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Abstract: This paper discusses the issue of low-angle estimation in multiple-input, multiple-output
(MIMO) radar. Due to the low amount of data transmission, storage, and computation required for
beamspace super-resolution algorithms in low-angle estimation, the method has gained considerable
interest in recent years. This paper develops a beamspace scene classification (BSC) algorithm to
enhance the performance of low-angle estimation in MIMO radar. The proposed BSC algorithm solves
an initial angle estimate and the multipath coefficient estimate using the 3D beamspace data, and
further constructs the beamspace data required for transmitting and receiving sides to reduce the data
dimensions. It is additionally used to provide three estimation schemes with closed-form solutions
for three multipath scenes (obtaining two estimations for transmitting and receiving sides). Finally, it
fuses the estimates of the two sides by the minimum variance criterion. As a result, the proposed
method achieves high estimation accuracy while requiring few processing resources. Moreover, the
computational complexity of the proposed algorithm is examined in this study, with the results
demonstrating that the proposed method is superior for engineering applications.

Keywords: low-angle tracking; MIMO radar; data fusion; beamspace processing; undulating
reflecting surface; multipath signal

1. Introduction

Low-angle estimation in multipath environments has received considerable attention
in recent decades [1–5] due to the multipath effect. Direct and reflected signals traveling
through the earth’s surface are combined in the radar’s primary beam. Because the direct
and reflected signals return from the same distance unit and enter the main beam of the
radar antenna simultaneously, they are difficult to differentiate, resulting in a loss of low-
angle estimation performance. Multiple-input, multiple-output (MIMO) radars [6–11] have
a higher spatial resolution [12] than phased array radars with the same target resources.
MIMO radars can be classified according to their antenna distribution into collocated [6]
and widely distributed [7,8] categories. In any case, MIMO radar suffers from the ob-
vious disadvantage of requiring significant quantities of data to be transferred, stored,
and computed. Effective dimensionality-reduction techniques, such as beamspace pro-
cessing [13–17], have garnered much interest, and are excellent contenders for MIMO
radar. Additionally, the signal model cannot be developed accurately for the undulating
reflecting surface, resulting in a degradation of the conventional low-angle estimation
performance [18]. Thus, this paper discusses the beamspace low-angle estimation approach
for MIMO radar with a collocated antenna beneath the undulating reflecting surface.

Currently, approaches with high resolution, such as subspace algorithms and maxi-
mum likelihood (ML) algorithm, are effective at solving the problem of low-angle estima-
tion. Subspace algorithms, such as MUSIC [19,20] and ESPRIT [21,22], typically require
additional snapshots, and fail to directly address coherent signals. Despite the poten-
tial for spatial smoothing in solving conventional coherent signals, their performance in
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MIMO radar is suboptimal [23,24], because multipath signals in MIMO radar are more
sophisticated than conventional coherent signals. ML algorithms [25] are capable of pro-
cessing coherent signals directly and operating with only one snapshot. Additionally, the
root-mean-squared error (RMSE) of the ML algorithm is approximately identical to the
Cramer–Rao bound (CRB) [5]. Thus, it is more desirable for low-angle estimates. However,
ML algorithms often demand multi-dimensional search with a high computational cost.
The beamspace-improved ML (BIML) algorithm [24] for MIMO radar is proposed for low-
angle estimation. The BIML algorithm is insensitive to environmental errors and transforms
the data from element-space to beamspace. The simulation results indicate that with three
transmitting beams and three receiving beams, the method can achieve high performance.
However, the computational burden still needs to be further reduced for MIMO radar.
The search-free beamspace ML (SF-BML) algorithm for phase array radar [2,3] solves the
low-angle estimation problem using 3D beamspace data. In the SF-BML algorithm, the
one-dimensional noise subspace is orthogonal to the two-dimensional signal subspace.
With this feature, SF-BML provides a closed-form solution for angle estimation. SF-BML is
particularly beneficial for engineering applications due to its low computational complexity.
By converting MIMO radar data to phase radar data, the 3D beamspace ML fusion (3D-
BMLF) algorithm in [26] obtains the indirect closed-form solution for bistatic MIMO radar.
The 3D-BMLF algorithm estimates angles at a low computational cost, demonstrating that
the closed-form solution is comparable to the numerical solution in terms of accuracy. The
refined maximum likelihood (RML) algorithm [27,28] employs the refined signal model
in conjunction with prior knowledge of geometric information and the surface reflection
coefficient. Additionally, it utilizes composite guide vectors instead of conventional guide
vectors to provide an accurate estimation. In this way, the RML algorithm can alleviate
the computational burden to a certain extent and enhance the estimation accuracy. The
reduced-dimension RML algorithm for MIMO radar [29] transmits beamspace signals
and receives element-space signals to reduce the computational costs. The beamspace
phase solving (BPS) algorithm [30] solves the angle via the multipath coefficient without
searching, where the multipath coefficient concludes the reflection coefficient and the phase
difference between direct and multipath signals. The BPS algorithm utilizes the same
information as the RML algorithm, but requires less processing to achieve the same degree
of accuracy.

