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Abstract: In the field of remote sensing image applications, RGB and infrared image object detection
is an important technology. The object detection performance can be improved and the robustness of
the algorithm will be enhanced by making full use of their complementary information. Existing RGB-
infrared detection methods do not explicitly encourage RGB and infrared images to achieve effective
multimodal learning. We find that when fusing RGB and infrared images, cross-modal redundant
information weakens the degree of complementary information fusion. Inspired by this observation,
we propose a redundant information suppression network (RISNet) which suppresses cross-modal
redundant information and facilitates the fusion of RGB-Infrared complementary information. Specifi-
cally, we design a novel mutual information minimization module to reduce the redundancy between
RGB appearance features and infrared radiation features, which enables the network to take full
advantage of the complementary advantages of multimodality and improve the object detection
performance. In addition, in view of the drawbacks of the current artificial classification of lighting
conditions, such as the subjectivity of artificial classification and the lack of comprehensiveness (di-
vided into day and night only), we propose a method based on histogram statistics to classify lighting
conditions in more detail. Experimental results on two public RGB-infrared object detection datasets
demonstrate the superiorities of our proposed method over the state-of-the-art approaches, especially
under challenging conditions such as poor illumination, complex background, and low contrast.

Keywords: RGB-infrared images; object detection; multimodal feature fusion; mutual information
minimization; illumination classification

1. Introduction

Object detection technology is one of the main technologies in the computer vision
field. According to the different detection steps, the object detection technology can be
divided into two types. One is the two-stage object detection technology. The detection
process of this technology is to first generate a proposal and then perform fine-grained
object detection. Its representative algorithms include Fast- RCNN [1], Faster-RCNN [2],
etc. The other is the one-stage object detection technology. The detection process of this
technology is to directly extract the image features in the network to predict the object
category and location, and its representative algorithms include RetinaNet [3], SSD [4], etc.

Currently, object detection methods mainly use single-mode images related to the
object detection task as training data. For example, Liu et al. used the RGB dataset collected
in harsh environments to train models to detect vehicles and pedestrians [5]; Chen et al.
used RGB images of KITTI and other datasets for cross-domain adaptive learning, making
the model robust in different scenarios [6]. However, when the model using RGB images as
training data is applied in complex environments, such as night, cloudy and rainy days, its
detection effect is often unsatisfactory and its robustness is poor. Therefore, in view of the
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robustness problem caused by using RGB as training data, some scholars have proposed
the scheme of using the infrared image as training data. For example, Zhao et al. used the
infrared image dataset to train the model for the task of pedestrian detection [7]; Dai et al.
used the SIRST dataset to train the model for the task of infrared small target detection [8].
However, when the infrared image is used as the training data of the model, the detection
accuracy of the algorithm is low since the infrared image lacks the texture information
of the target. In addition, there are many small target problems in application scenarios
such as remote sensing, and the detection performance of relevant algorithms needs to be
improved, such as DLAO [9] and DRA [10]. It is worth mentioning that drawing on face
detection technology is an effective way to improve the performance of related algorithms
in detecting small targets [11].

In summary, only using single-modal images as the training data of the model will
make it difficult to apply in the actual complex scene. Therefore, in order to overcome the
above difficulties, many scholars have proposed the method of using multimodal image
data as the training data for the detection model. Multimodal data have complementary
advantages, such as RGB-infrared images. The advantage of infrared images is that they
rely on heat imaging generated by the target and are not affected by external lighting
conditions. The advantage of RGB images is that they can clearly capture the texture
characteristics of the target, but are susceptible to lighting conditions. Therefore, research
on multispectral object detection based on multimodal input has become a hot topic. In
recent years, there’s a growing joint use of RGB and infrared images for related research in
various fields. For example, in the field of remote sensing, Dang et al. jointly use RGB and
UAV near-infrared images to detect radish blight [12], and Y et al. jointly uses RGB and
infrared images for terrain classification [13]. In the field of assisted driving, Li et al. jointly
use RGB and infrared images for roadside Pedestrian detection [14], and Tian et al. jointly
uses RGB and far-infrared images for 3D pedestrian detection in farmland [15]. However,
even though multimodal data has great advantages, how efficiently fusing complementary
information of multimodal data has become the core and difficulty of current algorithms.

