii, and Zoysia matrella. These
plant species are commonly used in urban landscaping in subtropical regions. Super
typhoon Mangkhut passed through Shenzhen from 20:00 to 14:00 (local standard time)
from 16–17 September 2018 and caused various degrees of damage to the vegetation.

Figure 1. Study site. (a) Shenzhen city in Guangdong province, China, and the route of the super
typhoon Mangkhut across Guangdong province. (b) Orthophoto map of the study area (GSD: 10 cm).

2.2. UAV-Based Methodology for Remote Assessment of Vegetation Damage

The proposed method for assessing typhoon-related damage of urban vegetation
includes data collection, using UAV remote sensing and a change detection technique.
UAV oblique photography was used to acquire data for pre- and post-typhoon periods.
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The pre-typhoon ground control points were recorded by handheld RTK equipment. The
post-typhoon ground control points were obtained from the pre-typhoon 3D model. The
pre- and post-typhoon digital surface models (DSM) and digital orthophotos models (DOM)
of the ground were generated and applied to calculate the vegetation coverage and height
changes. The level of vegetation damage was then evaluated based on these indicators.

2.3. Data Acquisition and Pre-Processing Procedure

UAV surveys were conducted before and after typhoon Mangkhut hit Shenzhen.
Detailed flight parameters are shown in Table 1. The pre-typhoon UAV data were collected
by vertical photography using a DJI Phantom 4 Pro camera on 21 May 2018. In order to
obtain data results of superior quality, the forward and side overlap rates were set very high.
However, the overlap rates decrease at the sides and tops of super tall buildings, which
leads to voids in the 3D data of these parts of the buildings. Even though this problem had
less impact on this study, it could, however, adversely influence the data quality in areas
with large elevation drops or very high vegetation heights. We developed the six-rotor UAV
and equipped it with an oblique photography system consisting of two SONY ILCE-6000
cameras, which not only solved the problem of poor modeling of ultra-high buildings, but
also achieved higher quality modeling data with a lower data overlap rate. This greatly
improved the efficiency of the field data acquisition and pre-processing. The post-typhoon
data collection was conducted on 19 September 2018.

Table 1. The parameters of UAV flight before and after typhoon Mangkhut hit Shenzhen.

Collection Parameter Before Typhoon After Typhoon

UAV DJI-Phantom 4 Pro Self-developed six-rotor UAV
Flight altitude above ground level 120 m 120 m

Forward overlap 90% 80%
Side overlap 80% 60%

Average ground resolution 3.93 cm 4.43 cm

Photography method Vertical photography
using a single camera

Oblique photography using
double cameras

Capture time 21 May 2018 19 September 2018

The UAV data were pre-processed based on the Structure from Motion (SfM) algorithm.
We completed this process using the Context Capture Center software (v10.16.0.75, Exton,
PA, USA) [32], including aero triangulation and 3D reconstruction steps. For the pre-
typhoon UAV dataset, 11 ground control points were set and recorded by UFO U3 ground
RTK equipment (horizontal: ±(8 + 1 × 10−6 D) mm; vertical: ±(15 + 1 × 10−6 D) mm), to
calibrate the accuracy of the modeling during aero triangulation. A series of products—i.e., 3D
scene models, digital orthophoto models (DOMs), and digital surface models (DSMs) with
WGS 84 UTM zone 49N—were generated after 3D reconstruction. Finally, we resampled
the spatial resolution of both DOMs and DSMs to 10 cm to improve the efficiency of the
classification and change detection.

2.4. Estimation of Urban Vegetation Coverage and Their Changes

To detect changes in vegetation coverage, the classification of DOMs before and after
typhoons was performed using the Nearest Neighbor classification method (eCognition,
v8.9.0, Sunnyvale, CA, USA). The estimation of the segmentation scale was carried out
using the Estimation of Scale Parameters tool [33]. The local variance peaks represent the
best possible segmentation scales for different surface types. The objective for classification
was to identify vegetation areas. The color difference between vegetated and non-vegetated
areas was significant. Therefore, the color factor was set to 0.9 and the shape factor was
set to 0.1. A high value of the smoothness factor is helpful for identifying objects with
smooth boundaries. The boundaries of pre-typhoon vegetation areas were clear, hence,
both the factors were set to 0.5. A large amount of vegetation fell down after the typhoon,
such that the boundaries of the vegetation areas were no longer smooth, however, the
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vegetation fell near where it grew, without any long-distance movement or changes to
position. The post-typhoon smoothness and tightness were set to 0.3 and 0.7, respectively.
The classification results were evaluated using the Kappa coefficient, for which a result
greater than 0.85 indicates that the classification result is excellent [34]. Pre- and post-
typhoon Kappa coefficients were 0.98 and 0.88, respectively.

