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Abstract: Deep-learning-based object detectors have substantially improved state-of-the-art object
detection in remote sensing images in terms of precision and degree of automation. Nevertheless,
the large variation of the object scales makes it difficult to achieve high-quality detection across
multiresolution remote sensing images, where the quality is defined by the Intersection over Union
(IoU) threshold used in training. In addition, the imbalance between the positive and negative
samples across multiresolution images worsens the detection precision. Recently, it was found that
a Cascade region-based convolutional neural network (R-CNN) can potentially achieve a higher
quality of detection by introducing a cascaded three-stage structure using progressively improved
IoU thresholds. However, the performance of Cascade R-CNN degraded when the fourth stage was
added. We investigated the cause and found that the mismatch between the ROI features and the
classifier could be responsible for the degradation of performance. Herein, we propose a Cascade
R-CNN++ structure to address this issue and extend the three-stage architecture to multiple stages
for general use. Specifically, for cascaded classification, we propose a new ensemble strategy for
the classifier and region of interest (RoI) features to improve classification accuracy at inference. In
localization, we modified the loss function of the bounding box regressor to obtain higher sensitivity
around zero. Experiments on the DOTA dataset demonstrated that Cascade R-CNN++ outperforms
Cascade R-CNN in terms of precision and detection quality. We conducted further analysis on
multiresolution remote sensing images to verify model transferability across different object scales.

Keywords: object detection; cascaded detectors; Intersection over Union (IoU) threshold; classification
ensemble; bounding box regression; multiresolution remote sensing images

1. Introduction

Object detection in remote sensing images plays an important role in several civilian
and military applications, such as urban planning, geographic information system updating,
and search-and-rescue operations. Compared with the traditional methods (template-
matching-based methods [1,2], knowledge-based methods [3,4], etc.), the deep-learning-
based methods automatically extract features from raw data by shifting the burden of
manual feature design to the underlying learning system, enabling a more powerful feature
representation to extract higher semantic levels of feature maps. With this advantage, deep-
learning-based detection approaches have achieved great success in both the computer
vision and remote sensing community [5,6].
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Unlike the natural scene image, remotely sensed images have larger scale variations
and more feature complexity under different observation conditions, requiring higher
generalization of object detectors. DNN-based detection approaches have recently been
introduced from the computer vision field to the remote sensing field and achieved top
scores on multiclass object detection. Many fundamental issues of deep learning object
detection for remote sensing images are addressed, such as the lack of sufficient training
samples [7,8], the poor performance of the small object detection [9–11], and rotation
characteristics of the object in satellite image [12,13]. The comprehensive review, written in
2020, can be found in article [5].

Nevertheless, the large variation of object scales in multiresolution remote sensing
images still poses a great challenge for object detectors. Recently, a number of studies
have explored the possibility of solving this problem from different aspects, which can be
summarized into three categories. (1) Feature fusion with different levels: in this category,
many fusion models are created to extract multi-scale feature hierarchy to improve the
model performance on both small and large objects. The representative studies include the
cross-scale feature fusion (CSFF) [14], the polarization attention mechanism module based
on dual feature pyramid network (FPN) [15], feature-fusion architecture(FFA) [16], multi-
patch feature pyramid network [17], and Quad-FPN [18]. (2) Improving the region proposal
network to generate more suitable anchors: these models address the mismatch problem
of the anchor size and object sizes in multi-scale images, such as the self-adaptive aspect
ratio anchor (SARA) [19], the multi-scale spatial attention region proposal network [20],
and the size folding operation (SF) [21]. (3) Establishing parallel networks to detect objects
of different scales: one of the representative works is the multi-expert detection network
(MEDNet) [22].

The above methods mainly focus on feature extraction and feature matching between
objects of different scales. In addition to that, the imbalance of the positive and negative
samples is another reason that the model fails to detect objects across different scales [23].
Compared to small objects, large objects are more likely to be identified as positive samples
with higher precision. When applying the model pre-trained by high-resolution images to
low-resolution images, most large objects become small objects, leading to too few positive
samples to effectively train the model.

In anchor-based detectors, an intersection-over-union (IoU) threshold is usually used
to distinguish positive/negative samples, which also defines the detection quality [24].
Choosing an appropriate threshold is a compromise between detection quality and pre-
cision, because the lower IoU threshold brings more potential region proposals of the
object, but with more noisy samples, which leads to unreliable detection results. However,
using a high IoU threshold in training results in too few positive samples, leading to
model overfitting.

To achieve high precision, the IoU threshold must closely match the quality of detector
hypotheses [25]. Cascade R-CNN [25], as an extension of two-stage anchor-based detectors,
uses a three-stage cascaded structure to address the above issue, where the IoU of training
samples (i.e., the quality of the hypotheses) can be progressively improved by cascaded
bounding box regression. This cascaded structure sequentially improves the quantity and
quality of positive training samples to reduce the overfitting problem. In experiments
with natural scene images, the cascaded structure achieves better precision in the detection
of objects of different scales. However, in the original structure of Cascade R-CNN, the
maximum number of the cascade component is three. The overall detection performance
declines when the fourth stage is added [25]. This limits the extension of cascaded detectors
to achieve better detection performance.