Current cross-modal object detection algorithms based on RGB and infrared images
mostly fuse complementary information by simply concatenating input features or design-
ing an attention module to generate robust target features [16–23]. In terms of concatenating
fusion, based on the two-stage object detection algorithm Faster-RCNN, Li et al. directly
spliced RGB and infrared image features to obtain fusion features, and then input them
into the RPN module [16]. Wagner et al. designed two direct fusion models to analyze their
effects [17]. The first is early fusion, which directly combines RGB and infrared images at
the pixel level. The second is late fusion, which fuses RGB and infrared image features
in the final fully connected layer. Their analysis shows that the late fusion effect is more
effective. In terms of attention-based mechanisms, Zhang et al. established two separate
feature hierarchies for each modality, and then, by obtaining global features, the correlation
between the two modalities was encoded into the attention module for subsequent fusion
operations [18]. Zhang et al. proposed a cross-spectral fusion network, which added a
channel attention module (CAM) [24] and a spatial attention module (SAM) [25] along the
channel and spatial dimensions, making the network learn strongly meaningful features
while suppressing interference at both channel and spatial levels [19]. Fu et al. proposed an
adaptive spatial pixel-level feature fusion network. Through SAM and position attention
module (PAM) [24] respectively, their network obtains the fusion weights of different spa-
tial positions and pixels in the two feature maps, and uses the fusion weights to re-calibrate
the original features of the RGB and infrared images to obtain a multi-scale fusion feature
layer [20]. Cao et al. proposed a new multi-spectral channel feature fusion module to
fuse the RGB and infrared image features, which uses the squeeze-and-excitation (SE) [26]
module to obtain the fusion weights, and uses the fusion weights to recalibrate the original
features [21]. However, these methods do not make full use of the complement information
between different modalities, and do not give full play to the advantages of multimodal
complementarity. In addition, these methods do not consider the redundant information
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between multiple modalities when fusing complementary information, which leads to the
fusion of redundant information when fusing complementary information.

The lighting condition of most RGB and infrared image datasets is artificially divided
into two categories (day and night), such as the KAIST pedestrian dataset [27] and the
DroneVehicle remote sensing dataset [28]. The criterion of classifying lighting conditions for
the KAIST pedestrian dataset is that direct classification according to whether the shooting
time is day or night. Similarly, the DroneVehicle remote sensing dataset divides the dataset
into three lighting scenarios, daytime, nighttime, and dark nighttime, according to the time
of the shooting. However, there are two obvious drawbacks in this way. The first is that the
artificial classification is subjective, and it cannot accurately determine whether the light
intensity of the image belongs to the day or night. For example, in the night scene category,
there are also images with strong illumination caused by light sources such as street lights.
The second is that only two lighting scenes are not comprehensive enough to fully reflect
the actual lighting environment.

The above two problems restrict the further combined use of RGB and infrared images.
Therefore, in order to solve the contradiction between complementary information and
redundant information contained in different modalities, this paper proposes to design
mutual information module to reduce redundant information between different modalities,
and use an attention mechanism and illumination perception module to fuse complemen-
tary information of different modalities. In addition, given the subjectivity and incom-
pleteness of artificial classification of lighting conditions, we propose a lighting condition
classification method that uses histograms to statistics the gray values of RGB images and
considers different gray value intervals as different lighting intensities.

In summary, the main contributions of this paper are listed as follows:

1. This paper designs a mutual information module, which weakens the influence of
redundant information on complementary information fusion.

2. A lighting condition classification method based on histogram statistics is proposed
to automatically classify lighting conditions in more detail, which facilitates the
complementary fusion of infrared and RGB images.

The rest of this paper is structured as follows: In Section 2, we describe the network
structure and methods in detail. Section 3 gives the details of our work and experimental
results and related comparison to verify the effectiveness of our method. Finally, we
summarize the research content in Section 4.

2. Methods
2.1. Overall Network Architecture

The overall architecture of the proposed RISNet is shown in Figure 1. RISNe is divided
into four modules: feature extraction module, illumination perception module, feature
fusion module, and detection module. Among them, the mutual information module
proposed in this paper is embedded in the feature extraction module. The feature fusion
module adds the CAM, and the detection module uses the light intensity information
extracted by the illumination perception module, and combines the RGB and infrared
image features to make the final detection.