The changes in urban vegetation coverage were estimated using the classification
results. A grid with a spatial resolution of 1 m for the vegetation area (including both lawns
and forestlands) was created, consistent with the geographical system of the study area.
The area of the vegetation within each cell was calculated using this grid. The coverage of
each cell can be defined as the ratio of the vegetation area to the cell area. The changes in
coverage were calculated by subtracting the coverage data before and after the typhoon.

2.5. Calculation of Urban Vegetation Height and Their Changes

The changes to tree heights were calculated by subtracting the post-typhoon DSM
from the pre-typhoon DSM in the vegetation area. The pre-typhoon tree heights were
used to normalize the tree height changes. Firstly, the ground elevation of the vegetation
area, which is also known as the digital terrain model (DTM), was obtained. The ground
elevation points near the trees were interpreted from the post-typhoon DSM due to its
sparse vegetation. The DTM was then obtained by interpolating these elevation points
using the inverse distance weight (IDW) algorithm. The exponent of distance was set to 2,
and the number of nearest points was set to 12. Secondly, the tree height was calculated
by subtracting the DTM from the pre-typhoon DSM. Finally, the normalized tree height
change (i.e., height reduction) was estimated as the ratio of the tree height changes to the
tree heights pre-typhoon. The above procedure was performed in ArcGIS Desktop (v.10.6,
ESRI, Redlands, CA, USA).

3. Results
3.1. Validation of the UAV Technology

The pre-typhoon dataset was first calibrated based on the 11 ground control points
and UFO U3 ground RTK equipment. The comparisons show that the median errors of
the pre-typhoon UAV dataset were 0.19 cm in the horizontal x-axis direction, 0.29 cm in
the horizontal y-axis direction, and 0.07 cm in the vertical direction. These results indicate
the high accuracy of the pre-typhoon dataset. Then, 29 control points were extracted from
the pre-typhoon 3D model to validate of the post-typhoon dataset. The median errors
of the post-typhoon UAV dataset were 1.11 cm in the horizontal x-axis direction, 0.37 cm
in the horizontal y-axis direction, and 0.04 cm in the vertical direction. These results
suggest comparably high accuracy of the pre-typhoon and post-typhoon 3D datasets, even
when based on different sensors and flight parameters. Because these technical differences
produced two different resolutions images (Table 1), we resampled the spatial resolution
of the pre- and post-typhoon DOMs and DSMs to 10 cm to assess the changes in urban
vegetation coverage and height. To further illustrate the match issue between the two
different sensors and flight parameters and to validate the accuracy of the height change
assessment, 330 points of roads and building roofs (which suffered little typhoon damage)
were selected (Figure 2). The average change in height was −4.27 ± 8.64 cm, indicating
that the pre- and post-typhoon datasets (based on different sensors and flight parameters)
matched well, and the assessment of typhoon-related damage was deemed sufficiently
accurate for detecting changes of several meters.
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Figure 2. Height differences of 330 points, distributed across roads and building roofs before and
after the typhoon.

3.2. Estimation of Urban Vegetation Damage Based on Vegetation Coverage Change

In this study, three typical urban vegetation sample plots (i.e., roadside trees, artificially
landscaped forests, and natural forests) were selected (Figure 3). The vegetation coverage
of roadside trees was severely reduced between 0.8 and 1 (Figure 3a). The main species
of roadside trees were Eucalyptus citriodora and Bombax ceiba. They can reach heights of
25–28 m, with a large distance between trees. These species had poor growing conditions
on both sides of the road. Most of the underlayment where the roadside trees grew was
artificial pavement, which impeded root spreading and growth. As a result, the root systems
of roadside trees were often shallow and weak (Figure 3d). Therefore, such trees were
easily damaged by super typhoon Mangkhut. Broken and fallen roadside trees adversely
impacted urban traffic. To restore transportation access, fallen roadside trees were cleared
as a priority. Consequently, there was a serious reduction of coverage for roadside trees
after the typhoon.