In this paper, we investigated the causes of performance degradation when adding
more cascaded stages. We found that at inference, the original ensemble strategy in Cascade
R-CNN introduces a mismatch between the classifier and region of interest (RoI) vectors,
decreasing the classification accuracy.
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To overcome this limitation, we propose a new ensemble strategy for cascaded classifi-
cation by taking the RoI features produced by the same stage for classification, rather than
uniformly using those from the final stage. The final classification results are obtained by
integrating the classifier outputs of all stages. In addition, the loss function of bounding
box regression [26] is modified to improve sensitivity, allowing the cascaded regressor
to further converge as the number of stages increases. The modified cascade structure is
denoted as Cascade R-CNN++ throughout this paper.

The main contributions of this study are as follows: (1) we investigated the causes of
performance degradation in cascaded detectors when more stages are added, (2) we pro-
pose a new ensemble strategy to minimize the mismatch between the classifiers and input
RoIs at inference and to improve classification accuracy, and (3) we propose a modified
loss function for bounding box regression to enable further convergence of bounding box
regression with more stages built. The proposed Cascade R-CNN++ approach can achieve
state-of-the-art detection performance on the remote sensing dataset DOTA [27,28]. It can
be implemented in most cases where region-proposal-based methods are needed. In exper-
iments with multiresolution remote sensing images, the proposed approach outperforms
Cascade R-CNN both in detection quality and precision.

The rest of this paper is arranged as follows. Section 2 reviews previous studies most
relevant to this research. Section 3 introduces the employed dataset and evaluation metrics.
Section 4 analyzes the reasons for performance degradation when more stages are added in
Cascade R-CNN. Section 5 describes the proposed method, Cascade R-CNN++. Section 6
presents experimental results with discussion, and Section 7 draws the conclusions.

2. Related Works

In the computer vision field, deep-learning-based detectors can be generally divided
into two categories. The first is one-stage approaches that are more efficient with sim-
pler structures, represented by YOLO [29–31], single-shot detection (SSD) [32], and Reti-
naNet [33]. The other category is two-stage approaches (i.e., region-proposal-based meth-
ods), represented by region-based convolutional neural networks (R-CNNs) [26], Fast
R-CNN [34], Faster R-CNN [35], Feature Pyramid Network (FPN) [36] and Cascade R-
CNN [24]. In the second category, the multi-scale region proposals are produced firstly,
followed by the feature extraction and bounding box regression procedure. Although
one-stage models have achieved high precision in object detection, two-stage methods can
generally be more flexible and extensible across different computer vision tasks, such as ob-
jection detection, instance segmentation and key point detection. Thus, this research focuses
on two-stage detectors and aims to alleviate the problem limiting the further extension of
the cascaded structure.

R-CNN [26] was proposed in 2014. It employs a two-stage structure for object detection,
combining region proposals with CNN extracted features. R-CNN employs selective search
algorithms to generate approximately 2000 candidate region proposals from the input image
and applies CNNs to create feature vectors for each object proposal. The performance of R-
CNN was validated on natural scene images using the PASCAL VOC 2012 dataset, reaching
a mean Average Precision (mAP) of 53.3%. Fast R-CNN [34] improves computational
efficiency by integrating the three training stages in R-CNN, achieving a mAP of 68.4%
on PASCAL VOC 2012 test. R-CNN and Fast R-CNN both employ the selective search
approach to generate object proposals, which is more computationally expensive. Faster
R-CNN [35] replaces the selective search algorithm with a region proposal network (RPN),
introducing anchors to identify region proposals using a fully convolutional network and
significantly reduces time consumption. It achieved detection accuracy of 70.4% mAP
on PASCAL VOC 2012 dataset. RPN has a fixed receptive field size, where objects are of
various scales.

Only using the topmost feature layer for proposal generation can lead to missed
detection of small objects. FPN [36] can extract top-down multiscale feature layers for
RPN to generate region proposals. As different layers have different receptive fields, a
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combination of FPN and Faster R-CNN can better adapt to the detection of objects of
different scales. Faster R-CNN & FPN achieved AP of 35.8% on the COCO detection
benchmark [36]. More recent studies also contributed to improve the feature pyramid for
object detection in optical remote sensing images, such as aware feature pyramid network
(AFPN) [37] and Feature Enhancement Network (FENet) [38], achieving 74.3% and 74.89%
mAP (PASCAL VOC metric) on DOTA-v1.0 dataset, respectively.

Besides two-stage architectures, multistage detectors, including Cascade R-CNN [24,25],
have recently been proposed. Cascade R-CNN uses a three-stage structure and can achieve
better performance than two-stage detectors through cascaded bounding box regression
and an ensemble of cascaded classification results. In the design of cascaded detectors,
regressed bounding boxes from the previous stage act as region proposals for the current
stage to progressively improve the quality of region proposals in the cascaded structure.
Linearly increased IoU thresholds (0.5, 0.6, and 0.7) are used for training at each stage to
better match the quality of input proposals to train high-quality detectors. Cascade R-CNN
obtained 38.9% AP on MS-COCO 2017. However, degraded performance is observed when
the fourth stage is added to Cascade R-CNN [25].

