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Abstract: High-output-rate relative positions are required for high-speed safety-critical kinematic-
to-kinematic applications such as pre-crash sensing and shipboard landing. We propose a real-time,
high-output-rate relative positioning method based on the integration of a real time kinematic (RTK)
differential global navigation satellite systems (DGNSS) relative positioning algorithm, carrier-phase-
based tightly coupled GNSS/Inertial navigation system (TC-GNSS/INS) integration algorithm and
polynomial prediction algorithm for position increment. We focus on the rarely studied issue that
data broadcast rates and sampling rates have effects on the integrated relative positioning accuracy
under different motion states of a moving base. A vehicle-to-vehicle field test with a frequently
turning base demonstrates the advantages of the proposed method, such as low bit rate of broadcast
data, high output rate of position solutions and excellent real-time tolerance of latency. The results
show that compared with the 10-Hz output of sole RTK DGNSS relative positioning, the proposed
method can provide centimeter-level-accuracy relative positions at an output rate of 125 Hz with
a sampling rate of 1 Hz, and the bit rate can be reduced by 83.12%. A UAV-to-boat field test with
straight-line-motion moving base is then carried out to validate the applicability of the proposed
system for aircraft applications. The results show that the broadcast rate of position increments of the
moving base can be further reduced.

Keywords: DGNSS/INS integrated; high output rate; precise relative positioning; low bit rate;
kinematic-to-kinematic

1. Introduction

Nowadays, many safety-critical kinematic-to-kinematic applications require output
rates of precise relative positions of 10 Hz to 50 Hz or more, such as vehicle-to-vehicle coop-
erative safety applications [1], automated air refueling and shipboard relative landing [2].
Automatic cruise control applications require an update rate of between 10 Hz and 20 Hz [3].
Cooperative vehicular applications such as lane-change, emergency brake lights and for-
ward collision warnings require 10 Hz and the pre-crash sensing application even requires
an output rate of up to 50 Hz [1]. High-speed applications such as autopilot and airborne
positioning also require a sampling rate of GNSS data of 50 Hz [4].

Carrier-phase-based RTK DGNSS relative positioning technology is widely adopted
in kinematic-to-kinematic applications to provide precise relative positioning such as
vehicle-to-vehicle cooperative positioning [2,5], formation flight [6,7], collision detection
between aircrafts [8] and shipboard landing [9,10]. Raw GNSS observations should be
broadcast from a moving base to a rover by radio; the synchronized observations are
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required for relative positioning. With ambiguities correctly fixed, centimeter-level accu-
racy can be achieved [11–13]. As the raw GNSS observations need to be transmitted by
wireless datalink, challenges such as nondeterministic latency, packet drops and band-
width limitations cannot be avoided in real-time relative positioning [1]. Packet drops
will increase latency. Even though modern receiver technology now enables sampling of
GNSS observations at very high rates, such as 50 Hz or even higher [14,15], the huge data
broadcast rate will bring heavy communication pressure and computational load. Much
research has been done on high-rate output for relative positions [16–21]. Comstock [16]
developed RTK positioning technology with a broadcast rate at 20 Hz and found that the
latency exceeded the sampling period, and it was difficult to obtain synchronized data
instantaneously. Lawrence [18] proposed the reference carrier phase prediction (RCPP)
technology combined with RTK positioning technology to overcome the effect of latency
and achieve high-rate output. The weakness of this approach is that the computational
load will greatly increase with the increasing output rate. Hatch et al. [19] combined ex-
trapolation techniques based on phase difference over time (PDOT) and RTK positioning
technology to achieve high-rate, low-latency output. However, the positioning accuracy
deteriorated rapidly when the sampling rate was up to 20 Hz due to the cumulative error
of PDOT. Zhang et al. [20] proposed a precise DGNSS positioning method, known as RTK
(ARTK), using asynchronous observations from two receivers to avoid data synchronizing,
and achieved output at 20 Hz. Dong et al. [21] combined PDOT with the ARTK method for
kinematic-to-kinematic applications. However, synchronized data are still required in the
ambiguity initialization step and high-sampling-rate GNSS receivers are needed to obtain
high-rate relative positions in the ARTK method, which increases the computational load
and power consumption.

In order to overcome the weaknesses of existing sole-GNSS-based, high-rate precise
relative positioning methods as mentioned above, measurements from inertial systems
(INS) can be combined with GNSS observations to provide high-rate relative positions [22].
Martin et al. [2] incorporated carrier phase differential GPS and INS measurements to
estimate the relative positions of vehicles in a convoy or leader/follower configuration. The
relative position and velocity were directly used as part of the state vector of the Kalman
filter of the integrated RTK/INS system. However, the raw INS measurements from two
vehicles were needed to construct the time update model, which resulted in a high com-
munication load to broadcast INS measurements for high-rate relative positioning. Many
INS-aided relative positioning methods requiring the broadcast of raw INS measurements
have been described in the literature [6,22–24]. In real-time applications, it is impractical to
broadcast raw INS data at a high rate for high-rate relative positioning. Dong et al. [21]
merged the ARTK/PDOT method with GNSS/INS integration to improve the output rate
of relative positioning; however, the problem of the influence of the defects of the ARTK
method and high-sampling-rate GNSS receivers persisted.

Real-time relative positioning accuracy is determined by many factors such as mea-
surement error, baseline length, data broadcast rate, GNSS sampling rate and so on. On the
one hand, Remondi and Benjamin [25] demonstrated that centimeter-level-accuracy relative
positions can be obtained in seconds for kinematic applications by carrier-phase-based
RTK DGNSS relative positioning methods. On the other hand, velocity accuracies at a
centimeter level [26] can be achieved using the carrier-phase-based TC-GNSS/INS inte-
grated algorithm, which means that the accuracy of position increments at 1-s time interval
can also be achieved at the same level. We find that the sampling rates of GNSS receivers
and data broadcast rates between receivers have room for adjustment. Even though there
are a number of studies on the effect of GNSS sampling rate on receiver performance and
observation noise characteristics [27–30], research on the effect of sampling rates and data
broadcast rates on DGNSS/INS integrated relative positioning is rare.