The second most severe coverage loss occurred in the artificially landscaped forest
(Figure 3b). A few areas had coverage loss values of 0.5–1.0, however, most areas had no
change in coverage, which are shown as white areas in Figure 3b. The arboreal landscaped
forest had experienced severe tree fall (Figure 3e). The post-typhoon data were acquired on
the third day after the typhoon. The post-disaster salvage work was carried out mainly on
roads and residential areas. As such, at the time of data collection, the clearance of fallen
trees in such urban green parks had not yet started. Although most trees had fallen and
died, due to their dense growth, the canopies were still continuous at ground level after the
trees had fallen. These coverage changes led to the biased conclusion that the artificially
landscaped forest, which was damaged by the typhoon, was not severely affected.

The trend in pre- and post-typhoon coverage changes in the natural forest was op-
posite to both of the two sample plots (e.g., roadside trees and artificially landscaped
forests). The post-typhoon coverage of the urban natural forest increased with the range of
0.8–1.0 (Figure 3c). The natural forest had a large area of bare land in May 2018 (Figure 3f).
This bare land was covered by herbs and shrubs, leading to an increase in the post-typhoon
coverage (Figure 3g). These coverage changes, caused by herb and shrub growth, had no
relationship to the typhoon. After excluding the areas exhibiting an increase in vegetation
coverage, the vegetation coverage of the natural forest showed no change, indicating that
the natural forest was less affected by the typhoon. The natural forest areas with reduced
vegetation coverage were sporadically distributed near the roads and were not a signifi-
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cantly large area. The results of vegetation coverage showed that natural forests did not
receive significant effects from the typhoon.

Figure 3. Distribution of changes to urban vegetation coverage in the study area (GSD: 1 m). (a) Road-
side trees; (b) artificially landscaped forest; (c) urban natural forest; (d) typhoon-damaged fallen
roadside trees—mainly newly planted Bombax ceiba; (e) damage caused to artificially landscaped
forest; (f) pre-typhoon area of bare soil in an urban natural forest; and (g) post-typhoon area of bare
soil covered by grasses. Note that urban vegetation coverage changes are the differences between pre-
and post-typhoon vegetation coverage. The positive values indicate a decrease in urban vegetation
coverage, while the negative values indicate an increase in urban vegetation coverage.

3.3. Estimation of Urban Vegetation Damage Based on Vegetation Height Change

Figure 4 shows the distribution of pre- and post-typhoon changes in vegetation height.
The areas in red represent the extent to which tree height was reduced after the typhoon.
The reduction of vegetation height was the most severe for roadside trees, which had
a drastic reduction of 20–30 m (Figure 4a). The main roadside vegetation species were
Eucalyptus citriodora and Bombax ceiba, which reached 25–28 m in height. The damage from
the typhoon caused the roadside trees to fall in patches. This result was similar to that
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obtained using the coverage change indicator to assess the extent of damage caused by
typhoons to roadside trees.

Figure 4. Distribution of urban vegetation canopy height changes in the study area (GSD: 10 cm).
(a) The roadside trees; (b) the artificially landscaped forest; and (c) the natural forest.

The damage to the artificially landscaped forest was also significant (Figure 4b). After
the typhoon, the height of the trees in some areas decreased by 20–25 m compared to the
pre-typhoon period. In most areas, tree height had decreased by 5–15 m. The reduction in
the height of the trees in the artificially landscaped forest after the typhoon was less than
that of roadside trees because their average tree height was already lower (e.g., below 15 m).
The severity of their fall was the same as that of roadside trees. Compared to vegetation
coverage, the change in tree height can more accurately reflect the damage caused to the
artificially landscaped forest by the typhoon.

The natural forest areas were less affected by the typhoon. The natural forest showed
little change to vegetation height in most of the areas, as indicated by large white areas in
Figure 4c. The areas that were severely affected were distributed near the roads, and the
canopy height reduction was greater on the windward slopes towards the North and East
than on the leeward slopes towards the West and South. This suggests that the typhoon
wind direction and topography were the factors influencing vegetation damage. The
natural forest is entirely composed of native species, which are more suited to growing in
the local area. The vegetation grew vigorously and had stronger wind resistance ability.
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However, in the areas intersected by roadways, the tree canopies were more exposed to the
typhoon due to the empty overhead spaces and therefore experienced a greater amount of
damage, with tree height reducing further by 5–15 m.