3. Datasets and Evaluation Metrics

The DOTA-v1.5 dataset [27], which contains 2806 images and 403,318 instances, was
employed in this study, in Sections 4, 6 and 7. It consists of 16 categories of objects, i.e.,
airplane, ship, storage tank, baseball diamond, tennis court, basketball court, ground track
field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout, soccer ball field,
swimming pool, and container crane. The proportions of the training, validation, and
testing sets are 1/2, 1/6, and 1/3, respectively.

Another remote sensing dataset, NWPU VHR-10 [6,12,39], was also used in the com-
parison with state-of-the-art detectors in Section 6. NWPU VHR-10 dataset is a publicly
available geospatial object detection dataset. It contains 800 very-high-resolution (VHR)
remote sensing images cropped from Google Earth and Vaihingen dataset and annotated
by experts. The dataset consists of 10 categories of objects, including airplane, ship, storage
tank, baseball diamond, tennis court, basketball court, ground track field, harbor, bridge,
and vehicle.

In this research, Intersection over Union (IoU) was used to measure the amount of
overlap between the predicted and ground truth bounding box. It is a ratio from 0 to 1 that
specifies the accuracy of object localization. The IoU threshold used in training defines the
detection quality. The metrics of AP, AP50, AP75, AP90, APS, APM and APL, as defined in
the metric standard of MS COCO object detection challenge [40], were taken to assess the
detection precision. The abovementioned metrics have been widely used to evaluate object
detection tasks.

4. Causes of Performance Degradation in a Four-Stage Cascade R-CNN

Cascade R-CNN [25] uses three-stage cascaded detectors to progressively improve the
IoU distribution of training samples. Higher precision of object localization can be achieved
through cascaded regression. However, when the fourth stage is added, the metrics of
AP, AP50, AP60, AP70, and AP80 all decrease, and only AP90 slightly increases. Herein, we
investigate the causes of the performance degradation.

4.1. Cascaded Bounding Box Regression

We compare the IoU distribution of training samples among different stages in Cascade
R-CNN (Figure 1). The training samples were generated by original Cascade R-CNN with
an extended five-stage structure on the training set of DOTA-v1.5. The IoU distribution of
the first stage was analyzed on the region proposals, i.e., the output of Region Proposal
Network (RPN). The IoU distributions of the second, third, fourth and fifth stages were
plotted using the output of the bounding box regression of the previous stage. Thus, the
IoU distribution of the fifth stage indicates the quality of bounding boxes obtained from
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the fourth stage, and so on. The IoU thresholds of 0.5, 0.6, 0.7, and 0.75 were used for the
first~fourth stages, as empirically set up in literature [25]. For the fifth stage, an empirical
threshold of 0.85 was chosen. Please note that the IoU threshold at the fifth stage does not
affect the output of bounding box regression of the fourth stage, thus has no effects on the
precision of bounding box regression from the first to fourth stages.
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Figure 1. Intersection-over-union (IoU) histograms of training samples of the (a) first, (b) second,
(c) third, (d) fourth, and (e) fifth stages in Cascade R-CNN. The histogram of the first stage represents
the IoU distribution of region proposals produced by RPN.

The above settings reproduced the training samples and bounding box regression
output of the four-stage model of Cascade R-CNN in literature. Figure 1a–d plot the IoU
distributions of the training samples for the first to fourth stages. Figure 1b–e reflect the
IoU distribution of the output of bounding box regression of the first to fourth stages. The
purpose was to analyze whether the cascaded bounding box regression under the original
threshold settings lead to the degraded performance of the four-stage Cascade R-CNN.

As shown in Figure 1, from the first to fifth stage of the detector, the IoU distribution
of training samples is improved, with the histogram peak gradually moving from low to
high IoU values, and no performance decrease is observed. This suggests that the quality
of the input proposals is still being improved even in the fifth stage. In other words, the
output of bounding box regression from the first, second, third, and fourth stages were
all improved over the corresponding training samples. Thus, cascaded bounding box
regression, even under the empirical settings of IoU threshold, is not responsible for the
degraded performance of the fourth-stage model of Cascade R-CNN.

In addition, it is found that the improvement of the IoU distribution is not linear and
it slows down with the increase of stages. Thus, the IoU thresholds at each stage should
not be increased linearly in the cascaded structure. Further tuning of the thresholds has the
potential to further improve the precision of bounding box regression.