Based on the above considerations, we propose a low-bit-rate, high-output-rate
DGNSS/INS integrated precise relative positioning method for kinematic-to-kinematic
applications. Synchronous RTK DGNSS relative positions are combined with the posi-
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tion increments of two receivers, as calculated by a carrier-phase-based TC-GNSS/INS
integrated algorithm and a polynomial prediction algorithm for position increments to
provide high-rate, precise relative positions. It is not necessary to transmit raw INS data
between receivers, so the data broadcast rate can be greatly reduced. The adverse effect of
broadcast latency on real-time relative positioning can also be overcome. As the coasting
time of INS, prediction time and cumulative number of position increments during the
outages of sampling and broadcast are mainly determined by the time interval of raw
GNSS observations and the transmitted data, the sampling rate of GNSS receivers and the
data broadcast rate between receivers have a great effect on the accuracy of DGNSS/INS
integrated relative positioning. We focus on analyzing the effects of sampling rate and
data broadcast rate on the relative positioning error. We found that the sampling rate and
broadcast rate of raw GNSS observations can be greatly reduced, while the broadcast rate of
position increments should be kept relatively high when the base moves in many turnings.
The relative positioning performance was evaluated in field tests. The results prove that
the proposed method is effective with a low bit rate of broadcast data and a low GNSS
sampling rate.

The structure of this paper is as follows: The overall architecture and fundamental
algorithms are introduced in Section 2. Then, we analyze the effects of sampling rate and
data broadcast rate in field tests. The relative positioning performance is described and
discussed in Section 3. Finally, conclusions are drawn in the Section 4.

2. Methods

This section will present detailed algorithms and the integration mechanism of the
proposed method. First, we give two basic algorithms. Then, the detailed integration
mechanism is described and the effect of data broadcast rate and sampling rate is discussed.
Finally, two extended algorithms are presented which ensure the high output rate, accuracy
and reliability of the proposed relative positioning solution.

2.1. RTK DGNSS Relative Positioning Algorithm

As ionospheric and tropospheric errors are highly correlated for a short baseline
(<10 km) between the rover and moving base, double-differences (DD) carrier phase
observations between satellites and receivers are typically used to remove receiver clock
error, satellite clock error, ionospheric delay, tropospheric delay, and other common errors.
The DD carrier phase observation equation for a receiver-satellite pair is as follows:

φ
ij
rb = dij

rb + λNij
rb + ε

ij
rb (1)

where φ denotes the carrier phase observation, d denotes the satellite-receiver range, λ
denotes the signal wavelength, N denotes carrier phase ambiguity and ε denotes measuring
error. DD operator is expressed as

(•)ij
rb = (•)i

r − (•)i
b − ((•)j

r − (•)j
b) (2)

where subscript r and b represent the rover and moving base, and superscript i and j
represent satellite numbers. Assuming that the change of the line-of-sight vectors between
receivers can be ignored, the linearized observation equation can be expressed as

φ
ij
rb = −(si

r − sj
r)dXrb + λNij

rb + ξ
ij
rb (3)

where s denotes the line-of-sight vectors and dXrb denotes the baseline vectors to be solved,
namely, the relative position between the rover and moving base, while ξ denotes the
comprehensive error after linearization. The ambiguity can be determined by the LAMBDA
method [31] with DD carrier phase and DD pseudo-range observations, and can then be
moved to the left of Equation (3). Given the presence of at least four visible satellites
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between the rover and the moving base, relative position dXrb can be determined by least
square estimation (LSE).

2.2. TC-GNSS/INS Integration Algorithm

Instead of the derived GNSS position/velocity, as used in loosely-coupled (LC) in-
tegration, TC integration directly utilizes raw GNSS observations and can still provide
positioning solutions, even when less than four GNSS satellites are tracked. Conventional
TC adopts pseudo-range and Doppler observations for state estimations (TC-PD), which
are simple and applicable in cases involving a single receiver. In order to improve the
accuracy of the position increment, we use carrier phase and pseudo-range observations
in the measurement model (TC-PC). The state vector includes nine navigation error states
and six sensor bias states, expressed as

xk =
[
(δrk)

T (δυk)
T (δψk)

T (ba,k)
T (bg,k)

T
]T

(4)

where subscript k denotes the epoch of measurement update; δr, δυ, and δψ are the position,
velocity, and attitude error vectors respectively; and ba and bg are the bias errors for the
accelerometers and gyros, modeled as first-order Gauss–Markov processes. The used raw
GNSS observations of satellite i are

Zi
k =

[
Pin

k ∆tφ
in
k
]T (5)

where n denotes the number of reference satellites, Pin
k denotes single-differenced (SD)

pseudo-range observations between satellites at epoch k, and φin
k denotes single-differenced

carrier phase observations between satellites at epoch k. The SD operator between satellites
is expressed as

(•)ij = (•)i − (•)j (6)

∆t denotes the time difference operator, expressed as

∆t(•)k = (•)k − (•)k−1 (7)

The first-order Gauss-Markov processes can be expressed as{ .
ba,k = − 1

Ta
ba,k + ωa

.
bg,k = − 1

Tg
bg,k + ωg

(8)

where Ta and Tg denote the respective correlation times and ωa and ωg denote the respective
driven noise for accelerometers and gyros. These parameters can be obtained by Allan
variance analysis of inertial sensors.

As for carrier phase, time difference is usedto remove the ambiguity parameter. As
for the pseudo-range observation, ionospheric delay is compensated for by using the
dual-frequency ionosphere-free combination [26], and the tropospheric delay is mostly
corrected by the Saastamoinen model [32]. Assuming the total number of the used GNSS
observations is m, the observation matrix is

Zk =
[
(Z1

k)
T · · · (Zi

k)
T · · · (Zm

k )
T
]T

(9)

Then, a linearized time update and measurement update model can be expressed as{
xk = Φk,k−1xk−1 + Wk−1
Zk = HkXk + Vk

(10)
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where Φ denotes state transition matrix, W is the process noise matrix, H is the design
matrix, and V is the measurement noise matrix. Then, the state vector xk and its corre-
sponding covariance matrix Pk can be solved using the Kalman filter algorithm. After
the measurement update, the state vector is calculated by a time update using only INS
measurements. We define this period as coasting time. Assuming that the coasting time is
∆tTC, the state vector increment x∆tTC/k and its corresponding covariance matrix P∆tTC/k
from k to k + ∆tTC can be calculated as

x∆tTC/k= (Φk+∆tTC ,k − I)xk + Wk (11)

P∆tTC/k = Pk+∆tTC + Pk − (PkΦT
k+∆tTC ,k + Φk+∆tTC ,kPk) (12)

where Pk+∆tTC denotes the covariance matrix at k + ∆tTC. Then, position increment dX∆tTC
and its corresponding covariance matrix can be extracted from X∆tTC/k and P∆tTC/k.