Firstly, the input data to the network model is an RGB-infrared image pair. The feature
map is obtained by extracting image features through the feature extraction module, and
then the corresponding feature map is input into the mutual information module. Then the
information entropy of the two feature maps is calculated, and the parameters of the feature
extraction module are optimized by the information entropy, which reduces the redundant
information of RGB-infrared image features. In the subsequent feature fusion process, the
CAM captures the key regions of the RGB-infrared feature map, thus focusing on fusing
the complementary information of the network attention region part. Based on the fact that
the light intensity information is beneficial to improving the object detection effect, this
paper adds the illumination perception module to extract the light intensity information
from RGB images. Finally, the detection module combines the features obtained by the
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feature fusion module and the light intensity information captured by the illumination
perception module to predict the location and category of the object.
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Figure 1. Overview framework of the proposed redundant information suppression network (RISNet).
The RISNet consists of four parts: feature extraction stage, mutual information measurement module,
feature fusion module and detection stage.

2.2. Mutual Information Module

One of the difficulties in target detection using RGB-infrared images is that there is
both complementary and redundant information. Ideally, we want the network to fuse
only the complementary features of RGB-infrared images. However, in practice, when
the network fuses complementary information of RGB-infrared images, it inevitably fuses
redundant information, resulting in poor detection performance of multimodal algorithms.
Therefore, we filter the redundant information of RGB-infrared images in the feature
extraction stage to resolve the contradiction between complementary information and
redundant information in the feature fusion stage.

Therefore, based on the above ideas and inspired by the concept of information
entropy in “information theory”, we first treat RGB and infrared image features as two
information distributions, and measure the amount of duplicate information between
information distributions using mutual information [29,30]. Mutual information can be
used to measure the amount of duplicate information between information distributions,
which can optimize feature parameters, and finally reduce redundant information of
infrared and RGB image features.

The mutual information module is shown in Figure 2. The input data of the module
is the RGB-infrared image feature obtained by the feature extraction module. In order to
reduce the parameters, computation of the network and facilitate the subsequent creation
of the information distribution, we first map the RGB-infrared image feature to two low-
dimensional feature vectors. In the module, we design two convolution layers and full
connection layers to map the RGB-infrared image features to two 1 × 6 vectors Zr and
Zi. Then based on the two low-dimensional feature vectors Zr and Zi, we create two
information distributions (such as using Zr or Zi as the mean and Zi or Zr as the variance
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to create a Gaussian distribution in this paper), and then calculate the mutual information
of the two information distributions:

M(Zr, Zi) = H(Zr) + H(Zi)−H(Zr, Zi) (1)

where M(Zr, Zi) represents the mutual information of low-dimensional feature vectors
Zr and Zi. H(Zr) and H(Zi) indicate the information entropy of low-dimensional feature
vectors Zr and Zi, respectively. H(Zr, Zi) represents the feature joint entropy of low-
dimensional feature vectors Zr and Zi. The relationship between information entropy,
cross-entropy and relative entropy is as follows:

H(Zi) = C(Zr, Zi)−D(Zr||Zi) (2)

H(Zr) = C(Zi, Zr)−D(Zi||Zr) (3)

where C(Zr, Zi) is the cross-entropy of low-dimensional feature vectors Zi and Zr, D(Zr||Zi)
is the relative entropy of low-dimensional feature vectors Zr and Zi. We then sum
Equations (1)–(3), and obtain:

M(Zr, Zi) = C(Zr, Zi)+C(Zi, Zr)−D(Zr||Zi)−D(Zi||Zr)−H(Zr, Zi) (4)
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Figure 2. Mutual information module.

In order to simplify Equation (4) and consider the non-negative property of joint
entropy, we delete H(Zr, Zi), and finally get the formula for optimizing mutual information
as Equation (5):

Lm = C(Zr, Zi)+C(Zi, Zr)−D(Zr||Zi)−D(Zi||Zr) (5)

Lm represents the amount of duplicate information of RGB-infrared image features.
By optimizing Lm, the feature extraction module parameters are optimized, and then the
redundant information in RGB-infrared image features is filtered to obtain rich comple-
mentary information. Resolves the contradiction between the inability to distinguish and
fusion complementary information and redundant information in the subsequent network
fusion stage.

