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Abstract: With the increased availability of unmanned aerial systems (UAS) imagery, digitalized
forest inventory has gained prominence in recent years. This paper presents a methodology for
automated measurement of tree height and crown area in two broadleaf tree plantations of different
species and ages using two different UAS platforms. Using structure from motion (SfM), we generated
canopy height models (CHMs) for each broadleaf plantation in Indiana, USA. From the CHMs, we
calculated individual tree parameters automatically through an open-source web tool developed
using the Shiny R package and assessed the accuracy against field measurements. Our analysis
shows higher tree measurement accuracy with the datasets derived from multi-rotor platform (M600)
than with the fixed wing platform (Bramor). The results show that our automated method could
identify individual trees (F-score > 90%) and tree biometrics (root mean square error < 1.2 m for
height and <1 m2 for the crown area) with reasonably good accuracy. Moreover, our automated
tool can efficiently calculate tree-level biometric estimations for 4600 trees within 30 min based on a
CHM from UAS-SfM derived images. This automated UAS imagery approach for tree-level forest
measurements will be beneficial to landowners and forest managers by streamlining their broadleaf
forest measurement and monitoring effort.

Keywords: tree-level inventory; broadleaf tree species; automated tree measurement; webtool; drone
remote sensing; hardwood forest

1. Introduction

Forest inventory provides critical information for sustainable forest management [1].
Rapidly changing forest conditions require remote sensing methods to routinely monitor
and inventory forests [2,3]. Satellite and aerial remote sensing have played a major role
in forest mapping and inventory for the past decades, but their ability to map individual
trees is restricted by factors such as low spatial resolution, cloud cover, and acquisition
time [4–7]. Recent advancements in unmanned aerial systems (UASs) and digital aerial
photogrammetry (DAP) have made it possible for routine implementation of digitalized
tree measurements and forest inventories [8–11]. A UAS platform can be coupled with
RGB, multispectral, or LiDAR sensors, offering flexibility with data collection [12–16]. This
mode of data acquisition is cost-effective and offers high spatial and temporal imagery for
precision monitoring and inventorying of forests [16,17].

UAS platforms are broadly categorized as fixed-wing or multi-rotor. Plot area and
availability of open space for take-off and landing are some of the main considerations to
employ a particular UAS platform [10,12,16]. Multi-rotor platforms are affordable and face
fewer challenges in forested areas than fixed-wing ones [17–19]. The take-off and landing
of a multi-rotor platform do not require broad open space [20,21]. However, a fixed-wing
platform can image larger areas in a relatively short period of time, thereby reducing survey
time [22]. Both types of platforms are widely used in forestry (Appendix A).
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Accurate tree-level information, such as tree height, crown area, and crown clo-
sure, is essential to derive datasets useful for disease mapping [23], invasive species
mapping [24,25], forest fire monitoring [26,27], estimating forest growth and health [28],
structure [29], biomass [30], carbon stock [31], and forestland productivity [32–34]. A
variety of algorithms have been proposed in the past two decades for individual tree
delineation (ITD). Generally, most of the previous work employ the local maxima filter-
ing on a canopy height model (CHM) using a fixed window to detect individual tree
points [13,16,35–37]. The local maxima filtering approach assumes that pixels of higher
values correspond to treetops, meaning that treetops can be delineated by identifying the
brightest pixel of a tree crown from the CHM [37,38]. To delineate the crown area, previ-
ous studies employed a variety of region growing [35,39], valley flowing [40], template
matching [41], and watershed segmentation algorithms [42]. These approaches usually
worked best for coniferous trees with their distinct apex but had lower accuracies with
broadleaf forests [43]. Broadleaf trees display asymmetrical, fuzzy, and branching crowns
making traditional fixed-window-based algorithms perform poorly [43]. The accuracy
of ITD algorithms depends largely upon the appropriate selection of the window size.
Larger window sizes might accommodate multiple tree crowns while smaller ones may not
include any tree apex [44,45]. Without prior in situ knowledge, selecting the right window
might be a tedious and challenging task [35]. This limitation can be overcome by using a
variable window filter [46] coupled with the marker controlled watershed segmentation
method (MCWS) as the size of the moving window varies according to the brightest pixel,
assuming that taller trees have larger crowns in a broadleaf forest. This technique also
considers minimum tree height as a filter to omit codominant branches and underlying
bushes, thereby eliminating oversegmentation [47].