4.2. Mismatch between RoI Features and the Classifier

In Cascade R-CNN, each classifier is trained using RoI features produced by the same
stage. At inference, the RoI features produced by the final stage are sent to all trained
classifiers, the outputs of which are then averaged to obtain the final classification results
(Figure 2). RoI features provided by the final stage are usually the closest match to the
real object as they are produced using the most accurate bounding box after cascaded
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regression. However, the most accurate RoIs may not be the best match to the classifiers
trained in previous stages.
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Figure 2. Structure of Cascade R-CNN at inference. (a) Workflow of cascaded classification, with the
bounding box components grayed out. (b) Workflow of cascaded bounding box regression, with the
classification components grayed out. “Conv” denotes the convolution layer; “pool” denotes the
pooling layer; “H1”, “H2”, and “H3” represent the network heads; “B0” denotes region proposals
generated by RPN; “B1”, “B2”, and “B3” represent the bounding boxes in each stage; and “C1”, “C2”,
and “C3” are the classifiers in each stage.

To investigate the impacts of the mismatch, under the same conditions, we compared
the detection precision measurements of different combinations of classifiers and RoI
features. First, a five-stage example of Cascade R-CNN was built. Each classifier was
trained using the RoI features produced by the same stage. Then, the detection precision
measurements of different combinations were compared. For instance, the RoI features
produced in the fifth stage were sent to the classifier of the first stage, and the precision was
calculated using a single pair of 1# stage and 5# RoI only. The same procedure was applied
to other combinations, as listed in Table 1. The experiment was carried out using original
settings of Cascade R-CNN with ResNet50 backbone. The settings of IoU threshold are the
same as Section 4.1, i.e., 0.5, 0.6, 0.7, 0.75, and 0.85 for the first to fifth stages in sequence.

Table 1. Detection precision measured for different combinations of classifier and RoI vectors. 1#~5#
denote the first~fifth stages, respectively.

Classifier RoI AP (%) AP50 (%) AP75 (%) APS (%) APM (%) APL (%)

1# 5# 43.2 63.8 47.9 24.6 40.1 49.0
1# 1# 44.7 64.3 49.7 26.1 41.7 53.6
2# 5# 44.6 63.6 49.6 25.8 40.8 52.6
2# 2# 45.0 63.5 50.5 25.6 41.4 53.7
3# 5# 44.4 63.4 50.0 26.3 40.6 50.1
3# 3# 44.9 63.4 50.2 26.7 41.1 51.2
4# 5# 44.0 62.6 49.3 25.3 40.9 50.8
4# 4# 43.9 62.5 49.2 25.4 40.6 51.1
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From Table 1, we can see that the combination of 1# classifier and 1# RoI outperforms
the pair of 1# classifier and 5# RoI, the pair of 2# classifier and 2# RoI outperforms the
combination of 2# classifier and 5# RoI, and the pair of 3# classifier and 3# RoI outperforms
that of 3# classifier and 5# RoI. However, the pair of 4# classifier and 4# RoI achieves similar
performance to that of 4# classifier and 5# RoI. The reason could be that the improvement of
IoU distribution is not significant after the fourth stage, which implies that 5# stage produces
RoI features similar to that of 4# RoI. Thus, 4# classifier exhibits similar performance using
either 4# or 5# RoI.

The above findings suggest that the mismatch between the classifier and RoI features
is the main cause of performance degradation in Cascade R-CNN when more stages are
added. The bounding box predicted by the primary stage detection head is coarse, resulting
in a large difference between the RoI features and the target instance features, while the
last stage’s RoI features are much closer to the target instance features. However, as the
primary stage’s classifier was trained using the primary stage’s RoI features, it is difficult
for the primary stage’s head to predict an ideal result with the last stage’s RoI features.

5. Proposed Method: Cascade R-CNN++

In this section, we propose the Cascade R-CNN++ approach by modifying Cascade
R-CNN. First, we propose a new ensemble strategy for the classifier and RoI features at
inference. Second, we propose an improved loss function for bounding box regression to
achieve high sensitivity around zero, which allows further convergence with more stages
added. A five-stage example of the proposed Cascade R-CNN++ is shown in Figure 3. RPN
is adopted for region proposal generation.
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Figure 3. Structure of the proposed Cascade R-CNN++ with five stages. (a) Workflow of cascaded
classification using a new ensemble strategy (red lines). (b) Workflow of cascaded bounding box
regression (blue lines) embedded with a modified regression loss function. “Conv” denotes the
backbone convolution layer; “pool” is the RoI pooling layer; “H1”, “H2”, “H3”, “H4”, and “H5”
are the network heads; “B0” denotes region proposals; “B1”, “B2”, “B3”, “B4”, and “B5” represent
the bounding boxes in each stage; and “C1”, “C2”, “C3”, “C4”, and “C5” denote the classifiers in
each stage.

5.1. New Ensemble Strategy for Classification

As defined in [25], a classifier is denoted as a function h(xi) that assigns a feature
vector xi to one of the m + 1 classes, where 0 is the background, and each of the remaining
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values represents a class. The output of a classifier is an m + 1 dimensional vector, with the
maximum value indicating the category in which the object in the bounding box belongs to.
The classifier is trained by minimizing the cross-entropy loss Rcls as follows:

Rcls[h] =
Ncls

∑
i=1

Lcls(h(xi), yi) (1)

where i is the index of the feature vector, Ncls is the number of feature vectors, (xi, yi) are
the training samples, xi is the feature vector, yi is the class label, and Lcls is the classical
cross-entropy loss function.