2.3. Lighting Condition Classification Based on Histogram Statistics

The subjectivity and incompleteness of artificially classified lighting conditions is
another important reason that restricts the fusion of RGB-infrared images for object de-
tection. Therefore, we propose a method based on histogram statistics to automatically
classify lighting conditions in more detail. In order to further solve the incompleteness of
classifying lighting scenes, we have made a detailed division of the gray value interval,
covering as many lighting scenes as possible, to reflect lighting conditions in more detail.

First, we use the histogram to statistic the gray values of RGB images under different
light intensities, and then divide the lighting scene according to the corresponding gray
value intervals. As shown in Figure 3, we can clearly see from the histogram corresponding
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to the RGB image that the gray value of the RGB image in full daytime is concentrated in
(100, 255), the gray value of the RGB image at night but with strong light is concentrated in
(34, 100), the gray value of the RGB image with weak light at night is concentrated in (10, 34),
and the gray value of the completely dark RGB image is concentrated in (0, 10). Therefore,
based on the above four gray value intervals, we divide the scene lighting condition into
four categories: daytime, weak light at night, strong light at night and dark night.
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2.4. Illumination Perception Module

The illumination perception module is designed to extract the information of light
intensity from RGB images, and to judge the reliability and importance of the RGB-infrared
image features. If the RGB image has strong light intensity information, it means that the
lighting condition is good. Visually, when the lighting conditions are good, the RGB image
features can be used for detection. Otherwise, under poor lighting conditions, the infrared
image features are mainly used to detect, taking advantage of infrared images.

As shown in Figure 1, the input data of the illumination perception module is the RGB
image resized to 56 × 56. After the convolution layer and the full connection layer, four
predicted values are generated: Wd, Ws, Ww, and Wn, which represent the confidence of the
daytime, strong light at night, weak light at night, and dark night, respectively. Then, Wd
and Ws are added, Ww and Wn are added, respectively. Then, pass the sigmoid function:

Wl_s= sigmoid(Wd + Ws) (6)

Wl_w= sigmoid(Ww + Wn) (7)

where Wl_s represents the weight of strong light intensity information and Wl_w represents
the weight of light intensity information.

2.5. Feature Fusion Module and Detection Module

The core of the multimodal detection algorithm is how to effectively fuse the features
between different modalities. Therefore, in order to effectively fuse the complementary
information of RGB-infrared images, a channel attention mechanism is specially added to
the feature fusion module, as shown in Figure 1. Firstly, the RGB-infrared image features are
subtracted element by element, and the subtracted features represent the different features



Remote Sens. 2022, 14, 2020 7 of 15

of RGB infrared image features, which are regarded as complementary features of the
RGB-infrared image. Then the different feature is input into the CAM to obtain the channel
weight. Finally, the channel weight is multiplied by the corresponding RGB-infrared image
feature, and added with another modal feature to obtain the final fused feature, as shown
in the formula:

Fi
′= CAM(Fr − Fi)⊗ Fr + Fi (8)

Fr
′= CAM(Fi − Fr)⊗ Fi + Fr (9)

Among them, the ⊗ represents the multiplication operation, Fr and Fi are the feature
of RGB and infrared image before fusion, Fr

′ and Fi
′ are the fused RGB and infrared

image features.
The input data of the detection module is the light intensity information Wl_s, Wl_w

and the final fused feature Fr
′ and Fi

′, Through the additional illumination information,
more robust detection can be achieved. A more detailed design of the feature fusion module
and prediction module can refer to MBNet [31].

Therefore, the objective function of the network is divided into four parts: illumination
loss Li, mutual information loss Lm, classification loss Lcls and regression loss Lreg, where
the illumination loss Li uses cross-entropy loss, the classification loss Lcls uses Focal loss,
and the regression loss Lreg uses smooth L1 loss. Our final objective function is:

L = λLm +Li +Lcls +Lreg (10)

Among them, in order to balance the learning, the loss weight is set to 0.1.

3. Experiment and Analysis

In order to verify the effectiveness of the mutual information optimization module
for reducing redundant information between modalities, and proves that the new lighting
condition classification method is helpful to optimize the illumination perception mod-
ule, we conduct experiments on the KAIST pedestrian dataset and DroneVehicle remote
sensing dataset.