Many studies have employed ITD algorithms for segmenting trees successfully.
Birdal et al. [13] employed a 3 × 3 local maxima framework to obtain tree heights from
an urban coniferous setting and achieved a 94% correlation with ground measurement. A
similar study by Bonnet et al. [17] employed local maxima on different photogrammetric
products such as individual rectified, orthorectified, and orthomosaic images, and observed
84% correlation with ground measurements (Appendix A). This study supported local
maxima detection as a robust and versatile method while ignoring the accuracy of a fixed
window to delineate complex tree canopy in a mixed forested area. Another study, by
Carr and Slyder [14], explored temperate deciduous forest during the leaf-off season by
manually identifying and segmenting trees using a region growing approach, and achieved
a segmentation accuracy of 90.9%. Although most of these works employed local maxima
filtering with fixed window size, few studies have explored a variable window filter to
accommodate the varying crown size and spacing of trees [47–49]. These studies on individ-
ual tree measurements concentrated predominantly on semiautomated techniques using
local maxima for mixed coniferous stands in boreal forests [15,22,38,50] (Appendix A).

Despite considerable research with UAS applications in forestry, UAS technology has
not been consistently successful for broadleaf trees, primarily because of varying fuzzy
crown structures. Here, we investigate the applicability of a UAS-based automated tree-
level information extraction framework using a variable window filter with MCWS in a
fairly closed canopy of oak and walnut plantations of differing ages. The main objectives
are the following:

(1) To test the accuracy of ITD with UAS-derived CHM.
(2) To test the accuracy of biometrics measurements (tree height and crown area) in

two broadleaf tree plantations of different species and ages using datasets from two
different UAS platforms. In addition, to facilitate the application of automated tree-
level measurements using UAS imagery, we developed a web-based application for
deriving tree height and crown area for broadleaf tree plantations (https://feilab.
shinyapps.io/Crown/ accessed on 12 December 2021).

https://feilab.shinyapps.io/Crown/
https://feilab.shinyapps.io/Crown/
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2. Materials and Methods
2.1. Study Area and UAS Image Acquisition

The research was conducted in two broadleaf tree plantations at Martell Forest in West
Lafayette, Indiana, USA (Figure 1a and Appendix B). One was a planted forest consisting
of red oak (Q. rubra) and bur oak (Q. macrocarpa) trees of varying ages (10–12 years). With a
total area of 7 ha (17 ac), the stand was planted on three plots identified as 119, 115, and 112.
Plots 119 and 115 have red oaks bordered by bur oaks planted in 50 rows × 22 columns
with a spacing of 4.8 m × 2.4 m. Plot 112 has alternating trees of red oak and bur oak in
50 rows × 50 columns. The main reason behind using this study area was to experiment
on broadleaf trees with different canopy overlaps, while ground measurements were still
feasible. Another forest is a plantation of black walnut (Juglans nigra) planted in the 1960s
(Figure 1b). We randomly selected 224 trees (red dots in Figure 1a) using the random
sampling technique in R [51] for ground measurements. For each tree we measured tree
height using a hypsometer (Haglöf Vertex IV, www.haglof.se, accessed on 12 December
2021), and crown diameter using a diameter tape (Table 1). Tree locations and measurements
were stored as a point feature class in ArcGIS 10.6 [52].
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Table 1. Plantation layout characteristics for the study area.

Field Characteristics Data Method of Ground
Measurement

Top left
Coordinates

40◦26′36′′ N,
−87◦1′51′′ W

42◦25′55′′ N,
−87◦2′27′′ W -

Species Red oak Black walnut Visual recognition on the ground

Tree count 4668 213 Manual count from orthomosaic
and on ground

Height (m) 3.3–15.6 * - Vortex IV hypsometer on ground
Crown size (m) 1.7–6.7 * - Measuring tape on the ground

* Based on 224 trees that were randomly sampled and measured.

Image acquisition for these plantations was carried out by using two UAS platforms: a
fixed-wing platform C-Astral Bramor PPX and a multi-rotor DJI M600. Both systems were
equipped with a post-processing kinematic (PPK) GPS that corrects for geolocation error
post-collection [53]. The flights were conducted at 2.00 p.m. (EST) to ensure constant sun
angle with wind speed less than 10 knots. Cloud cover was zero over the study area during
the flight. We used multiple platforms to test the reliability and consistency of the algorithm
in extracting tree-level information from different datasets. A detailed summary of the
platform and image characteristics, processing time, and output accuracies is presented in
Table 2.