2.3. Integration Mechanism of High-Rate Synchronous Relative Positions

A carrier-phase-based RTK DGNSS relative positioning algorithm is integrated with
the carrier-phase-based TC-GNSS/INS integration algorithm to provide high-rate, precise,
relative position solutions. Figure 1 displays the overall architecture of the DGNSS/INS
integration relative positioning system, which is composed of four parts, i.e., the rover
system, a moving base system, GNSS and datalink. f denotes accelerometer measurements,
ω denotes gyroscope measurements, ρ denotes pseudo-range observations and φ denotes
carrier phase observations. GNSS satellite signals are received synchronously by the GNSS
receivers of rover and moving base systems. As for moving base system, carrier phase and
pseudo-range observations from GNSS receivers are integrated with the INS measurements
from the inertial measurement units (IMUs) in the TC-GNSS/INS integration algorithm
to provide the absolute position of the moving base and position increments for the radio
station to broadcast. Then, raw GNSS observations and position increments of the moving
base are sent to the rover system by wireless datalink. As for the rover system, the
RTK DGNSS relative positioning algorithm and TC-GNSS/INS integration algorithm are
independent from one another. When no data are being broadcast from the moving base,
the TC-GNSS/INS integration algorithm can provide the absolute position of the rover
independently. When raw GNSS observations of the moving base are received by the
radio station of the rover, the carrier phase and pseudo-range observations of the two
receivers are used to construct double-differenced observations between satellites and
receivers to calculate the relative distance between the rover and moving base via the RTK
DGNSS relative positioning algorithm. When position increments from the moving base are
received by the radio station of the rover, the position increments of the rover and moving
base and the relative position from RTK DGNSS are merged to obtain the instantaneous
synchronous relative position by the integration method. Additionally, single- and dual-
station fault detection and elimination (FDE) are carried out before GNSS observations
are processed in the positioning algorithms to guarantee the reliability of the solution.
The word “single-station” means that the data used for FDE can only be obtained from
the GNSS receiver and IMU of a single station, while “dual-station” means that the data
from the datalink can also be used. The results of a single-station FDE will be used in the
dual-station FDE process inrover.
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Figure 1. Overall architecture.

The integration mechanism of the synchronous relative position is displayed in
Figure 2. In the figure, the horizontal axis with arrows denotes the observation time
axis; t0 and ti denote the first and i-th observation times, respectively, when the RTK
DGNSS relative positioning succeeds; ∆tp denotes the time interval for predictions of
position increments of the moving base; ∆tTC denotes the time interval of measurement
updates in the TC-GNSS/INS integration algorithm, which is assumed to be the same value
in the rover and the moving base. Once RTK DGNSS relative positioning succeeds at t0
and ti, precise baseline vectors dXrb,t0 and dXrb,ti

between the rover and moving base can
be obtained, represented by red dashed vertical arrows in Figure 2. Position increments
from ti to ti + ∆tTC can be calculated and saved in a buffer in the rover and moving base
independently at ti + ∆tTC, which are denoted as dXr,∆tTC,1 and dXb,∆tTC,1

, represented by
black curved dotted arrows in Figure 2. Then, position increments of the moving base,
namely dXb,∆tTC,1

, are broadcast to the rover. Assuming that the current observation time is
ti + ∆tTC + ∆tp, when the nearest RTK DGNSS relative positioning succeeding time is ti
and the time of the latest position increments received from the moving base is ti + ∆tTC,
the integrated synchronous relative position can be expressed as

dXrb,ti+∆tTC+∆tp = dXrb,ti
+ dXr,∆tTC,1 + dXr,∆tp − dXb,∆tTC,1

− dXb,∆tp (13)

where dXrb,ti+∆tTC+∆tp denotes the integrated synchronous relative position at ti + ∆tTC + ∆tp,
which is represented by solid arrows in Figure 2; dXr,∆tp denotes the position increment of
the rover from ti + ∆tTC to ti + ∆tTC + ∆tp, which can be obtained from the TC-GNSS/INS
integration algorithm of the rover; dXb,∆tp denotes the predicted position increment of the
moving base from ti + ∆tTC to ti + ∆tTC + ∆tp by the polynomial prediction algorithm
based on historic broadcasted position increments in a sliding window.
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Figure 2. Integration mechanism of synchronous relative position.

The RTK DGNSS relative positioning solutions and position increments of the rover
and moving base are saved in a buffer to allow the integration of synchronous relative
position. Assuming that RTK DGNSS relative positioning succeeds, the integration of
synchronous relative position, as in Equation (13), can occur. As the position increments
of the moving base can be predicted by the polynomial prediction algorithm during data
outages from the rover system, the synchronous relative position can be integrated using
Equation (13) at an ultra-high rate, i.e., the same as the output rate of the TC-GNSS/INS
integration algorithm of the rover.