3.4. Line Sampling Damage Assessment for Typical Urban Vegetation

A typical sampling line of 100 m was selected in each site (Figures 3 and 4). The
spatial variation patterns of the two indicators (i.e., vegetation coverage and height
change) on the sampling line were used to quantitatively estimate the typhoon damage of
urban vegetation.

The typhoon caused severe damage to urban roadside trees. The vegetation coverage
and height of roadside trees were significantly reduced after the typhoon (Figure 5). How-
ever, the two indicators mentioned above showed different patterns. Vegetation coverage
showed a greater degree of damage for roadside trees as compared to the damage level
estimated by height. This can be attributed to the resilience of the vegetation in the study
site, allowing them to flourish better. Even though the spatial resolution was reduced, each
pixel was still almost pure vegetation or non-vegetation elements. Hence, the coverage
change values were 0 or 1. However, the spatial resolution of height was 10 cm. Therefore,
the vegetation height changes can more accurately reflect the details of typhoon-related
damages and were consistent with the actual observations on the ground.

Figure 5. Changes in coverage and canopy height of the roadside trees on the sampling line before
and after the typhoon. (a) The vegetation coverage; (b) the canopy height; and (c) the sampling line.
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The degree of damage to the artificially landscaped forest was similar to that of the
roadside trees. However, the vegetation coverage does not accurately reflect the vegetation
damage (Figure 6). The vegetation coverage did not demonstrate much change in the
sample line. Only the vegetation coverage showed a decrease in the 3–14 m interval. The
other intervals of the sample line showed no change in vegetation coverage, which was
consistent with the real situation on the ground. This may be because the tree canopy
remained laying on the ground after the trees fell and were not cleared in time. There was
no change in the pre- and post-typhoon vegetation coverage. Hence, vegetation coverage
cannot be used to quantitatively assess the damage caused by the typhoon to the urban
landscaped forest.

Figure 6. Changes in coverage and canopy height of the artificially landscaped forest on the sampling
line before and after the typhoon. (a) The vegetation coverage; (b) the canopy height; and (c) the
sampling line.

The vegetation height more accurately reflected the damage of the artificially land-
scaped forest. The difference in the canopy height before and after the typhoon was
significant. In the 8–40 m interval of the sampling line, the canopy height was reduced by
15–24 m (Figure 6b). This indicated the overall collapse and death of the trees. These fallen
trees could only be removed and disposed of afterward. At 52 and 57 m of the sampling
line, the height of the trees was reduced to about 1 m above the ground. However, the
lengths of the intervals were very short, indicating that the height reduction in this area
was caused by the partial breakage of the tree canopy. These trees could be maintained by
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trimming. Consequently, the height changes of the vegetation in the artificial forest better
reflected the damage caused by the typhoon.

The natural forest area was less affected by the typhoon, and this result was reflected
in both the vegetation coverage and height changes (Figures 3 and 4). The changes in the
natural forest coverage were also significantly different from the first two sites. Many areas
showed an increase in vegetation coverage and height (Figure 7). The four intervals of
the sampling line were 14–20, 37–45, 47–55 and 63–73 m, where the natural forest showed
an increase in vegetation coverage (Figure 7a). The reason for this increase is that the pre-
typhoon data were collected in May 2018, when the natural forest had large bare ground
patches. The post-typhoon data were collected in September 2018, on the third day after
the typhoon. At this time, the original bare land patches were full of herbs and shrubs, thus
leading to an increase in the vegetation coverage. Vegetation height also increased in many
places on the sample line. In the 4–8, 22–25, 30–33 m and other areas, the height increased
within 0.5 m due to the growth of vegetation. In the 0–4, 40–42 m and other areas, the
height increased by 2 m due to changes in the position of some canopy areas caused by the
typhoon. In summary, the changes in both vegetation coverage and height revealed that
vegetation in the natural forest was less affected by the typhoon. The vegetation coverage
reflected the change of surface type of the natural forest, indicating that vegetation grew
in formerly bare soil areas. Tree height showed the changes to the vertical structures of
vegetation in natural forests (i.e., tree growth and canopy displacement).

Figure 7. Changes in coverage and canopy height of the natural forest on the sampling line before
and after the typhoon. (a) The vegetation coverage; (b) the canopy height; and (c) the sampling line.
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3.5. Quantitative Statistics of Vegetation Damage Level

To compare the changes in roadside trees, artificially landscaped forests, and natural
forests, we randomly selected the same number of samples from the three sites. A total of
700,000 samples were extracted from each site. The statistical results of the height reduction
rates are shown in Figure 8.