Table 2. Summary of parameter specifications for two platforms and sensors used for this study.

Specifications C-Astral Bramor PPX DJI M600

Flight properties

Platform

Fixed-wing
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Resolution (MP) 42.4 24.2
Shutter speed (s) 1/1600 1/1600

Focal length (mm) 35 21
Aperture F 4.5 F 3.5

Image characteristics
Photo overlap (%) 80 80
Images captured 1124 343
Images calibrated 1113 341

Time
Flight 00:25:00 00:24:00

Processing 16:02:58 03:48:59

Output

Coordinate system WGS 84/UTM zone 16N WGS 84/UTM zone 16N
Average point density (per m2) 508 255

Number of 3D points 282,244,973 51,100,953
Ground sampling distance (cm) 1.67 2.14

DSM accuracy (m)
RMSEx 0.0503 0.002
RMSEy 0.0149 0.0017
RMSEz 0.133 0.0126

* The area covered by the Bramor platform was cropped to the plot extent for further analysis.
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2.2. UAS Data Processing

All the raw images were post-processed by correcting the PPK rover log file with
an established fixed location using the Continuously Operating Reference Station (CORS)
network through EZSurv software (Site ID: INWL) (https://effigis.com/en/solutions/
onpoz/ezsurv/ accessed on 10 October 2021). The resulting corrected imagery was then
processed by using Pix4D software. The workflow includes three major stages: initial
processing, generating point cloud, and building a digital surface model (DSM) and or-
thomosaic (Figure 2). The initial processing stage comprises camera location optimization
and internal orientation checks through the PPK data. During this stage, the algorithm
identifies features on the image as tie points and performs dense stereo matching for image
alignment. After initial processing, a dense 3D point cloud was generated through image
registration. These two stages have minimal to no manual input specification. Noise
filtering and surface smoothing were enabled for filtering DSM, and raster interpolation
was performed using the triangulation method to generate point clouds [54]. From the
extracted point cloud, a digital elevation model (DEM) was derived by separating the
ground points and tree points using Pix4D interpolation (Appendix B).
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2.3. Individual Crown Detection and Height Measurement

To delineate accurate tree locations, we subtracted DEM from DSM and generated a
CHM, and resampled the CHM to 5 cm with the nearest neighbor resampling method in R
3.6.2. The term canopy refers to the upper layer of a forest formed by tree crowns [13]. The
CHM used in this study is a measure of the aboveground height of trees. We also employed
a 3 × 3 Gaussian filter to the generated CHM to filter negative values for a consistent

https://effigis.com/en/solutions/onpoz/ezsurv/
https://effigis.com/en/solutions/onpoz/ezsurv/
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workflow. A Gaussian filter is a low-pass filter used to remove extremities in edges and
boundaries, thereby reducing high-frequency components [17].

Dominant treetops on the smoothened CHM were detected using a variable window
filter algorithm. A circular search window was used to accommodate the generally circular
shape of the crown for this plantation area. The moving window marked local maxima
for each tree apex. The local maxima were selected based on a minimum height and the
relationship between a maxima height and its distance to the nearest brighter pixel. The
maxima which did not fulfill the following criteria were discarded [37]. This condition
ensures the minimization of false positives of treetops.

dm ≥ dmin + dprop × hm
hm ≥ hmin

(1)

where dmin corresponds to the radiometric value of a pixel, hmin is the minimum canopy
height, hm is the maximum height within the search window, and dm is the distance to the
nearest pixel.