Broadcast latency of communication packets is a common problem in real-time relative
positioning. The proposed navigation architecture solves this problem. Figure 3 shows the
synchronous relative position integration mechanism under a condition of broadcast latency
of the position increment. ∆tLP denotes the broadcast latency, while the current observation
time is ti + 2∆tTC + ∆tLP. This means that there is a latency of position increments at
ti + 2∆tTC. The relative position of the current observation time can still be integrated as

dXrb,ti+2∆tTC+∆tLP = dXrb,ti
+

2

∑
j=1

dXr,∆tTC,j + dXr,∆tLP − dXb,∆tTC,1
− dXb,∆tTC,2+∆tLP (14)

where dXr,∆tLP denotes the position increment of the rover from ti + 2∆tTC to ti + 2∆tTC + ∆tLP,
as calculated by the TC-GNSS/INS integration algorithm, and dXb,∆tTC,2+∆tLP denotes
the predicted position increment of the moving base from ti + ∆tTC to ti + 2∆tTC + ∆tp,
calculated by the polynomial prediction algorithm, which is represented by green dotted
arrows in Figure 3. Position increments from the moving base should be received at
ti + 2∆tTC. The blank of the relative positions caused by the latency of position increments
can be filled in by the integration mechanism. It is worth noting that the broadcast latency
of position increments makes the maximal prediction time of position increments of the
moving base longer, thereby reducing the prediction accuracy.
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Figure 4 shows the integration mechanism of synchronous relative position in the pres-
ence of broadcast latency affecting the raw GNSS observations. N denotes the total number
of position increments between adjacent RTK DGNSS relative positions; ∆tLG denotes the
broadcast latency; ti+1 denotes the time when the RTK DGNSS relative position can be
obtained; and dXrb,ti+1

denotes the corresponding relative position, which is represented
by red dotted vertical arrows. The current observation time is ti + NtTC + ∆tLG, where
ti+1 = ti + NtTC. If the raw GNSS observations of the moving base at ti+1 are received in a
timely manner by the rover, dXrb,ti+1

can be obtained and used in the integration process.
However, dXrb,ti+1

cannot be obtained due to the latency of the raw GNSS observations
from the moving base. The most recent historical baseline vectors between the rover and
moving base can be used in the integration process in such a case. Therefore, the relative
position of the current observation time can still be integrated as

dXrb,ti+NtTC+∆tLG = dXrb,ti
+

N

∑
j=1

dXr,∆tTC,j + dXr,∆tLG −
N

∑
j=1

dXb,∆tTC,j
− dXb,∆tLG (15)

where dXr,∆tLG denotes the position increment of the rover from ti+1 to ti+1 + ∆tLG, calcu-
lated by the TC-GNSS/INS integration algorithm; dXb,∆tLG denotes the position increment
of the moving base from ti+1 to ti+1 + ∆tLG, as predicted by the polynomial prediction
algorithm. Blank relative positions caused by the latency of raw GNSS observations can be
filled in by constructing the most recent RTK DGNSS relative position and summing the po-
sition increments. It is also worth noting that broadcast latency of raw GNSS observations
will increase the cumulative error of the position increments.

The proposed method can not only provide precise relative positions at an ultra-high
rate, but can also overcome the adverse effect of broadcast latency of position increments
and raw GNSS observations on the real-time performance. Four kinds of fundamental algo-
rithms, namely, the RTK DGNSS relative positioning algorithm, TC-GNSS/INS integration
algorithm, prediction algorithm for position increments and the FDE algorithm are com-
bined in the method. The RTK DGNSS relative positioning algorithm and TC-GNSS/INS
integration algorithm are basic algorithms. The prediction algorithm for position incre-
ments and FDE algorithm are used to improve the output rate, accuracy and reliability of
the relative positioning solutions introduced in the subsequent sections.
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Last but not least, we note that the proposed method also shows benefits in terms
of reducing the broadcast and sampling rates. If only RTK DGNSS relative solutions are
applied, the output rate will be determined by the broadcast and sampling rates of the
raw GNSS observations. Thus, communication burden will be heavy for high-rate output.
With the help of position increments, as determined by the TC-GNSS/INS integration
algorithm of the rover and moving base, the broadcast and sampling rates of raw GNSS
observations can be greatly reduced. With the help of position increments predicted by
the polynomial prediction algorithm, the broadcast rate of position increments can also be
reduced. However, prediction time cannot be too long, i.e., the broadcast rate of position
increments should remain relatively high, especially for complex motion conditions. For-
tunately, position increment datasets are small, unlike raw GNSS observations. Thus, the
broadcast rate of position increments can be increased appropriately. On the other hand, as
short-term, precise position increments can be provided by the TC-GNSS/INS integration
algorithm, the sampling rates of receivers can be reduced to reduce computational load
and power consumption. Additionally, if the motion state of the moving base is simple,
e.g., a straight line, the broadcast rate of the position increments of the moving base can
also be reduced. A detailed analysis of the effects of the data broadcast rate and sampling
rate will be carried out based on two field tests in Section 3.1.

2.4. Polynomial Prediction Algorithm for Position Increments

In order to obtain synchronous relative position during position increment broadcast
outages from the moving base, the polynomial prediction algorithm based on historical
broadcasted position increments in a sliding window is adopted. The polynomial model is
defined as

ντi = α0 + α1τi + α2τ2
i + . . . + αpτ

p
i (16)

where ν denotes the variable to be modeled; τi denotes the relative time, where origin is the
time of the first element of the sliding window; p denotes order; and α denotes polynomial
coefficients. ν and τi can be calculated by{

τi = ti,real − t1,real
ντi = dXb,∆tTC (ti,real)/∆tTC

(17)

where t1,real denotes the real end observation time of the first position increment in the
sliding window; ti,real denotes the real end observation time of the i-th position increment
in the sliding window; and ∆tTC denotes the coasting time of position increments. When
the number of elements in the sliding window is greater than p + 1, all the polynomial
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coefficients can be determined by LSE. Then, the predicted position increment of the moving
base at tc,real can be calculated as

τc = tc,real − t1,real
ντc = α0 + α1τc + α2τ2

c + . . . ++αpτ
p
c

dXb,∆tTC (tc,real) = ντc ∆tTC

(18)

2.5. FDE Algorithm

Outliers in GNSS observations should be detected and eliminated before observations
are used for relative positioning. Carrier phase cycle slip and pseudo-range outliers are the
most common faults. Multiple methods have been designed and combined to detect and
eliminate these faults.