Figure 8. Height reduction rates.

The height reduction rate of the natural forest was concentrated around 20%, indi-
cating that the natural forest was less affected by the typhoon and the vegetation was not
significantly damaged. The artificially landscaped forest was severely affected, with tree
height reduction rates concentrated between 20–80%. The roadside trees were the most
severely affected, with tree height reduction rates up to 100%. The height reduction rate of
the roadside trees was significantly higher because the fallen vegetation was moved away
to allow vehicle traffic to resume.

Above all, the results indicated that native species in urban areas—which were not
subjected to frequent human disturbance—were the most resistant to the typhoon. The
introduced species in the artificially landscaped forest were very vulnerable to typhoon
damage, and the higher the height of trees, the more severely they were affected by
the typhoon.

4. Discussion
4.1. The Advantages of the Method

Current vegetation damage surveys comprise mainly traditional ground surveys and
regional surveys based on satellite remote sensing technology [28,35]. However, the high
spatial heterogeneity of urban underlying surfaces makes it difficult to carry out rapid and
accurate vegetation damage assessments [9,35,36]. Hence, a typhoon damage assessment
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technique that is not labor-intensive, has a high spatial resolution, and is flexible and
inexpensive, is an urgently needed solution for urban managers [36,37].

UAVs can rapidly acquire data after a disaster and can avoid cloud effects [17]. This
study proposes a vegetation damage assessment method based on UAV oblique photog-
raphy and a change detection method. Data acquisition is easy and low-cost [38]. For
example, one DJI Phantom 4 Pro drone and 10 batteries cost about $3142. Operators can be-
come proficient in using it with just three days of training. Ground control points, recorded
by ground RTK and extracted from the pre-typhoon 3D model, were used to achieve more
accurate geo-alignment between pre- and post-typhoon digital products. The DOM and
DSM products obtained after data processing can accurately assess vegetation damage by
simple steps, such as classifying features and extracting vegetation structural indicators
before and after typhoons [27]. This study validated the capability of UAV technology
in the assessment of typhoon-related damage of urban vegetation. The median errors of
the products were 0.04–0.37 cm, except for the pre-typhoon horizontal error in the x-axis
direction (viz. 1.11 cm). Even for the pre- and post-typhoon observations with different
sensors, the results can be well matched and compared by resampling to a slightly coarser
resolution, or by including a good plan with suitable flight parameters for the second
survey. It would have been easier and more convenient with the same sensor. This method
is well suited for urban managers as it allows them to quickly conduct vegetation damage
assessments at the street level and provide scientific guidance suggestions for disaster
relief actions.

4.2. Indicators for Estimating Typhoon-Related Damage

The vegetation coverage can reflect the horizontal structure. The prerequisite for
obtaining an accurate vegetation coverage distribution map is to obtain precise vegetation
classification results [18]. In this study, the vegetation areas were accurately identified
using DOM with a spatial resolution of 10 cm. However, the results from using changes
to vegetation coverage to assess vegetation damage were still inaccurate. The reasons for
this are that: (1) fallen trees were easily regarded as normal trees if they were not cleared
away in time, leading to underestimation of the vegetation damage caused by the typhoon;
and (2) vegetation growth on bare ground, especially herbaceous growth, could lead to the
erroneous conclusion that vegetation coverage increased after the typhoon. One study that
used Sentinel-2 to obtain pre- and post-hurricane vegetation basal area maps to spatially
quantify forest loss, found the same results when assessing vegetation with moderate levels
of damage [18].

However, changes in vegetation height before and after the typhoon can provide a
good reflection of the level of the vegetation damage. The results of vegetation height
change distributions can be obtained very easily using pre- and post-typhoon DSMs [31].
The vegetation height reduction rate can also be calculated and reveal whether the trees
had fallen as a whole or if only a part of the canopy was damaged by the change interval. In
addition, vegetation canopy height data, combined with allometric growth equations, can
be further used to assess biomass and carbon stock changes [39,40], which are important
for studying the impact of extreme climate on carbon cycling in urban systems.