3.1. Dataset Introduction

KAIST pedestrian dataset contains 95,328 RGB-infrared image pairs, which contain
three categories: person, people, and cyclist. Among them, the better-distinguished in-
dividuals are labeled as person. Not distinguishable individuals were labeled as people,
and riding a two-wheeled vehicle were labeled as cyclists. Since the dataset is taken from
consecutive frames of video, the adjacent pictures are not much different, so the dataset
is cleaned to a certain extent, and pedestrians with only half or less than 50 pixels are
eliminated. Therefore, the final training set contains 8963 pairs of images, of which 5622
were captured during the day, and 3341 were captured at night. The test set contains
2252 image pairs, of which 1455 were captured during the day and 797 were captured
at night.

DroneVehicle remote sensing dataset contains 28,439 RGB-infrared image pairs, which
are classified as vehicles and captured by UAVs equipped with cameras. The regional scenes
are divided into urban roads, residential areas and highways. The lighting conditions
during shooting are divided into dark night, night and day. The height of shooting is
divided into 80 m, 100 m, and 120 m. The shooting angle is divided into 15◦, 35◦, and
45◦. During the dataset calibration phase, RGB-infrared image pairs are cropped by affine
transformation and region cropping to ensure that most of the cross-modality image pairs
are aligned.

Some samples in the above dataset are shown in Figure 4.



Remote Sens. 2022, 14, 2020 8 of 15

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 15 
 

 

captured during the day, and 3341 were captured at night. The test set contains 2252 image 
pairs, of which 1455 were captured during the day and 797 were captured at night. 

DroneVehicle remote sensing dataset contains 28,439 RGB-infrared image pairs, 
which are classified as vehicles and captured by UAVs equipped with cameras. The re-
gional scenes are divided into urban roads, residential areas and highways. The lighting 
conditions during shooting are divided into dark night, night and day. The height of 
shooting is divided into 80 m, 100 m, and 120 m. The shooting angle is divided into 15°, 
35°, and 45°. During the dataset calibration phase, RGB-infrared image pairs are cropped 
by affine transformation and region cropping to ensure that most of the cross-modality 
image pairs are aligned. 

Some samples in the above dataset are shown in Figure 4. 

    

   
(a) (b) 

Figure 4. Sample visualization. (a) some images of DroneVehicle remote sensing dataset; (b) some 
images of KAIST pedestrian dataset. The first row is the RGB image, the second row is the corre-
sponding infrared image. 

3.2. Implementation Details 
All experiments in this paper were implemented in Tensorflow on NVIDIA Tesla 

V100, and its operating system is ubuntu16.04, and the CUDA version is 10.2. For the pro-
cessing of the dataset, this paper performs random color distortion and flip processing on 
the input image to achieve the purpose of increasing the diversity of data. For parameter 
settings during training, the whole network is trained by an adam optimizer for 30 epochs 
with an initial learning rate of 0.00001, and the learning rate is reduced by 10 times every 
6 epochs. The batch size is set to 8. Followed by [32], the width of initial anchors are set to 
(25.84, 29.39), (33.81, 38.99), (44.47, 52.54), (65.80, 131.40) for four feature fusion stage with 
a single anchor ratio of 0.41. The dimension of feature vectors 

rZ  and 
iZ is set to 6 

through experimental analysis. 

3.3. Evaluation Metrics 
Precision, recall, average precision (AP), miss rate (MR), log-average miss rate (de-

noted as MR−2) etc., are general performance evaluation indicators of object detection al-
gorithms. In general, the better the classifier, the higher the AP and the lower the MR. In 
this paper, we adopt AP and MR−2 as evaluation metrics. Among them, the calculation 
formula of precision and recall are as follows: 

TPPrecision
TP FP

=
+

 (11)

Figure 4. Sample visualization. (a) some images of DroneVehicle remote sensing dataset; (b) some im-
ages of KAIST pedestrian dataset. The first row is the RGB image, the second row is the corresponding
infrared image.

3.2. Implementation Details

All experiments in this paper were implemented in Tensorflow on NVIDIA Tesla V100,
and its operating system is ubuntu16.04, and the CUDA version is 10.2. For the processing
of the dataset, this paper performs random color distortion and flip processing on the
input image to achieve the purpose of increasing the diversity of data. For parameter
settings during training, the whole network is trained by an adam optimizer for 30 epochs
with an initial learning rate of 0.00001, and the learning rate is reduced by 10 times every
6 epochs. The batch size is set to 8. Followed by [32], the width of initial anchors are set to
(25.84, 29.39), (33.81, 38.99), (44.47, 52.54), (65.80, 131.40) for four feature fusion stage with a
single anchor ratio of 0.41. The dimension of feature vectors Zr and Zi is set to 6 through
experimental analysis.