As for carrier phase cycle slips, the classic geometry-free carrier phase combination
(GF) method is combined with the INS-aided cycle slip detection method to detect and
simultaneously exclude single- or double-frequency cycle slips in different satellites. The
test statistic of the GF method and the corresponding variance are constructed as Tg f ,i = λ f1 ∆tφ

i
v, f1
− λ f2 ∆tφ

i
v, f2

σ2
g f ,i = λ2

f1
σ2

∆tφ
i
v, f1

+ λ2
f1

σ2
∆tφ

i
v, f1

(19)

where i denotes the number of the satellite to be detected; v denotes the number of the
station; f1 and f2 denote two different signal frequencies; λ denotes wavelengths; σ2

denotes variance; φ is the carrier phase observation, which can be in undifferenced (UD),
single-differenced (SD) or double-differenced (DD) form; finally, σ2

∆tφ
i
v, f1

and σ2
∆tφ

i
v, f2

are a

priori information, which is given according to the statistical characteristics of the carrier
phase. To simplify the present description, we define the GF method with the UD, SD
between satellites, SD between receivers and DD between satellites and receivers as the UD
GF method, BS-SD GF method, BR-SD GF method and DD GF method, respectively. The GF
method shows excellent performance in terms of detecting small cycle slips, but it cannot
detect special dual-frequency cycle slips. Additionally, it cannot identify single-frequency
cycle slips and requires the use of a dual-frequency receiver.

The INS-aided cycle slip detection method can overcome defects in the GF method. Its
test statistics for single-station combination observations and corresponding variance are
constructed as {

Ts,i, f ,v,φ = λ f ∆tφ
in
v, f + c∆tδtin − ∆tRin

v,ins
σ2

s,i, f ,v,φ = λ2
f σ2

∆tφ
in
v, f

+ σ2
∆tRin

v,ins

(20)

where n denotes the number of the reference satellites, f denotes the signal frequency, c
denotes the speed of light, δt denotes satellite clock error, and Rv,ins denotes the satellite-
receiver range, which can be expressed as

Rin
v,ins = (

∣∣∣ri − r̂v

∣∣∣)− (|rn − r̂v|) (21)

where ri denotes the position of satellite i; r̂v denotes the position of station v, as predicted
by INS, which is calculated by the TC-GNSS/INS integration algorithm; and σ2

∆tφ
in
v, f

is a

priori information. σ2
∆tRin

v,ins
is also calculated by the TC-GNSS/INS integration algorithm.

In the present description, this kind of INS-aided method is referred to as the BS-SD
INS-aided method.
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When the observations and absolute position of the moving base are received by
the rover, a test statistic for dual-station combination observations and the corresponding
variance can be constructed as{

Td,i, f ,vw,φ = λ f ∆tφ
in
vw, f − ∆tRin

vw,ins
σ2

d,i, f ,vw,φ = λ2
f σ2

∆tφ
in
vw, f

+ σ2
∆tRin

vw,ins

(22)

where Rvw,ins can be expressed as

Rin
vw,ins = (

∣∣∣ri − r̂v

∣∣∣)− (|rn − r̂v|)− (
∣∣∣ri − r̂w

∣∣∣)− (|rn − r̂w|) (23)

where r̂w denotes position of station w provided by the datalink, which is calculated
by the TC-GNSS/INS integration algorithm in the moving base; and σ2

∆tφ
in
vw, f

is a priori

information. σ2
∆tRin

v,ins
is also calculated by the TC-GNSS/INS integration algorithm. In

the present description, this kind of INS-aided method is referred to as the DD INS-aided
method. By combining the GF and INS-aided methods, all kinds of cycle slips can be
detected and excluded.

As for pseudo-range outliers, considering the poor detection performance of GNSS
methods alone, we only use INS-aided outlier detection methods for single- and dual-
station combination observations. The construction of test statistics and the corresponding
variance of a single-station is expressed as{

Ts,i, f ,v,P = Pin
v, f + cδtin − Rin

v,ins − δIin
v, f − δTin

v, f
σ2

s,i, f ,v,P = σ2
Pin

v, f
+ σ2

Rin
v,ins

(24)

where σ2
Pin

v, f
is a priori information, which is given according to the statistical characteristics

of the pseudo-range; δI denotes ionospheric delay, calculated using the dual-frequency
ionosphere-free combination [26]; and δT is tropospheric delay, corrected by the Saasta-
moinen model [32]. When there are GNSS observations from two receivers under a short
baseline condition, it is assumed that the ionospheric and tropospheric delay are eliminated
by the double-differenced combinations between satellites and receivers. The statistic and
corresponding variance of the dual-station are constructed as{

Td,i, f ,v,P = Pin
vw, f − Rin

vw,ins
σ2

d,i, f ,v,P = σ2
Pin

vw, f
+ σ2

Rin
vw,ins

(25)

All the test statistics mentioned above are assumed to be normal distributions with
zero mean and known variance in null hypothesis, in which the mean equals the value of
the outlier and the variance is constant in alternative hypotheses. Thus, given the required
false alarm risk PFA, the test threshold is expressed as

Th = −Φ−1(
PFA

2
)σT (26)

where σT denotes the standard deviation of the test statistic, which is the root of variance
of the test statistic. This can be calculated by (19), (20), (22) and (25), whereby Φ−1(x) is the
inverse function of Φ(x), which is defined as

Φ(x) =
∫ x

−∞

1√
2π

e−
τ2
2 dτ (27)

Let’s assume that Tcb represents the test statistic of all of the methods described above,
which can be calculated by (19), (20), (22) and (25). If |Tcb| ≤ Th, the corresponding
observations can be used for subsequent relative positioning. As for the GF method, if
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|Tcb| > Th, both of the two channels, using different frequencies in the corresponding carrier
phase observations, should be eliminated. As for INS-aided cycle slip and pseudo-range
outlier detection, if |Tcb| > Th, the corresponding single channel of the carrier phase or
pseudo-range should be eliminated.