For this study, the selection parameters above for the window size were set to 0.05, 0.6
(dmin, dprop) to accommodate a smaller GSD. The minimum canopy height, hmin, was set to
3 m, meaning that any pixel below this value would not be considered as a crown [37,55].
This value avoided the increment in false positives resulting from understory vegetation
pixels. The output from this filtering procedure is a spatially referenced point file indicating
the location of individual treetops and their corresponding height. With the identified
treetop location, we further employed MCWS to delineate individual crowns within the
study area. The MCWS method assumes a tree crown as an inverted watershed and uses
markers within a window for segmentation. Neighboring pixels around each local maxima
are given priority based on the gradient magnitude of the pixel. Pixels are labeled as a
neighboring marker if they exhibit the lowest gradient magnitude [44,56]. Non-labeled
pixels, including the new ones, are revaluated to be associated with a marker, based on
their magnitude. More pixels are associated with higher value markers, assuming that
taller trees have a wider crown spread. The crown diameter was then calculated from
the crown area and compared with ground measurements observed through the average
crown spread method ((longest spread + longest cross spread)/2). A subsequent spatially
referenced point file for treetops and a polygon file for the crown area were created for
further analysis with the ground measurements. All image analyses were performed in R
(ForestTools) [57] and the output files were assigned with WGS84 UTM zone 16, allowing
for use in ArcGIS 10.6 and other forms of GIS software.

We evaluated the proposed workflow using three measures: correlation of determina-
tion (R2), root mean square error (RMSE), and tree detection accuracy with ground points
to validate the algorithm deriving tree location and height-crown measures (Figure 3). Tree
detection accuracy was determined by manually interpreting with reference tree points
observed from the ground data. The total error for the derived tree height and crown
diameter was expressed with RMSE. A tree segment is considered a correct match if it
contains a ground-observed tree position. Trees crossing the plot boundary were removed.
The segmentation accuracy of individual crowns was assessed using F-score, tree detection
rate or recall (rc), and correctness of detected trees or precision (pr). These measures were
calculated using the true positive (TP), false negative (FN), and false positive (FP) detec-
tion rates, indicating perfect segmentation, undersegmentation, and oversegmentation,
respectively [38,58]. The following equations were used to calculate these metrics [58,59]
(Appendix C).

rc =
TP

(TP + FN)
(2)

pr =
TP

(TP + FP)
(3)
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F-score = 2× (rc× pr)
(rc + pr)

(4)
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Figure 3. Illustration of issues involved in treetop detection and crown segmentation of individual
trees performed using the automated technique proposed in this study. Panels (a,d) represent perfect
segmentation. Panels (b,e) represent undersegmentation. Panels (c,f) represent oversegmentation
with orthophoto and CHM.

2.4. Web-Based Automation

To allow users to take advantage of our tree-level information extraction algorithm, we
used Shiny R to develop a web application that will automate individual tree detection and
segmentation processes. Users can input height models such as DSM and DEM through this
interactive user interface developed through Shiny R [60]. The overall workflow described
in the “Individual Crown Detection and Height Measurement” section is implemented in
the backend of the Shiny server. User-provided inputs will be processed, and the crown
segmented shapefile will be supplied for result downloading (Appendix D).

3. Results

Our automated analysis identified a total of 4449 trees (95.3%) out of the 4668 ground
trees in the oak plantation with the Bramor data and 4608 trees (98.7%) with the M600
data. This automated approach computed individual tree parameters for 4600 trees approx-
imately in 10 min, whereas ground measurements for 240 trees took three days for three
people. The minimum and maximum heights observed from the UAS-derived algorithm
were 3.88 m and 12.98 m, respectively, with a mean of 8.66 m, and crown diameter ranging
from 1.10 m to 6.67 m, with a mean of 3.85 m using the Bramor dataset. The red oak
plantation was also surveyed using the DJI M600 platform from which the derived tree
height ranged from 3.4 m to 10.7 m and the crown diameter ranged from 1.1 m to 6.6 m. By
repeating the same procedure in a relatively old, closed-canopy black walnut plantation,
we were able to estimate 204 treetops (95.8%) out of the 213 trees. The UAS-derived tree
height ranged between 9.36 m to 35.81 m with a mean of 18.5 m, and the crown diameter
was between 3.61 m to 8.85 m with a mean diameter of 5.97 m.