As shown in Figure 3a, in the proposed ensemble strategy, instead of using RoI features
from the last stage for all classifiers, at inference, we use RoI features produced at the same
stage as the input of the classifier. In other words, the same RoI features are used for the
same classifier during both training and inference. The classification results of each stage
are then integrated by averaging to generate the final classification result.

5.2. Modified Loss Function for Bounding Box Regression

At each stage, a bounding box regressor is used to gradually move the candidate
proposals closer to the ground-truth position by minimizing the offsets between the real
and candidate bounding boxes. An input proposal p can be transformed into a predicted
ground-truth box g through the following transformation:

(tx/cx)× pw + px = gx
(ty/cy)× ph + py = gy
exp(tw/cw)× pw = gw
exp(th/ch)× ph = gh

(2)

thus
(tx/cx) = (gx − px)/pw
(ty/cy) =

(
gy − py

)
/ph

(tw/cw) = log(gw/pw)
(th/ch) = log(gh/ph)

(3)

where p =
(

px, py, pw, ph
)

denotes the position of the input proposal and g =
(

gx, gy, gw, gh
)

is the predicted ground-truth box. ∆ =
(
tx/cx, ty/cy, tw/cw, th/ch

)
represents the distance

vector, i.e., the minor adjustments performed by the bounding box regressor. cx, cy, cw, ch
are the weights affecting the magnitude of the distance vector, the weights cx, cy, cw, ch are
initially set as (10, 10, 5, 5) and progressively increase with the increase of stages. As the
bounding box regressor implements fine-tuning over the offset vector ∆, these values are
usually very small. Thus, normalization is performed to ∆ [25,35,36,41].

For an image patch xj, the loss function of bounding box regression used in Cascade
R-CNN [25] can be expressed as follows:

Rloc[ f ] =
Nloc

∑
j=1

Lloc( f (xj, pj), gj) (4)

where Rloc is the cross-entropy loss of bounding box regression, j is the index of a candidate
proposal, Nloc is the number of candidate proposals, and Lloc denotes the S1 smooth L1
function [24]:

LLOC(a,b) = ∑
i∈{x,y,w,h}

smoothL1(ai − bi) (5)

smoothL1(x) =
{

0.5x2 , |x| < 1
|x| − 0.5 , otherwise

(6)



Remote Sens. 2022, 14, 2091 9 of 18

where f
(

xj, pj

)
is the bounding box regression function, and pj =

(
pj

x, pj
y, pj

w, pj
h

)
is the

jth candidate proposal with four coordinates, i.e., the center position
(

pj
x, pj

y

)
, and the box

width and height
(

pj
w, pj

y

)
. gj represents the predicted ground-truth box and is specified in

the same way (gj =
(

gj
x, gj

y, gj
w, gj

h

)
). Henceforth, unless needed, we ignore the superscript

j for simplicity.
To enable further convergence in the cascaded regression with more stages, we im-

prove the loss function for the bounding box regression to achieve higher sensitivity around
zero. The modified regression loss function is defined as

sgn(tx/cx)× |tx/cx|4/3 × pw + px = gx

sgn(ty/cy)×
∣∣ty/cy

∣∣4/3 × ph + py = gy

exp
(

sgn(tw/cw)× |tw/cw|4/3
)
× pw = gw

exp
(

sgn(th/ch)× |th/ch|4/3
)
× ph = gh

(7)

where sgn is the signum function and the exponent 4/3 of the terms (tk/ck)
4/3, and

k ∈ {x, y, w, h} is designed to increase the nonlinearity and maintain a tradeoff between
sensitivity and the gradient of the loss.

The input
(
tx, ty, tw, th

)
is plotted against the bounding box output offsets (gx − px,

gy − py, gw/pw, gh/ph) for the original and modified loss functions with different weights
ci, i ∈ {x, y, w, h} for different stages (Figures 4 and 5). The modified loss function has
smoother curves around zero, indicating that the regressor has a smaller step size (i.e.,
higher sensitivity) when the offsets between the candidate bounding box and the ground-
truth approach zero. This modification enables the further convergence of the cascaded
bounding box regressor as the stages increase. This is demonstrated in Section 6.
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Figure 4. Input offsets tx vs. bounding box output offset gx − px plotted for the original and modified
loss functions. Following the settings in Cascade R-CNN, the weight cx is set as 10, 20, 40, 80, and 160
for the first to the fifth stage, respectively.
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Figure 5. Input offsets tw vs. bounding box output offset (gw/pw) plotted for the original and
modified loss functions. Following the settings in Cascade R-CNN, the weight cw is set as 5, 10, 20,
40, and 80 for the first to the fifth stage, respectively.