Although the RML and BPS algorithms have high estimation accuracy, and the BPS
algorithm can estimate multipath coefficient in beamspace, their angle-estimation per-
formance is sensitive to environmental errors caused by the refined signal model mis-
match [18]. Due to the scarcity of beamspace low-angle estimation methods for complex
scenes, element-space methods are introduced here. Although the reflection coefficient can
be estimated offline [31], the actual reflection coefficient is dependent on factors such as
elevation angle, operation frequency, and surface vegetation, making the offline estimation
coefficient inaccurate. The multipath coefficient can also be estimated using eigendecom-
position [32,33], but multiple snapshots are required in this case. Xie et al. [34] considered
the condition in which some incident direct signals from various directions are coherent.
The multi-dimensional search has also been considered for complex terrain [18,35–37].
Wang et al. [18] assessed the angle and reflection-surface height together to improve ro-
bustness. Liu [35] estimated both the angle and multipath coefficient simultaneously.
Liu et al. [36] estimated the direct and multipath angles as well as the multipath coefficient
jointly. Additionally, Song et al. [37] evaluated the precise signal model based on each
array element when estimating the low angle under the undulating reflecting surface.
However, their proposed approach requires a large number of searches. Additionally, low-
angle estimations developed based on compressive sensing demonstrated high accuracy
of estimation [38,39]. These models make use of alternative optimization and dictionary
updating techniques to appropriately reduce the computational burden. However, due
to the complexity of parameter selection and the limitations on reducing computational
burden, these methods are cumbersome to use at present. These methods typically rely
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on searching for additional parameters to enhance their robustness. Thus, the majority of
these methods are computationally expensive, particularly for MIMO radar.

In summary, there are few methods suited for undulating reflecting surfaces and
MIMO radar [24,26], and none of them can combine high precision with low processing
cost. In this paper, a beamspace scene classification (BSC) algorithm is developed for low-
angle estimation in MIMO Radar. To begin, the BSC algorithm utilizes the 3D beamspace
data to solve an initial estimate according to the idea of 3D-BMLF. Following that, the BSC
algorithm solves the multipath coefficient using the 3D beamspace data and determines
the strength of the multipath component based on the multipath coefficient. Afterwards,
appropriate beamspace data are constructed for the transmitting and receiving sides. Then,
if the multipath component is sufficiently strong, BSC uses 3D beamspace data to solve
two target angle solutions based on the refined signal model; if the multipath component
is relatively weak, BSC uses 3D beamspace data to solve two target angle solutions based
on SF-BML; while if the multipath component is very weak, BSC uses 2D beamspace data
to solve two solutions according to the idea of [3]. Finally, BSC fuses the two solutions by
minimizing the mean square error (MSE) while taking into account the estimated multipath
coefficient. The simulation results demonstrate that the proposed method achieves high
estimation accuracy while being computationally efficient and insensitive to parameter errors.

The proposed method introduces novelties in five distinct ways. First, using 3D
beamspace data to solve the multipath coefficient for MIMO radar; second, effectively
constructing beamspace data for transmitting and receiving sides; third, developing a
scene-classification strategy based on the multipath coefficient, which takes into account
the case of flat terrain and undulating terrain; fourth, using 3D beamspace data to solve the
closed-form solution of the target angle based on a refined signal model for MIMO radar;
and fifth, using 2D beamspace data to solve the closed-form solution of the target angle
with no multipath signal for MIMO radar.