Using the fixed window filter, smaller window sizes had higher commission error,
whereas larger window sizes had higher omission error (Figure 4a–d). Tree tops detected
using the variable window filter produced lower commission and omission error for both
datasets (Bramor and M600) in both plantations (young red oak and mature black walnut).
Among the fixed window filters, the 5 × 5 filter was the best in detecting most trees (80%
tree located), while the 3 × 3 filter had high commission rate due to detecting all possible
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maxima. The increase in window size 5 × 5 to 7 × 7 resulted in poorer ITD results for
the younger oak plantation. The variable window filter had an ITD of 83% for the oak
plantation (Figure 4e,f). Tree detection rates were also higher when using the variable
window filter (83–95%). Detailed information on TP, FP, FN, recall, precision, omission, and
commission error are presented in Table 3.
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Figure 4. Comparison of different accuracy parameters for the two plantations using different
UAS platforms. (a) Recall, (b) Precision, (c) Omission error, (d) Commission error, (e) F-score and
(f) True positive rates are presented by using manually detected treetops as a reference for the
accuracy assessment.

Tree detection accuracy using the variable window filter coupled with MCWS approach
was reasonably high for oak plantations (F-score = 0.91 with the Bramor; F-score = 0.93 with
the M600), and the precision for individual tree detection was better with the M600 dataset
(pr = 0.88 with the Bramor; pr = 0.9 with M600), indicating the stability of a multi-rotor
platform (Table 3). For the walnut plantation, tree detection accuracy was 0.95 while recall
and precision were 0.95 and 0.96, respectively. The omission and commission errors were
relatively lower for both plantations with both datasets. The omission error for the treetops
detected for the red oak was 3% with M600 data, and 5% with the Bramor data. Likewise,
the commission error for the oak plantation of the datasets from M600 was observed to be
10%, while the Bramor had a commission error of 12%. For the walnut plantation, both the
commission (4%) and omission error (5%) were considerably lower.
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Table 3. Comparison of different accuracy parameters for the two plantations using different UAS
platforms. Recall, precision, and detection rates are presented by using manually detected treetops as
a reference for the accuracy assessment.

Window
Types

Recall
(rc)

Precision
(pr) TP FP FN

1 Omission
Error

2 Commission
Error

F-
Score

3 Trees
Detected

Bramor-oak

3 × 3 0.860 0.683 3416 1589 556 0.140 0.317 0.761 0.851
5 × 5 0.940 0.875 3954 564 253 0.060 0.125 0.906 0.968
7 × 7 0.598 0.884 2467 324 1658 0.402 0.116 0.713 0.598
Variable 0.950 0.883 3913 421 219 0.050 0.117 0.916 0.953

M600-oak

3 × 3 0.895 0.724 3627 1382 425 0.105 0.276 0.801 0.868
5 × 5 0.947 0.908 4012 407 225 0.053 0.092 0.927 0.947
7 × 7 0.794 0.812 2983 690 776 0.206 0.188 0.803 0.787
Variable 0.950 0.901 4057 549 53 0.030 0.100 0.934 0.987

M600-
walnut

3 × 3 0.751 0.607 145 94 48 0.249 0.393 0.671 1.122
5 × 5 0.928 0.928 128 10 10 0.072 0.072 0.928 0.648
7 × 7 0.880 0.863 176 28 24 0.120 0.137 0.871 0.958
Variable 0.950 0.960 203 7 10 0.050 0.040 0.950 0.958

1 Omission error is calculated from recall 100 × (1-rc). 2 Commission error is calculated from precision 100 × (1-pr).
3 Trees detected was calculated for the correctly detected trees from the proposed method against manually
detected trees from the orthomosaic.

In general, UAS-based tree height and crown diameter estimations were highly cor-
related with ground-based measurements (Figure 5a,b). Correlation between UAS-based
and ground measure was higher for tree height and crown diameter (0.93 and 0.78, respec-
tively) using the Bramor dataset, while the adjusted coefficient of determination for the
tree measurements using the M600 was relatively low (R2 = 0.67 for height; R2 = 0.78 for
crown). The RMSE observed for tree height was 0.727 m and crown diameter was 0.434 m,
which were lower than the RMSE of tree height and crown diameter measured with M600
data (RMSE = 1.4 m for height; RMSE = 1.2 m for crown). Similarly, the slope and inter-
cept values for the crown diameter were less than 1 for both platforms (Crn = 0.79 with
Bramor; Crn = 0.84 with M600), indicating that either the prescribed automated procedure
underestimated crown diameter measure or the field measurements overestimated the
crown diameter.
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Bramor, respectively). *** indicates p ≤ 0.001 (statistical significance).