The effects of taking different exponent values in the loss function are illustrated in
Figure 6. We can see that a larger exponent value corresponds to a higher sensitivity of the
loss function around zero, but the convergence rate is slower. The exponent term of 4/3 is
a tradeoff between the sensitivity and convergence rate. The value is an empirical value
chosen after multiple experiments.
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Figure 6. Effects of taking different exponent values in the loss function of bounding box regression,
using the fifth stage as an example. (a) Input offsets tx vs. bounding box output offset gx − px at
the fifth stage with different exponent values; (b) Input offsets tw vs. bounding box output offset
(gw/pw) at the fifth stage with different exponent values.

6. Experimental Results
6.1. Implementation Details

The experiments were carried out on DOTA-v1.5 dataset [27], using several popu-
lar baseline detectors, including Faster R-CNN [35], FPN [36], and RetinaNet [33] with
ResNet50 backbone [42]. TITAN X Pascal with eight GPUs was used for training and
testing. All experiments were implemented on the Detectron codebase [43], which is
powered by the Caffe2 deep learning framework. As most of the state-of-the-art object
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detection methods provided by the Detectron codebase do not predict oriented bounding
box (OBB), for ease of comparison with other detectors, the horizontal bounding box (HBB)
annotation is used throughout this paper. With reference to the settings of Detectron [43],
all images in the dataset were cropped to 600 pixels × 1000 pixels. Stochastic gradient
descent with momentum (set as 0.9) was adopted as the training method. Training was
started at a learning rate of 0.02, which was decreased to 0.002 and 0.0002 in 120 k and
160 k iterations, respectively, and completed in 180 k iterations. The penalty factor was
0.0001. Each synchronized GPU held one image per iteration. We also warmed up our
training using a smaller learning rate of 0.005 × 0.3 for the first iteration [44]. We used
up to 2000 RoIs for training and 1000 RoIs for testing. The RoI-Align technique [41] was
also adopted.

In two-stage detectors, due to the low quality of input region proposals, an IoU
threshold of 0.5 is widely used, as a standard compromise between the goals of effective
training and less noisy detection. In Cascade R-CNN, due to the progressively improved
IoU distribution of input proposals, to achieve higher quality of training, the IoU threshold
was empirically set as 0.6 and 0.7 for the second and third stages, respectively. In a cascaded
structure, with an increase in the number of stages, increasing the IoU threshold linearly
will result in too few positive samples. In the case of Cascade R-CNN++, to ensure effective
training at each stage, we propose a method to automatically determine the specific IoU
threshold for all stages from the second stage onward, according to the IoU distribution
of the training samples. The threshold for the first stage remains the same (i.e., 0.5) as
two-stage detectors and Cascade R-CNN. To guarantee effective training, at least 20% of
the training samples should be positive. Thus, starting from the second stage and so on, the
IoU threshold can be automatically determined using the 20% quantile of IoU distributions.
Following this method, the IoU thresholds for a five-stage implementation of Cascade
R-CNN++ was determined as U = {0.5, 0.673, 0.723, 0.743, 0.745}. Using the determined
new thresholds, the proposed Cascade R-CNN++ was re-trained.

In addition, we decide whether to add one more cascade stage by evaluating the IoU
distribution of the training samples. A new stage detector will not be added if the IoU
distribution is not improved compared with the previous stage. For example, in this study,
the 20% quantile of IoU of the sixth stage is 0.745, indicating that there is no need to add
the sixth stage.

6.2. Stage-Wise Comparison

On the DOTA dataset, we compared the detection performance of three-, four-, and
five-stage Cascade R-CNN++, all with the ResNet-50 backbone. The results are shown in
Table 2, where AP indicates the average precision and AP50, AP75, and AP90 indicate the
detection precision using IoU thresholds of 0.5, 0.75, and 0.9, respectively. APS, APM, and
APL indicate the detection precision for small, medium, and large objects, respectively.

Table 2. Performance comparison between three-, four-, and five-stage implementations of Cascade
R-CNN++ on DOTA-v1.5 dataset, all with Resnet-50 backbone.

FPS AP AP50 AP75 AP90 APS APM APL

Three stage Cascade
R-CNN++ 2.54 45.0 64.2 50.5 17.7 28.1 41.0 51.9

Four stage Cascade
R-CNN++ 2.46 45.4 64.4 51.2 17.8 27.5 41.5 51.1

Five stage Cascade
R-CNN++ 2.34 45.7 64.6 51.0 19.4 27.0 41.8 53.6

As shown in Table 2, the overall detection precision is improved with an increase in
the stage, and there was no significant reduction in the inference speed as measured by FPS
(Frames Per Second).
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6.3. Ablation Experiments of the Proposed Modifications

The detection performance of Cascade R-CNN++ was further analyzed by ablation
experiments using the ResNet-50 backbone. The results are shown in Table 3. The cascade
detectors with both the new ensemble strategy and the modified loss function for bounding
box regression achieved the best precision, with significant improvement in AP90.

Table 3. Ablation experiments for a five-stage Cascade R-CNN++ on the DOTA-v1.5 dataset. “Ens”
indicates using the new ensemble strategy for classification at inference. “Reg” indicates using
the modified loss function for bounding box regression at both training and inference, all with
Resnet-50 backbone.