The remainder of this paper is organized as follows: Section 2 discusses the details of
a multipath signal model and proposes the BSC algorithm. Section 3 presents a computer
simulation of the proposed algorithm. Section 4 discusses the simulation results and
examines the computational complexity of the proposed algorithms. Finally, Section 5
concludes the paper.

Table 1 defines the symbols in this paper.

Table 1. Related notations.

Notations Definitions

[·]T transpose
[·]∗ conjugate
[·]H Conjugate–transpose
‖·‖2 L2 norm

Re{·} the real part operator
Im{·} the imagery part operator

arcsin[·] the arcsine operator
arctan[·] the arctangent operator
(·)+ the Moore–Penrose inverse operator
〈·〉 the rounding operator
[·]⊥ the orthocomplement of a projector matrix

2. Method

This section introduces the multipath signal model and presents the proposed BSC
algorithm appropriate for beamspace low-angle estimation in MIMO radar under the
undulating reflecting surface. The BSC algorithm estimates the initial angle and multipath
coefficient, and further provides a scenario classification policy. Then, the BSC algorithm
constructs the beamspace data required for transmitting and receiving sides, and finally
provides specific solutions.
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2.1. Multipath Signal Model

Consider a narrowband collocated MIMO radar equipped with a uniform linear array.
The geometry for the low-angle estimation scenario is illustrated in Figure 1. The linear
array with Mt transmit elements and Mr receive elements is mounted vertically in the
horizontal plane. The array radar center is elevated to hr. The distance between two
adjacent array elements is d. The signals transmitted by the antenna reach the target
through two paths: the direct path and the reflection path through the reflector. The signals
reflected by the target also reach the antenna through the same two paths. Both pathways
are oriented in the direction of θ1 and θ2, respectively. The height of the target is ht. The
distance from the target to the array radar center is Rd.

Figure 1. Geometry for the low-angle estimation scenario in MIMO radar.

For the MIMO radar system, the received signal in element space is denoted by [24]

X = αbr(θ1)bt
T(θ1)S + N (1)

where X ∈ CMr×L, L is the number of snapshots, α is the complex amplitude involving
the target scattering coefficient, path losses, and so on, and S ∈ CMt×L is the transmit-
ted waveform. br(θ1) ∈ CMr×1 and bt(θ1) ∈ CMt×1 are the composite-receiver and the
composite-transmitter array steering vectors, respectively, including direct and multipath
signals, expressed as

br(θ1) =
[

ar(θ1) ar(θ2)
][ 1

ε

]
(2)

bt(θ1) =
[

at(θ1) at(θ2)
][ 1

ε

]
(3)

where

ar(θ) =

[
exp

(
− jπd(Mr − 1) sin θ

λ

)
, exp

(
− jπd(Mr − 3) sin θ

λ

)
, . . . , exp

(
jπd(Mr − 1) sin θ

λ

)]T
(4)

at(θ) =

[
exp

(
− jπd(Mt − 1) sin θ

λ

)
, exp

(
− jπd(Mt − 3) sin θ

λ

)
, . . . , exp

(
jπd(Mt − 1) sin θ

λ

)]T
(5)

ε = ρe−jϕ(θ1) = |ρ|ejψ(θ1) (6)

ψ(θ1) = φρ − ϕ(θ1) = φρ −
4πhr(sin θ1 + hr/Rd)

λ
(7)

where λ is the working wavelength, ε is the multipath coefficient, ρ is the surface reflection
coefficient, which is the product of the smooth surface reflection coefficient, the divergence
factor, and the surface roughness factor [27], and φρ is the phase of ρ. N ∈ CMr×L is the
Gaussian white noise vector with a zero mean, which is independent of the target signals.
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The noise power of a single element is σ2
n . Additionally, given the geometric relationship

illustrated in Figure 1, θ2 can be simply determined by

θ2 = f (θ1) = −arcsin(sin(θ1) + 2hr/Rd) (8)

Actually, multipath reflection signals are not limited to only one path, but are equiva-
lent to the echo in the Fresnel reflection area [40,41], with a broad spatial extent. Therefore,
even if the reflection surface is complex, the equivalent reflection echo direction will not
deviate much from the direction f (θ1).