However, because of differences in sensors and shooting patterns, the data obtained
before and after typhoons can still produce spatial matching errors despite the corrections
that have been made using control points. Spatial matching errors may affect the quality
of the model and influence the accuracy of change detection, which can affect the tree
height change results [31,41]. Therefore, data collection for all flights, utilizing the same
equipment and flight parameters, will streamline the data pre-processing efforts.

4.3. Factors Affecting the Extent of Urban Vegetation Damage by Typhoon

A typhoon’s wind speed, wind direction, and other meteorological factors are highly
correlated with the extent of the vegetation damage [42]. Catastrophic damage to vegetation
is generally caused by unusually high wind speeds [43]. Buildings, forest edges, topography,
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and other open areas can affect wind speeds [42], and thus, influence the extent of typhoon
damage to urban vegetation.

The height and layout of urban buildings can affect wind speed and change the
wind direction, which in turn can affect the extent of urban vegetation damage [44]. The
vegetation species of the roadside trees and in urban green parks in this study were mainly
introduced arbors with poor anti-wind abilities. There were fewer buildings on both sides
of the roadside trees. However, there were more buildings on the windward side of the
artificially landscaped forest, which effectively reduced the intensity of the typhoon. This
study observed lighter damage to the trees in the artificially landscaped forest compared to
the roadside trees.

The vegetation at the edge of the forest was more severely affected than the vegetation
within the forest [9]. The urban natural forest in this study area was less affected by the
typhoon. The areas with reduced vegetation height were distributed in the perimeter of the
natural forest.

Topography usually influences the extent of vegetation damage by typhoons through
elevation and slope orientation [45]. The elevation difference in this study area was small,
about 46 m. The elevation is not an influential factor in the extent of vegetation damage
by typhoons when there is little variation in terrain height [46]. Topography can also
determine the extent of vegetation damage depending on whether vegetation grows on
the windward slope [21]. In the urban natural forest area selected in this study, the area
where the windward slope intersected the urban road had a greater reduction in vegetation
height than the north wind slope because the wind speed on the leeward slope was less
than the windward slope [47].

The arbors in roadside trees and the landscaped forest were mostly introduced species
that are intended to increase the species diversity and aesthetics of the city [48–50]. How-
ever, these introduced species, with characteristics of large canopies and shallow, under-
developed root systems, are more vulnerable to typhoons. The natural forest was less
damaged because most of the trees are native species with well-developed root systems,
significantly shorter tree heights, and smaller canopies, consequently making them more
resistant to typhoons.

4.4. Future Study

Research on UAV remote sensing is a relatively new field, hence its use in rapid
assessment of typhoon damage to urban vegetation has room for significant improvement.
Firstly, multispectral [25,51] or hyperspectral techniques [52] could resolve the difficulty of
identifying fallen trees. Secondly, changes to canopy height may be better detected with
LiDAR techniques [53]. Finally, some other issues that can be evaluated include studying
the impact of UAV flight parameters on the quality of 3D modeling [54] and measuring of
the vegetation growth between and during the two observation periods.

5. Conclusions

Contemporary urban planning has necessitated the development of a fast and sim-
plified method for estimating typhoon-related windthrow with horizontal and vertical
heterogeneity. This study verified the feasibility of a low-cost and easily implemented
UAV oblique photography technique and a change detection method to assess typhoon-
related damage to urban vegetation at the street level. The street trees and the artificially
landscaped forests, both of which dominated the amount of introduced species, were
severely affected. The heights of both were reduced by 20–30 m and 5–15 m, respectively.
On the other hand, the natural urban forests, predominantly composed of native species,
were less affected by the typhoon. Hence, we suggest that city managers try to use native
species in urban planning. When assessing typhoon-related damage using centimeter-scale
or decimeter-scale vegetation 3D structure data, the vegetation height (representing the
vertical structures of the vegetation) was found to accurately reveal the damage to urban
vegetation. Using vegetation coverage (representing the horizontal structures of the veg-
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etation) as a parameter leads to the severe underestimation of typhoon-related damage
to vegetation, as its coverage also includes fallen vegetation. However, fallen vegetation
from broken and collapsed trees are often not cleared in a timely manner. Thus, the real
damage to vegetation caused by the typhoon is better reflected by the change in vegetation
height. This study validates the use of UAV remote sensing for accurately measuring and
assessing damage caused by typhoons. Considering the noticeably superior advantages of
employing UAV technology in vegetation damage assessments, we recommend a wider
application of UAVs in urban vegetation surveys in the future.
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