3.3. Evaluation Metrics

Precision, recall, average precision (AP), miss rate (MR), log-average miss rate (denoted
as MR−2) etc., are general performance evaluation indicators of object detection algorithms.
In general, the better the classifier, the higher the AP and the lower the MR. In this paper,
we adopt AP and MR−2 as evaluation metrics. Among them, the calculation formula of
precision and recall are as follows:

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

TP (true positive) represents the positive samples that were correctly detected; TN
(true negative) represents the negative samples that were correctly detected; FP (false
positive) represents the positive samples that were wrongly detected; FN (false negative)
represents the negative samples that were wrongly detected. Among them, the standard
for judging whether it is a positive or negative sample is IOU, and its calculation formula is
as follows:

IOU =
D∩G
D∪G

(13)
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where D represents the predicted object bounding box area, and G represents the real object
bounding box area. The IOU threshold in this paper is set to 0.5. If the IOU is greater than
0.5, the sample is considered to be a positive sample.

Taking Precision as the horizontal axis and Recall as the vertical axis, the area enclosed
by the curve and the coordinate axis is the AP.

The MR reflects the ability of the model to correctly predict the purity of negative
samples, and is calculated as follows:

MR =1− Recall (14)

The calculation method of MR−2: in the logarithmic coordinate system, evenly take
9 FPPI (False Positives Per Image) values from 10−2 to 100, and average the 9 MR values
corresponding to these 9 FPPI values. Among them, FPPI is calculated as follows:

FPPI =
FP

the number of image
(15)

3.4. Analysis of Results

Firstly, comparison, and ablation experiments are carried out on the DroneVehicle
remote sensing dataset, which proves that the method proposed in this paper is competitive.
In order to further verify that the mutual information module is beneficial to RGB-infrared
image complementary information fusion, a large number of comparative experiments were
carried out on the KAIST pedestrian dataset, which verified that the mutual information
module has a great effect on reducing redundant information between modalities.

3.4.1. Experiments on the DroneVehicle Remote Sensing Dataset

We compare with DroneVehicle remote sensing dataset benchmarks [28], which in-
clude CMDet, UA-CMDet. We also use Yolov3 [33], Faster-RCNN [2] and MBNet [31] as
the baselines to verify the effectiveness of the proposed method. Experiments show that the
RISNet proposed in this paper has obvious advantages. The specific experimental results
are shown in Table 1.

Table 1. Comparison results of different algorithms, the best AP indicators are generally black.

Methods Modality AP

Yolov3 [33] R 56.40
Faster-RCNN [2] R 44.59

Yolov3 [33] I 59.32
Faster-RCNN [2] I 54.55

CMDet [28] R + I 62.58
UA-CMDet [28] R + I 64.01

MBNet [31] R + I 62.83
RISNet(ours) R + I 66.40

Compared with the benchmark indicators of this dataset, the experimental results
show that the AP value of our proposed RISNet is 66.40%, which has achieved the optimal
effect, proving the effectiveness of RISNet for multimodal data detection.

In order to more clearly see the effectiveness of the mutual information module
proposed in this paper, we show test image samples under different lighting scenarios, as
shown in Figure 5.

From the comparative detection effect images of different lighting scenes in Figure 5,
It is clearly seen that compared with the baseline, our proposed network is more robust,
and still has a certain detection ability under various lighting conditions. In conclusion, it
is proved that the mutual information module proposed in this paper and the histogram-
based classification of lighting scenes are advanced, and provide a new idea for the joint
utilization of RGB-infrared images.
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3.4.2. Experiments on the KAIST Pedestrian Dataset

In order to further verify the effect of the mutual information module, we compare it
with the current advanced multispectral pedestrian detection algorithms, such as MSDS-
RCNN [32], AR-CNN [34], CIAN [18], MBNet [31]. We also use Yolov3 [33] as the baseline.
The experimental results show that the proposed RISNet has obvious advantages over
other algorithms. The experimental results are shown in Table 2.

Table 2. Evaluations on the KAIST dataset under all nine test subsets (MR−2). The best MR−2

indicators are generally black.