All of these methods are combined to detect and eliminate carrier phase cycle slips
and pseudo-range outliers for single- or dual-station combination observations. In order to
make the most of the advantages of each method, we designed a combined fault detection
rule for single- and dual-station fault detection, as shown in Figures 5 and 6. Use of the
GNSS method alone means that only GNSS observations are used to construct test statistics,
while the implementation of the INS-aided method facilitates the solutions of the TC-
GNSS/INS integrated algorithm. The UD GF and BR-SD GF methods are used to prevent
faulty satellites from being taken as the reference satellite before SD operations among
satellites and DD operation are carried out. Then, the GNSS and INS-aided methods are
combined to detect faults. Once a fault is detected, the corresponding satellite is eliminated
in the subsequent positioning calculation.
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3. Field Tests and Results Analysis

Two field tests were designed to validate the performance of the proposed method in
different application scenarios. A vehicle-to-vehicle field test was carried out in Changsha,
Hunan Province, China on 27 November 2017, referred as ‘test 1’. In test 1, both the rover
and moving base were vehicles which moved erratically in an open space, as shown in
Figure 7. A static reference station with a pre-surveyed position was set nearby for post-
processing of the synchronous DGNSS relative positions of the moving base and rover. The
corresponding results were used to calculate a reference value for the position increment
and relative position solutions. The trajectories and velocities of the two vehicles are shown
in Figures 8 and 9. A UAV-to-boat field test was carried out in the nearby Liangzi Lake,
Hubei Province, China on 23 November 2019, referred as ‘test 2’, where UAV refers an
unmanned aerial vehicle. In test 2, the UAV was the rover and the boat was the moving
base, as shown in Figure 10. The UAV flew at an altitude of about 300 m, nearly in a straight
line, while the boat sailed in the lake nearly in a straight line, as shown in Figure 11. A
static reference station with a pre-surveyed position was set nearby for post-processing of
the synchronous DGNSS relative positions of the UAV and boat. The velocities of the UAV
and boat are shown in Figure 12.
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Figure 12. Velocities (NED) of the UAV and boat in test 2. (a) UAV; (b) boat.

In the two tests, a GNSS/MEMS prototype system, consisting of a Sensonor STIM300
MEMS and ComNav OEM-K508 board, was mounted on both the rover and moving base.
The GNSS receiver can provide five frequency observations of BDS/GPS (B1/B2/B3/L1/L2)
for real-time navigation and post-processing. Only four BDS/GPS (B1/B3/L1/L2) fre-
quency observations are used in the following analysis. The maximal sampling rate of the
GNSS receiver is 10 Hz, and the sampling rate of the MEMS is 125 Hz. Xtend-PKG 900
MHz RF modems from Digi International Inc. were used to transmit and receive the data
packets. Raw GNSS observations are broadcast in the multiple signal message 5 (MSM 5)
format of RTCM 3.2 message format for differential positioning data communication. In
order to analyze the accuracy of the position increments and the integrated synchronous
relative position, reliable post-processed DGNSS relative positioning results for the rover
relative to the static reference station, and the moving base relative to the static reference
station are used to provide reference values. The number of visible satellites in the field
tests is shown in Figure 13 (15◦ elevation mask).
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3.1. Analysis of the Effect of Data Broadcast Rate and Sampling Rate

If RTK DGNSS relative positioning is adopted to provide relative positions with a
high output rate, the sampling rate of the GNSS receiver and broadcast rate between
receivers should be increased by the same rate, which will increase the pressure of data
communication and processing. The proposed method effectively solves this problem.
According to the analysis in Section 2.3, the integrated synchronous relative position
consists of the synchronous relative position of the RTK DGNSS relative positioning,
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position increments of TC-GNSS/INS integration algorithm in the rover and moving
base and the position predictions of the moving base. As discussed in the introduction,
centimeter-level accuracy of relative positions and position increments can be achieved by
RTK DGNSS relative positioning and the TC-GNSS/INS integration algorithm, respectively.
However, the effects of the sampling and data broadcast rates on position predictions for a
moving base have not been widely studied to date.

The polynomial prediction algorithm is implemented by the rover during position
increment broadcast outages from the moving base, indicating that the prediction accuracy
depends on the accuracy of historic position increments broadcast by the moving base and
the broadcast rate of position increments of thereof (BRPM). Assuming that the broadcast
rate of GNSS observations of the moving base (BRGM) is the same as the sampling rate of
the GNSS observations thereof (SRGM), and the position increments of the moving base are
usually broadcast simultaneously with GNSS observations, the maximum prediction time
of position increments depends on BRPM. After carrying out a comprehensive analysis with
massive data offline and considering the real-time applications, the order of the polynomial
algorithm was set as 2 and the size of the sliding window at 10 epochs, which means that
ten historical position increments are used in the prediction algorithm each time. Table 1
shows the statistical results of position prediction errors at different BRPM in the two tests.
Figure 14 displays a comparison of the RMSE of the prediction of position increments in
the two tests. In test 1, it is clear that the prediction error degrades quickly in the horizontal
direction with increasing prediction time, while the prediction error degrades slowly in
vertical direction. The reason for this is that the moving base typically moves horizontally,
while vertical direction changes are minimal. In test 2, the prediction error degrades slowly
with increasing prediction time; however, the accuracy of the prediction error remains at
the centimeter level, even when the prediction time is 1 s. The reason for this is that the
motion mode of moving base in test 2 is simple. As the movements were more erratic in
test 1, a higher position increment broadcast rate of the moving base can provide more
accurate information for predictions. Thus, the position increment broadcast rate should
remain relatively high when the moving base is changing position erratically.

Table 1. RMSE of predictions of position increments.

BRPM 10 5 2 1

Field Test Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2

North (m) 0.0050 0.0018 0.0194 0.0022 0.2933 0.0037 1.2487 0.0068
East (m) 0.0051 0.0017 0.0193 0.0022 0.2864 0.0035 0.8713 0.0065

Down (m) 0.0058 0.0043 0.0068 0.0043 0.0094 0.0050 0.0154 0.0065
3D (m) 0.0092 0.0049 0.0282 0.0053 0.4100 0.0071 1.5227 0.0115
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Here, the effects of the broadcast rate of position increments and the sampling rate of
the GNSS receiver on the prediction errors in test 1 are analyzed in more detail. Assuming
that the frequency of measurement updates of the TC-GNSS/INS integration algorithm in
the moving base is the same as that of SRGM, the maximum coasting time of the position
increments of the moving base depends on SRGM. Figure 15 displays a comparison of the
accuracy of the prediction error with different SRGM–BRPM combinations. For example,
1–10 means that the sampling rate of the GNSS receiver is 1 Hz and the 1-s position
increment during sampling period is divided into 10 parts with equal 0.1-s prediction times
for broadcasts. As for Figure 15a, SRGM is fixed as 1 Hz and four different broadcast
rates are compared. It is obvious that increasing the broadcast rate significantly improves
the prediction accuracy. A high broadcast rate can provide time-intensive data for the
sliding window. When the moving base moves erratically, a smaller time interval can
reflect more motion characteristics, and therefore, a high broadcast rate can improve the
prediction accuracy significantly. As for Figure 15b, BRPM is fixed at 10 Hz and four
different sampling rates are compared. It can be seen that increasing the sampling rate
only has a slight impact on the prediction accuracy. This means that centimeter-level-
accuracy prediction increments can still be provided by the polynomial algorithm at a
low receiver sampling rate and appropriately high broadcast rate of position increments
from the moving base when the motion thereof is complex. Compared with the raw GNSS
observations, the data of position increments are small. Thus, increasing the position
increment broadcast rate may be appropriate.
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3.2. Performance of Relative Positioning in a Vehicle-to-Vehicle Field Test