Ens Reg AP AP50 AP75 AP90 APS APM APL

44.1 63.0 49.5 17.3 25.9 39.8 50.3√
44.3 63.3 50.0 17.9 26.3 40.1 50.9√
45.3 64.5 50.6 17.6 27.0 41.3 52.8√ √
45.7 64.6 51.0 19.4 27.0 41.8 53.6

6.4. Comparison with State-of-the-Art Detectors

The performance of the proposed Cascade R-CNN++ was compared with that of state-
of-the-art two-stage/multi-stage detectors on DOTA-v1.5 dataset, as detailed in Table 4.
Entries denoted by * used enhancements including multi-scale training/inference and
SoftNMS, as in [43,45].

Table 4. Comparison with popular baseline detectors on DOTA-v1.5 dataset, all with Resnet-50
backbone. Entries denoted by * used enhancements of multi-scale training/inference and SoftNMS,
as in [43,45].

AP AP50 AP75 AP90 APS APM APL

Faster R-CNN 40.1 59.3 45.0 11.7 24.1 36.1 48.9
FPN 40.3 62.0 50.4 15.4 24.4 37.5 47.2

RetinaNet 38.9 60.1 42.6 10.0 22.3 36.8 46.2
Cascade R-CNN 42.5 60.4 49.1 15.7 23.6 38.4 49.6

Cascade R-CNN++ 45.7 64.6 51.0 19.4 27.0 41.8 53.6
Cascade R-CNN++ * 47.1 66.2 53.2 19.5 30.8 42.7 55.9

As shown in Table 4, the proposed Cascade R-CNN++ achieved higher precision in
all the metrics than Faster R-CNN, FPN, RetinaNet and the original Cascade R-CNN. The
most significant improvement is found on AP90, followed by the detection precision on
medium and small objects (i.e., APM and APS). These results prove that the proposed
method is effective and outperforms state-of-the-art detectors, especially in high-quality
detection. In the experiment, we also implemented the Cascade R-CNN++ with multi-scale
training/inference and softNMS, denoted by Cascade R-CNN++ * in Table 4. With these
enhancements, Cascade R-CNN++ surpassed Cascade R-CNN by 4.6 points. It is worth
noting that other recent studies explored improvements from different perspectives (e.g.,
feature pyramids), suggesting that the cumulative effect of these enhancements can further
improve the performance of multi-stage detectors in the fields of remote sensing object
detection, instance segmentation, key point detection, etc.

Comparison was also conducted on another remote sensing dataset, NWPU VHR-10
(Table 5). Training was started at a learning rate of 0.01, which was decreased to 0.001 and
0.0001 in 30 k and 40 k iterations, respectively, and completed in 50 k iterations. Other
implementation settings are the same as the experiments on DOTA-v1.5.
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Table 5. Comparison with popular baseline detectors on NWPU VHR-10 dataset, all with Resnet-50
backbone.

AP AP50 AP75 AP90 APS APM APL

Faster R-CNN 53.3 88.3 59.6 6.0 21.5 48.5 59.7
FPN 55.6 89.6 61.4 7.1 37.0 50.0 63.3

RetinaNet 49.1 88.2 50.8 4.5 18.7 44.1 55.2
Cascade R-CNN 59.1 91.5 69.1 8.5 38.3 53.3 66.2

Cascade R-CNN++ 60.0 91.2 70.8 9.2 43.1 54.1 67.8

From Table 5, we can see that the proposed Cascade R-CNN++ yielded the best
performance on NWPU VHR-10 dataset, especially on high-quality detection revealed by
AP75 and AP90. The detection precision on small objects achieved a 4.8% improvement
over the original Cascade R-CNN approach.

6.5. Model Transferability on Multiresolution Remote Sensing Images

Further analysis was conducted to compare the transferability of the proposed model
and the original Cascade R-CNN across multiresolution remote sensing images. Images in
the remote sensing dataset DOTA-v1.5 were upscaled by different factors (e.g., two, three,
and four). The detection model trained by original resolution images was directly used
for inference to simulate most cases that detectors trained with limited data variability are
employed to detect objects in images of different resolutions. As previously described, the
DOTA-v1.5 dataset contains 16 categories of objects, such as airplane, ship, storage tank,
large vehicle, small vehicle, etc. Here we take the detection of airplanes and harbors as
examples. The performance achieved on object detection across multiresolution images are
shown in Figure 7 (single object) and Figure 8 (multi objects).
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Figure 8. Examples of multi-object detection across multi-resolution remote sensing images.
(a) Detection of airplanes on the original resolution image (no upscale); (b) detection of airplanes on
the image upscaled by a factor of two; (c) detection of airplanes on the image upscaled by a factor of
three; (d) detection of airplanes on the image upscaled by a factor of four; (e) detection of harbors on
the original resolution image (no upscale); (f) detection of harbors on the image upscaled by a factor
of two; (g) detection of harbors on the image upscaled by a factor of three; (h) detection of harbors on
the image upscaled by a factor of four.