4. Discussion

In this study, we present an automated framework using MCWS to delineate individ-
ual trees and estimate tree height and crown area. The procedure was tested with UAS
imagery collected over oak and walnut plantations of varying tree sizes and ages. The
results were validated using TP, FP, FN, R2, and RMSE. We also provide a shiny app that
can be utilized by non-UAS professionals to conduct automated broadleaf forest inventory.

The estimation of the proposed framework to detect tree positions and calculate height
and crown area was well correlated with ground measures for both types of plantations
(Figure 5, Table 3). Our results are comparable to the best results from previous studies
(Appendix A) for utilizing UAS for forest inventory. Fankhauser et al. (2018) [15] achieved
an R2 of 0.82 and an RMSE of 2.92 m for tree height measurement in a boreal forest. Carr and
Slyder, (2018) [14] employed a manual approach to segment individual trees and measure
tree height, for which they obtained an R2 of 0.82 and RMSE of 1.06 m for a deciduous forest
during the leaf-off season. Our proposed methodology achieved a higher correlation for
tree height and crown diameter compared to other studies (R2 = 0.93 for height; R2 = 0.79 for
crown) during the leaf-on season (Figure 5). The RMSE was less than a meter for both tree
height and crown diameter (RMSE = 0.727 m for height; RMSE = 0.434 m for crown) due to
quality height models derived from high-precision images captured using PPK-corrected
UAS data, use of a variable window filter, and MCWS for accurate segmentation. Using
the proposed approach, this study detected 90% of the treetops accurately, accounting for
varying ages and crown sizes. Given the relatively high accuracy achieved in this study,
we believe our approach can be applied to other broadleaf tree plantations.

Individual tree detection rates show fewer false positives for the walnut plantation
compared to the oak plantations (Table 3). This is due to periodic thinning and distinct
crown structure exhibited by the 50-year-old walnut plantation. The height of the tallest
tree observed for the walnut plantation was 35 m while it was 12 m for the red oak. This
significant difference in height helps distinguish mature trees from underlying vegetations
and thereby decrease the commission error. When comparing the two UAS platform
datasets (Bramor and M600), the CHM generated from the M600 had higher tree detection
accuracy (98%) and lower commission (10%) and omission error (3%), even though the
sensor had a relatively low resolution. The stability of a multi-rotor platform during
flight minimizes wind effect and thus can capture good-quality imagery, making it an
ideal platform for forest monitoring (Appendix A). In contrast, a fixed-wing platform is
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nimble and fast. However, it is prone to be affected by wind, resulting in wind-swayed
treetops [20,21,54], which is probably responsible for the lower accuracy observed in ITD
compared to the multi-rotor-platform-based inventory. It is important to note that the
combination of a variable window filter with MCWS results in higher individual tree
detection and measurement accuracy than the fixed window filter for both the datasets in
both the plantations (Table 3). It is also important to note that when using fixed window
filters, identifying the optimal window size has to be achieved through trial-and-error
method. The variable window filter used in this study for detecting local maxima can alter
future tree measurement practices with its varying window size and hmin to accommodate
for the fuzzy crown structure of broadleaf trees. User-defined hmin filters out the underlying
bushes and codominant branches, thereby controlling oversegmentation [35,37].

The web tool developed to automate the workflow is a straightforward three-click
open-source application for users to obtain accurate tree positions, effectively reducing
biophysical ground measurement. The minimum tree height input (hmin) in this application
acts as a filter to eliminate any underlying vegetation and background noise from the input
image. This minimum height filtration, along with the variable window, objectively detects
tree points and can be replicated for various broadleaf tree species without prior in situ
knowledge. Accurate determination of such biophysical parameters will also prove useful
for varied forestry applications such as tree age determination [17], biomass calculation [61],
and timber quantification [62]. Tree parameters for 4600 trees were calculated from the
CHM within 10 min through the web application, thus indicating the efficiency of this
automated technique in measuring thousands of trees within a short amount of time. This
method provides a supportive basis for accurate remote measurement of trees in the future.