Based on the analysis in the former section, six sampling and broadcast rate modes are
designed for test 1, where mode 0 is for the RTK DGNSS relative positioning method and
modes 1–5 are for the proposed method, as shown in Table 2. SRGR indicates the sampling
rate of the GNSS observations of the rover. As the same type of GNSS receiver is used by
both the rover and the moving base, SRGM and SRGR are always the same in the table. The
relative position output rate is 125 Hz in modes 1–5 but 10 Hz in mode 0. According to the
communication format of RTCM 3.2, assuming that there are dual-frequency observations
from 10 visible satellites of GPS and BDS respectively, the communication cost will be
3720 bits for every communication packet of raw GNSS observations. The communication
format of position increments and related necessary data was defined by us: 512 bits in
each communication packet. The data broadcast rates, i.e., the bit rate, of the different
modes in Table 2 are calculated based on these two typical values. Table 3 displays the
statistical results of the relative position errors of the proposed method in test 1. Figure 16
shows a comparison of the relative position errors of modes 1–4 in test 1.
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Table 2. Modes of sampling and broadcast rate in test 1.

Items Mode 0 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

BRGM (Hz) 10 10 1 1 1 1
BRPM (Hz) 0 10 10 10 5 1
SRGM (Hz) 10 10 10 1 1 1
SRGR (Hz) 10 10 10 1 1 1

Output Rate (Hz) 10 125 125 125 125 125
Bit Rate (bits/s) 37,200 42,320 8840 8840 6280 4232

Table 3. Relative position errors in test 1.

Statistics Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Maximum
Error (m)

North 0.0205 0.0198 0.0973 0.0974 2.6945
East 0.0231 0.0244 0.0887 0.0885 2.2124

Down 0.0384 0.0387 0.1260 0.1259 0.1257

RMSE (m)

North 0.0044 0.0044 0.0111 0.0158 0.6364
East 0.0047 0.0047 0.0109 0.0159 0.4635

Down 0.0086 0.0087 0.0202 0.0203 0.0216
3D 0.0107 0.0108 0.0255 0.0302 0.7875
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Compared with mode 1, mode 2 only significantly decreases the broadcast rate of
raw GNSS observations from 10 Hz to 1 Hz, while leaving other parameters unchanged.
According to Table 3, the accuracy of relative position errors in both modes is very close,
with the same high-rate output in this case as that displayed in Figure 16. Figure 17 shows
error scatterplots of modes 1 and 2. It can be seen that errors are distributed in a very small
range and are very close between the two modes. It is worth noting that the data broadcast
rate in mode 2 is reduced by 79.11% compared to mode 1. This proves that the broadcast
rate of raw GNSS observations can be greatly reduced, which has a slight effect on the
relative position accuracy.
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direction, although the accuracy of mode 4 remains at the centimeter level. The vertical 
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Compared with mode 2, mode 3 only significantly decreases the sampling rate of the
GNSS receivers of the rover and moving base from 10 Hz to 1 Hz; all other parameters
remain unchanged. The data broadcast rates of these two modes are the same. The maximal
coasting time of the position increments increases from 0.1 s to 1 s due to the decrease of
the sampling rate, which is the reason for the decline in the accuracy of relative position
error of mode 3, as shown in Figure 16. Figure 18 shows error scatterplots of modes 2
and 3. The distribution range of errors in mode 3 is obviously larger than that of mode 2,
which reflects the effect of decreasing the sampling rate of the GNSS receivers, as discussed
in the previous section. Though a decreased sampling rate degrades the accuracy of the
relative position, the accuracy is still high enough for kinematic applications. Thus, it may
be worth sacrificing a little accuracy to significantly reduce the computational load and
power consumption by decreasing the sampling rate.
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Compared with mode 3, modes 4 and 5 only significantly decrease the broadcast rate
of position increments of the moving base from 10 Hz to 5 Hz and 1 Hz; all other param-
eters remain unchanged. The relative position error in the horizontal direction degrades
dramatically with a decrease of the broadcast rate, as shown in Table 4. The accuracy of
mode 5 even degrades to the decimeter level. Figure 19 displays error scatterplots for
modes 3 and 4. Obvious degradation can also be seen in the horizontal direction, although
the accuracy of mode 4 remains at the centimeter level. The vertical error suffers from no
obvious degradation with a decrease in the broadcast rate. This phenomenon is consistent
with the analysis in the previous section; the reason for it is that the moving base moves
horizontally. Additionally, we find that the vertical error is also very close between modes
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1 and 2 or modes 3 and 4. This means that the sampling rate of the GNSS receivers of the
rover and moving base are the most influential factors on vertical error.

Table 4. RMSE with different minimal latencies of position increments in mode 3.

Minimal
Latency (s) 0 0.1 0.2 0.3 0.4

North 0.0111 0.0150 0.0283 0.0515 0.0829
East 0.0109 0.0150 0.0282 0.0520 0.0849

Down 0.0202 0.0210 0.0229 0.0265 0.0333
3D 0.0255 0.0299 0.0461 0.0778 0.1233
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Compared with 10-Hz output of sole RTK DGNSS relative positioning, modes 2, 3
and 4 can provide 125-Hz, centimeter-level-accuracy relative positions with data broadcast
rates reduced by 76.24%, 76.24% and 83.12%, respectively. Additionally, the sampling rate
can also be reduced from 10 Hz to 1 Hz in modes 3 and 4.