Methods Modality All Day Night Near Medium Far None Partial Heavy

Yolov3 [33] R 52.85 43.25 72.88 33.94 61.28 91.43 68.55 81.58 87.39
Yolov3 [33] I 32.67 37.62 23.38 6.29 43.59 78.04 52.15 62.91 78.72

AR-CNN [34] R + I 9.34 9.94 8.38 0.00 16.08 69.00 31.40 38.63 55.73
CIAN [18] R + I 14.12 14.77 11.13 3.71 19.04 55.82 30.31 41.57 62.48

MSDS-RCNN [32] R + I 11.63 10.60 13.73 1.29 16.19 63.73 29.86 38.71 63.37
MBNet [31] R + I 8.13 8.28 7.86 0.00 16.07 55.99 27.74 36.43 59.14

RISNet (ours) R + I 7.89 7.61 7.08 0.00 14.01 52.67 25.23 34.25 56.14
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Experimental results show that our proposed RISNet achieves the best MR−2 in
8 subsets in the evaluation MR−2 metric of nine subsets., Among, we obtain 7.89 MR−2,
7.61 MR−2, 7.08 MR−2 in all day, daytime and night, respectively. In terms of pedestrian
distance subsets, we get 0.00 MR−2, 14.01 MR−2, 52.67 MR−2 on the near, medium, and
far subsets, respectively. In terms of pedestrian occlusion degree subsets, we obtained
25.23 MR−2, 34.25 MR−2 on no occlusion, partial occlusion subsets, respectively. Obviously,
the most MR−2 value of our proposed RISNet is lower than the best competitive algorithm
MBNet. The reason for this is that our proposed mutual information module can effec-
tively reduce the redundant information of RGB-infrared features. For example, in dark
conditions, the target is covered and the small target detection, the mutual information
module reduces the redundant information of RGB-infrared features, so that the contour
information of the target in the infrared image and the texture information of the target in
the RGB image can fully play a role, and finally detected the target effectively.

In order to clearly compare the detection effects of different algorithms, we took out
test image samples of different scenarios. As shown in Figure 6.
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Figure 6. Visualization of MBNet (a) and the proposed RISNet (b) detection results on the KAIST
dataset. The first row shows the detection results in the night scenarios. The second row shows the
detection results in the daytime scenarios. The third row shows the detection results in the near
scenarios. The fourth row shows the detection results in the far scenarios. Targets circled in red
represent targets not detected by MBNet but detected by RISNet.

From the comparative detection effect images of different scenes in Figure 6, we can
clearly see that MBNet is prone to miss detection in different scenes, but in the detection
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effect images of RISNet, it can be accurately detected. Therefore, it is proved that the
mutual information module proposed in this paper can improve the missed detection of
the algorithm by reducing the redundant information of different modalities.

In order to compare the detection speed of various algorithms, we tested their FPS on
different computing platforms and the results are shown in Table 3.

Table 3. FPS of different algorithms tested on different platforms. Ranking of computing performance
(TFLOPs) of three computing platforms: GTX 1080 Ti (11.3 TFLOPs) > ITAN X (11 TFLOPs) > GTX
2060 (6.45 TFLOPs).

Methods Platform FPS

Yolov3 [33] GTX 2060 63
Yolov3 [33] GTX 2060 63

AR-CNN [34] GTX 1080 Ti 8
CIAN [18] GTX 1080 Ti 14

MSDS-RCNN [32] TITAN X 5
MBNet [31] GTX 1080 Ti 14

RISNet (ours) GTX 2060 10

Comparing the FPS of each algorithm, it is obvious that the Yolov3 of the one-stage
algorithm is the fastest, which effectively improves the detection speed at the expense of
certain accuracy. Compared with the multimodal object detection algorithms, the fastest one
is to reach 14 FPS, and the slowest one is only 5 FPS. Our proposed RISNet achieves 10 FPS,
surpassing most multi-modal object detection algorithms, and can be more easily deployed
to mobile terminals. In fact, FPS is not only related to the complexity of the model, but also
related to the hardware platform tested. Since the computing performance of GTX 2060 is
the worst, the proposed RISNet will achieve higher FPS on a better computing platform.

3.5. Ablation Experiments

In order to prove the effectiveness of the mutual information module and the new
lighting condition classification method for the detection algorithm, we conducted ablation
experiments in different lighting conditions and datasets, and the experimental results are
shown in Tables 4 and 5.