Although our study provides acceptable accurate estimates of tree height and crown
diameter, few studies have shown higher accuracies on conifer forests [13,50]. Decreasing
accuracies in broadleaf forests using this methodology could be due to uncertainty in the
field measurements of tree height and crown diameter. Indirect field measurements using
a vertex hypsometer tend to result in a larger error range due to higher offsets [22,63].
In addition, crown measurements are labor-intensive and can result in human error, as
overlapping crowns are difficult to measure [47]. Reliable field measurement can be
obtained by using LiDAR instruments [64] or directly measuring felled trees [22]. In
addition, UAS-based treetop position estimates may not perfectly align with the ground-
observed tree position, which usually is the trunk location rather than crown top points,
and treetop positions are harder to estimate using field-based methods through overlapping
branches and leaves. It will be important to set thresholds for ITD results in dense canopy
forests [48,65].

This study mainly focuses on broadleaf tree plantations of varying size, age, and
species. While this study explores automating forest inventory procedures with the datasets
of consumer-grade UAS systems, optimal overlap accuracy has not been tested for cost-
efficient forest management. It is notable to mention that UAS data processing costs can be
minimized by using open-source software such as Open Drone Map [66] and VisualSfM [67].
The Shiny application is also constrained in terms of data size and extent matching. At this
point, the application will perform optimally for datasets smaller than 100 MB provided
the extent matches between the DSM and the DEM. To produce an accurate DEM for
closed-canopy forest systems, it is preferable to use a high-resolution LiDAR DEM or obtain
UAS datasets during the leaf-off season [14,68]. In addition, environmental factors such as
wind speed, temperature variation, and cloud cover (including fog, mist, and snow) must
be considered as variables that can diminish the quality of a photogrammetrically derived
DEM [54].

Future forest maintenance requires information in a computerized format for continu-
ous and repeatable workflow execution, and UAS-derived data offer a promising future
in that sense. Although the integrative methodology adopted here is an initiative to em-
ploy UAS for studying broadleaf tree plantations, more complexity parameters need to
be considered for extending to structurally complex, naturally regenerated, mixed forests.
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Based on the findings of this study, future research should be directed towards decreasing
the uncertainties from reference data and implementing an automated workflow for tree
detection and measurement in complex forest types.

5. Conclusions

This study demonstrates the ability of UASs in capturing imagery for deriving accurate
height models for individual tree parameter estimation in broadleaf tree plantations of
differing ages and crown sizes. Biophysical parameters derived from imagery captured
by multiple platforms were evaluated against ground measurements. From our study, a
UAS-SfM-based height model coupled with a variable window filter and MCWS technique
can estimate individual trees with high accuracy (F-score > 0.90) for two broadleaf tree
plantations varying in size and age. The proposed method estimated tree height and crown
measures with sub-meter accuracy (RMSE~0.73 m). Our open-source web application can
be utilized by forest managers and landowners with ease. This study mainly focused on ITD
for broadleaf tree plantations and has not been tested for natural forest systems. Although
the results of this study show promise in extending the application of UAS-image-based
inventory to older broadleaf tree plantations, further research should be directed towards
the transferability of this approach to other forest plantations.
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Appendix A

Table A1. Summary of selected works to illustrate forest measurement practices and the accuracy
using UAS data.

Source Application UAS
Model

UAS
Platform

Software
Used

Data Used
and Steps

Automation
Level

Assessment of
Tree Height

Measurement

[39]
Tree crown
delineation;
mixed forest

senseFly eBee Fixed-wing Agisoft
UAV-SfM-

Region
growing

Automated
Segment
accuracy-
0.85–0.88

[3]

Tree
delineation

and
measurement-

conifer
stands

Phantom 4
Pro Multi-rotor Agisoft UAV-SfM Semi-

automated
RMSE:
0.62 m
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Table A1. Cont.

Source Application UAS
Model

UAS
Platform

Software
Used

Data Used
and Steps

Automation
Level

Assessment of
Tree Height

Measurement

[11]

Forest
structure;

Subtropical
dry forest

Phantom 4
Pro Multi-rotor Agisoft UAV-SfM Semi-

automated

r: 0.94
RMSE:
2.15 m

[13]
Tree height;
coniferous

trees

SenseFly
eBee Fixed-wing Pix4D-GCP

DSM point
clouds and

LMF

Semi-
Automated

R2: 0.94
RMSE: 28 cm

[17]

Tree
detection;
coniferous

stands

Gatewing
X100 Fixed-wing Micmac

DSM point
clouds and

LMF

Semi-
Automated

R2: 0.83
* RMSE:
1.39 m

[14]