In order to validate the real-time performance of the proposed method, the latencies
of position increments and raw GNSS observations are simulated for post processing
with the logged raw data. The minimum latency in the post-simulation experiment is set
independently for position increments and raw GNSS observations. Tables 4 and 5 show
the statistical RMS under conditions of different minimal latency of position increments
and raw GNSS observations in mode 3. Obviously, the relative position accuracy will
deteriorate with an increase of simulated minimal latency. As for position increments,
the accuracy of three components can remain at the centimeter level when the minimal
latency is less than or equal to 0.4 s, which means that four consecutive packet drops
of position increments can be tolerated in mode 3 in the proposed method. As for raw
GNSS observations, the accuracy of horizontal direction decreases slowly, unlike that of
vertical direction. The accuracy of three components can remain at the centimeter level
when the minimal latency is less than or equal to 2.5 s, which means that two consecutive
packet drops of raw GNSS observations can be tolerated in mode 3. Generally, the value of
communication latency is at a millisecond level, i.e., sometimes up to 100 ms [1]. Thus, the
proposed method effectively overcomes the adverse impact of latency and can tolerate a
certain number of packet drops.
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Table 5. RMSE with different minimal latencies of raw GNSS observations in mode 3.

Minimal
Latency (s) 0 0.1 0.2 0.3 0.4

North 0.0111 0.0150 0.0283 0.0515 0.0829
East 0.0109 0.0150 0.0282 0.0520 0.0849

Down 0.0202 0.0210 0.0229 0.0265 0.0333
3D 0.0255 0.0299 0.0461 0.0778 0.1233

3.3. Performance of Relative Positioning in a UAV-to-Boat Field Test

As the moving base moves more or less in a straight line in test 2, the position
prediction error remains at a centimeter level when the prediction time is 1 s, as discussed
in the former section. This means that the broadcast rate of the position increments and raw
GNSS observations of the moving base may be further reduced. Four modes of sampling
and broadcast rates are designed for test 2 to reduce the data broadcast rate, as shown in
Table 6. The statistical results regarding relative position errors are displayed in Table 7.
We find that high-rate, centimeter-level-accuracy relative positions can still be provided
in mode 5. As the time interval between adjacent RTK DGNSS relative positions becomes
larger, the total number of the used position increments of the rover and moving base
becomes bigger, thereby increasing the cumulative error of position increments. Thus, the
RMSE increases with a decrease of the broadcast rate of raw GNSS observations, as shown
in Figure 20. Error scatters are shown in Figure 21. We find that centimeter-level-accuracy
can still be achieved, even when the broadcast rate of raw GNSS observations is 0.1 Hz.
Compared with 10-Hz output of RTK GNSS relative positioning, the data broadcast rates
of mode 5, mode 6, mode 7 and mode 8 are reduced by 88.62%, 93.62%, 96.62% and 97.62%.

In fact, it may not be necessary to relax the broadcast rate of raw GNSS observations
to the level used in mode 8 for practical applications. From another point of view, the RTK
DGNSS relative position solutions may be unavailable due to broadcast latency, data packet
drops, elimination by the FDE algorithm or other reasons. The results in Table 7 show the
potential of the proposed method to tolerate the unavailability of RTK DGNSS relative
position solutions. When mode 5 is adopted in practical applications, nine consecutive
packet drops of raw GNSS observations can be tolerated to maintain centimeter-level
accuracy, according to the results of the test using mode 8.

Table 6. Modes of sampling and broadcast rate in test 2.

Items Mode 0 Mode 5 Mode 6 Mode 7 Mode 8

BRGM (Hz) 10 1 0.5 0.2 0.1
BRPM (Hz) 0 1 1 1 1
SRGM (Hz) 10 1 1 1 1
SRGR (Hz) 10 1 1 1 1

Output Rate (Hz) 10 125 125 125 125
Bit Rate (bits/s) 37,200 4232 2372 1256 884

Table 7. Statistical results of relative position errors in test 2.

Statistics Mode 5 Mode 6 Mode 7 Mode 8

Maximum
Error (m)

North 0.0228 0.0282 0.0763 0.1344
East 0.0272 0.0272 0.0528 0.0740

Down 0.0628 0.0628 0.0807 0.1288

RMSE (m)

North 0.0050 0.0069 0.0162 0.0288
East 0.0065 0.0073 0.0116 0.0164

Down 0.0103 0.0126 0.0191 0.0336
3D 0.0131 0.0161 0.0276 0.0472
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4. Conclusions

Aiming to provide high-rate, precise relative positions for safety-critical kinematic-to-
kinematic applications, we proposed a real-time, high-rate DGNSS/INS integrated precise
relative positioning method. The RTK DGNSS relative positioning algorithm, carrier-
phase-based TC-GNSS/INS integrated algorithm and polynomial prediction algorithm
for position increments were integrated to obtain the synchronous relative position at an
ultra-high rate (125 Hz), i.e., the same as the output rate of the TC-GNSS/INS integrated
algorithm of the rover. Two field tests were carried out to analyze the effects of the data
broadcast rate and sampling rate and the performance of relative positioning. Based on an
analysis of the results of these field tests, the following conclusions may be drawn:

(1) The broadcast and sampling rates of raw GNSS observations can be greatly reduced,
while the broadcast rate of position increments should remain relatively high when the
moving base changes trajectory frequently. When the moving base moves in a straight line,
the broadcast rate for position increments can be lower.

(2) High-rate (125 Hz) centimeter-level-accuracy relative positions can be provided
by the proposed method even when the broadcast and sampling rates of the raw GNSS
observations are reduced from 10 Hz to 1 Hz. The proposed method can provide high-rate,
precise relative positions with low data broadcast and sampling rates.

(3) The influence of latency of raw GNSS observations and position increments on the
accuracy of relative positions can be effectively overcome by the proposed method. A small
number of consecutive packet drops can also be tolerated.
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The proposed method is of practical engineering value in kinematic-to-kinematic
aircraft applications or even for spacecraft rendezvous and docking scenarios. Future
work will concentrate on integrity monitoring of relative position solutions including
fundamental error modeling, fault detection and elimination in the measurement domain
and integrity risk analysis of real-time relative position.

5. Patents

A patent has been formalized in China (patent number: CN112147663B) based on the
work reported in this paper.
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