As we can see from Figure 7, in single and large object detection, The IoUs obtained
by Cascade R-CNN++ are slighted better than those of Cascade R-CNN. In multi-object
detection (Figure 8), the performance of Cascade R-CNN decreases rapidly with an increase
in upscale factors, whereas Cascade R-CNN++ exhibits much better transferability across
different resolution images. In particular, for small object detection, as indicated by the
white ellipse in Figure 8c,g, when images were upscaled by a factor of three, Cascade
R-CNN++ could detect most of the small objects, whereas Cascade R-CNN missed most of
the small objects. When images were upscaled by a factor of four, as in Figure 8d,h, both
detection models miss-detected a number of small objects. In the detection of airplanes
(Figure 8d), it is noticed that Cascade R-CNN miss-detected almost all small airplanes,
whereas Cascade R-CNN++ could still detect several small airplanes.

We conducted the above experiments on all of the 16 categories of objects on all test
images in DOTA-v1.5, using upscale ratios of 1, 3/2, 2, 5/2, 3, 24/7, and 4. The boxplots of
the obtained IoU after bounding box regression are shown in Figure 9. The upscale ratio of
3/2 refers to the scenario that images were upscaled by a factor of two and downscaled by
a factor of three. It is the same with other ratios.

From Figure 9, we can see that for remote sensing images upscaled by different ratios,
Cascade R-CNN++ yielded higher IoU than Cascade R-CNN. The improvement in the IoU
distribution obtained by Cascade R-CNN++ became more significant with an increase in
the upscale ratio. These results indicate that Cascade R-CNN++ achieves higher detection
quality than Cascade R-CNN in multiresolution remote sensing images.
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7. Discussion

In this section, we discuss the impacts of IoU thresholds on the detection performance
of cascaded detectors.

The majority of the region proposals produced by RPN or selective search have low
quality, showing distribution concentrated around low IoU values. A high threshold will
lead to too few positive samples, resulting in model overfitting. A low threshold will
produce noisy detections. The IoU threshold of 0.5 is a standard compromise widely used
in object detection models. This value is used as the initial threshold for the first stage, both
in Cascade R-CNN and the proposed Cascade R-CNN++ model.

In the original Cascade R-CNN, the IoU thresholds for the second and third stages
were empirically set as 0.6 and 0.7, increasing linearly by a step size of 0.1. In Section 4.1,
it was found that with the number of cascades increases, the improvement in the IoU
distribution of training samples becomes smaller. Thus, for the five-stage model in Section 4,
the IoU thresholds for the fourth and fifth stages were empirically set as 0.75 and 0.85.
We conducted a comparison on the detection performance under different IoU threshold
settings on the proposed Cascade R-CNN++ structure, with results shown in Table 6, where
the “empirical thresholds” are represented by U = {0.5, 0.6, 0.7, 0.75, 0.85}, and the “auto
determined thresholds” are denoted by U = {0.5, 0.673, 0.723, 0.743, 0.745}, which are the
thresholds automatically determined by the 20% quantile of IoU distribution at each stage
except the first stage, as described in Section 6.1.

Table 6. Comparison of the detection performance on DOTA-v1.5 dataset, under different IoU
threshold settings on the proposed five-stage Cascade R-CNN++, with Resnet-50 backbone.

AP AP50 AP75 AP90 APS APM APL

Empirical thresholds 45.5 64.0 51.0 19.2 26.7 42.9 52.8
Auto determined

thresholds 45.7 64.6 51.0 19.4 27.0 41.8 53.6

In Table 6, it is shown that under the same conditions, auto determined thresholds
achieved better overall performance. It is likely that the thresholds estimated using the
IoU distribution better matches the quality of training samples, and thus achieved a better
balance between effective training and high-quality detection.
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8. Conclusions

In this study, we proposed Cascade R-CNN++ as an improved cascade structure,
to achieve high-quality object detection across multiresolution remote sensing image.
The new model overcomes the extension problem of the original Cascade R-CNN by
employing a new ensemble strategy for classification at inference, which eliminated the
mismatch between the classifier and RoI features. Further, we modified the loss function of
bounding box regression to achieve higher sensitivity around zero, which allowed further
convergence with an increase in the cascaded stage. The effectiveness of the proposed
method was verified using DOTA-v1.5 and NWPU VHR-10 datasets. Cascade R-CNN++
could achieve higher precision with an increase of stages, and significant improvements
were achieved in high-quality detection (e.g., AP90). We conducted further analysis on
detection quality to verify model transferability across multiresolution remote sensing
images. Comparing to Cascade R-CNN, the proposed Cascade R-CNN++ achieved higher
IoU values on the detection of different categories of objects across multiresolution images.
This trend becomes more significant as the image resolution decreases.

Owing to limited variability of remote sensing training dataset, the transferability of
the deep learning model between multiresolution imagery is essential for remote sensing
object detection. “Training once, apply to multiscale” is the ultimate goal. The cascade
structure and loss function presented in this paper can help the model to improve transfer-
ability across multiresolution images. They are independent components that can further
be applied to another multistage model. In the future, we will explore the use of cascaded
structure in other tasks, such as instance segmentation and key point detection.
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