Table 4. Ablation experiments on the DroneVehicle remote sensing dataset under different lighting
conditions, where the baseline is MBNet [31], MI represents the mutual information module, and
NLSC represents the new lighting condition classification method. The best AP indicators are
generally black.

Methods Daytime Strong Light at
Night

Weak Light at
Night Dark Night

baseline 70.46 70.60 52.41 43.98
baseline + MI 71.44 72.39 55.01 45.34

baseline + NLSC 70.81 71.05 54.67 45.00
RISNet (ours) 72.04 71.91 54.94 46.20

Table 5. Ablation experiments on the KAIST dataset under all nine test subsets, where the baseline is
MBNet [31], MI represents the mutual information module, and NLSC represents the new lighting
condition classification method. The best MR−2 indicators are generally black.

Methods All Day Night Near Medium Far None Partial Heavy

baseline 8.13 8.28 7.86 0.00 16.07 55.99 27.74 36.43 59.14
baseline + MI 9.02 9.90 7.28 0.00 14.82 53.12 25.89 35.07 60.93

baseline + NLSC 8.97 9.17 8.23 0.00 16.83 55.20 27.14 36.97 61.57
RISNet (ours) 7.89 7.61 7.08 0.00 14.01 52.67 25.23 34.25 56.14
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As shown in Tables 4 and 5, when the mutual information module is added to the
baseline model, the AP values of the four lighting scenes are improved by about 0.98%
to 2.6%, which indicates that adding the mutual information module helps to eliminate
redundant information of RGB-infrared image information and gives full play to the
complementary advantages of RGB-infrared image information. But for different lighting
scenarios, it cannot be improved to the same extent and equally. For example, lighting
scenarios of weak light at night increased by 2.6%, while lighting scenarios of daytime
only increased by 0.98%, which shows that the mutual information module can improve
the algorithm detection performance, but it is still easily affected by the lighting scene,
and cannot achieve the same degree and balance improvement of algorithm detection
ability under different lighting conditions. When the new lighting scene classification
method is introduced in the baseline model, the AP values of the four lighting scenes have
been improved to the same extent and equally, which shows that the introduction of the
new lighting scene classification method can enhance the robustness of the algorithm to
different lighting conditions, but the improvement effect is not outstanding. On the basis
of the baseline model, the mutual information module is added and the new lighting scene
classification method is introduced, that is, RISNet proposed in this paper. The results
show that under different lighting scenes, the improvement can be equal and excellent.

In conclusion, these results show that the mutual information module can improve
the detection effect of the algorithm by reducing the redundant information of different
modalities; it proves the scientificity of classifying lighting scenes based on the histogram,
which makes the algorithm robust under different illumination conditions.

4. Conclusions and Discussion

In this work, we propose a new network named RISNet. It alleviates the problem
of insufficient complementary information fusion caused by redundant information by
designing the mutual information optimizer. Specifically, the mutual information module
optimizes the feature extraction network parameters by calculating the mutual information
of infrared and RGB image features, thereby reducing redundant information between
modalities. Secondly, in view of the subjectivity and incompleteness problems faced by the
current manual classification of lighting conditions, a method based on histogram statistics
is proposed to solve the subjectivity of manual classification of lighting conditions, and
through the detailed division of gray value interval, it covers as many lighting conditions
as possible and solves the problem of the incompleteness of lighting conditions. The feature
fusion module adds an attention mechanism to fully fuse the complementary information
of infrared and RGB image features. In addition, an illumination perception module is
added to the model to complement adaptive lighting perception features, making the
detector robust to different lighting. From the experimental results, the proposed RISNet
can reduce the redundant information and fully integrate the complementary information
between multimodalities. In different lighting environments, it has better detection ability,
reflecting the characteristics of high precision and strong robustness. Compared with the
multimodal detection methods in recent years, our proposed RISNet demonstrates the
superiority on most of the indicators.

There are a large number of small targets in remote sensing images, and the problem of
small targets greatly affects the detection effect. Therefore, in future work, we will focus on
how to improve the small target detection accuracy and further improve the detection effect
of multimodal object detection methods. In addition, we will explore more effective ways
to fuse multimodal features. Moreover, we continue to explore the relationship between
complementary and redundant information of multimodal fusion in other computer vision
tasks, such as RGB-infrared image semantic segmentation, RGB-Depth image semantic
segmentation and so on.
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