Tree segmen-
tation;

deciduous
forest

* DJI P3 Multi-rotor Pix4D LiDAR Point
cloud Manual R2: 0.82

RMSE: 0.106 m

[28]

Tree height
growth;

temperate
mixed forest

* DJI P3 Pro Multi-rotor Agisoft Orthoimage Manual -

[38]

Tree
detection;

mixed conifer
forest

* DJI P3
Quadcopter Multi-rotor Agisoft

Point cloud
to generate

CHM

Semi-
automated

Overall tree
detection

accuracy–0.85

[50] Tree height:
Scots pine OctoXLOctocopterMulti-rotor Pix4D

Point clouds
and

orthomosaic–
LMF

Semi-
automated

R2: 0.971
RMSE: 0.34 m

[15] Tree height;
pine trees

3D Robotics
Solo Multi-rotor Agisoft

LiDAR point
clouds and

UAS
imagery-

LMF

Semi-
automated

R2: 0.82
RMSE: 2.92 m

[22] Tree height;
Douglas fir Gyrocopter Multi-rotor SURE Aerial

LiDAR and
UAV point

clouds

Semi-
automated RMSE: 1.09 m

* RMSE was converted from cm to meters. LMF refers to the local maxima filtering algorithm.
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Table A2. Pix4D processing workflow settings for the datasets.

Initial Processing User Settings

Input image coordinate system WGS84 EGM Geoid
Output image coordinate system WGS84/ UTM zone 16N (EGM 96 Geoid)
Key point image scale Full, Image scale = 0.5
Matching image pairs Aerial grid or corridor
Key point extraction: Targeted number of key
points Automatic

Calibration method Standard
Internal parameters optimization All
External parameters optimization All

Point Cloud Optimization

Image scale 1/2 image size; multiscale
Point density Optimal
Minimum number of matches 3
3D Textured mesh resolution Medium resolution (default)

DSM, Orthomosaic and Index

DSM and orthomosaic resolution 1 × GSD
Noise filtering Yes
Surface smoothing Yes; type: sharp
Raster DSM generation method Triangulation

Orthomosaic Generate, merge tiles and Geotiff without
transparency

Appendix C

Remote Sens. 2022, 14, x FOR PEER REVIEW 15 of 20 
 

 

Key point image scale Full, Image scale = 0.5 

Matching image pairs Aerial grid or corridor 

Key point extraction: Targeted number of key points Automatic 

Calibration method Standard 

Internal parameters optimization All 

External parameters optimization All 

Point Cloud Optimization  

Image scale 1/2 image size; multiscale 

Point density Optimal 

Minimum number of matches 3 

3D Textured mesh resolution Medium resolution (default) 

DSM, Orthomosaic and Index  

DSM and orthomosaic resolution 1 × GSD 

Noise filtering Yes 

Surface smoothing Yes; type: sharp 

Raster DSM generation method Triangulation 

Orthomosaic Generate, merge tiles and Geotiff without transparency 

Appendix C 

 

Figure A2. Illustration for calculating the TP, FP, and FN from the segmented data. 

Appendix D 

User manual and instructions to use the app are available at https://fei-

lab.shinyapps.io/Crown/.  

Sample DSM and DEM for the website have been collected from the following: 

Hudak, Andrew T.; Liebermann, Robert J.; Moreira, Eder P.; Gessler, Paul E. 2013. 

Digital surface, terrain, and canopy height models for Priest River Experimental Forest in 

2002. 1st Edition. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky 

Mountain Research Station. https://doi.org/10.2737/RDS-2013-0001. 

 

Figure A2. Illustration for calculating the TP, FP, and FN from the segmented data.

Appendix D

User manual and instructions to use the app are available online: https://feilab.
shinyapps.io/Crown/ (accessed on 12 December 2021).

Sample DSM and DEM for the website have been collected from the following:
Hudak, Andrew T.; Liebermann, Robert J.; Moreira, Eder P.; Gessler, Paul E. 2013.

Digital surface, terrain, and canopy height models for Priest River Experimental Forest in
2002. 1st Edition. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky
Mountain Research Station. https://doi.org/10.2737/RDS-2013-0001.

https://feilab.shinyapps.io/Crown/
https://feilab.shinyapps.io/Crown/
https://doi.org/10.2737/RDS-2013-0001
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