For the orthogonal signals, Rs = SSH/L is an invertible matrix. Using S̃ = R−1
s S/

√
L

to process the echo signal by matched-filtering, the output of the matched-filter can be
derived as

Y = XS̃H
= αbr(θ1)bt

T(θ1)SS̃H
+ NS̃H

= α
√

Lbr(θ1)bt
T(θ1) + Ns0 (9)

where Y ∈ CMr×Mt and Ns0 ∈ CMr×Mt . Considering an Mt × 3 orthogonal transmit
beamformer Tt and an Mr × 3 orthogonal receive beamformer Tr as

Tt =
[

at(−θt) at(0) at(θt)
]

(10)

Tr =
[

ar(−θr) ar(0) ar(θr)
]

(11)

where θt = arcsin(λ/dMt) and θr = arcsin(λ/dMr), the target data in 3D beamspace is
formed as

YB = α
√

LbBr(θ1)bT
Bt(θ1) + Ns =

[
YB

:,1 YB
:,2 YB

:,3

]
=


YB

1,:

YB
2,:

YB
3,:

 (12)

where bBr(θ1) = TH
r br(θ1), bBt(θ1) = TH

t bt(θ1), and Ns = TH
r Ns0T∗t . The three columns of

YB: YB
:,1, YB

:,2, and YB
:,3 are the 3D beamspace data for the receiving side, and the three rows

of YB: YB
1,:, YB

2,:, and YB
3,: are the 3D beamspace data for the transmitting side.

Define
Cr(θ1) =

[
cr(θ1) cr(θ2)

]
=
[

TH
r ar(θ1) TH

r ar(θ2)
]

(13)

Ct(θ1) =
[

ct(θ1) ct(θ2)
]
=
[

TH
t at(θ1) TH

t at(θ2)
]

(14)

By substituting Equations (11) and (12) into Equation (10), a new form of YB is obtained as

YB = Cr(θ1)ηCT
t (θ1) + Ns (15)

where

η = α
√

L
[

1
ε

][
1 ε

]
= α
√

L
[

1 ε
ε ε2

]
(16)

2.2. Initial Angle Estimation

Given that the BSC algorithm will classify the scene using the multipath coefficient, the
solution to the multipath coefficient requires an initial angle estimate. Thus, this subsection
describes a method for resolving initial angles with a modest degree of complexity.

For the SF-BML algorithm described in [2,3], the one-dimensional noise subspace
is orthogonal to the two-dimensional signal subspace in the eigenvector space of the
beamspace sample correlation matrix. SF-BML provides a closed-form solution for angle
estimation via this feature. However, as stated in Claim 1 of [26], the closed-form solutions
for elevation angle cannot be derived directly using SF-BML for a MIMO radar. The
3D-BMLF algorithm transforms the MIMO radar data into phase array radar data, and
then solves the angle with a minimal computational burden. This subsection provides an
estimate of the initial elevation angle in accordance with the 3D-BMLF concept.
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The 3D beamspace data with the highest power are employed to determine the initial
elevation angle estimate. The beamspace data corresponding to the highest power for the
receiving side are given as

zBr =

 YB
:,2,

∥∥∥YB
:,2

∥∥∥
2
≥
∥∥∥YB

:,3

∥∥∥
2

YB
:,3, otherwise

(17)

For the sake of analysis, it is assumed that zBr = YB
:,2 and

zBr = βCr(θ1)

[
1
ε

]
+ nsr (18)

where β = α
√

LbT
t (θ1)a∗t (0) is a constant, nsr = TH

r Ns0a∗t (0). The ML function of zBr is
given as

Maximize
θ1,θ2

zH
BrPCr(θ1)zBr = Minimize

θ1,θ2
zH

BrP⊥Cr(θ1)zBr (19)

where P⊥Cr(θ1) = I3 − PCr, and PCr = Cr(θ1)
[
CT

r (θ1)Cr(θ1)
]−1

CT
r (θ1). Zoltowski et al. [2]

and Chen et al. [26] established the closed-form solution for Equation (19) in cases where
hr � Rd, as

θ̂0
r = arcsin

arctan


√√√√√√
 vr2 − 2vr1 cos

(
π

Mr

)
vr2 cos

(
2π
Mr

)
− 2vr1 cos

(
π

Mr

)
2

− 1


λ

2πd

 (20)

where vr1, vr2, and vr3 are the elements of vr, namely, vr =
[

vr1 vr2 vr3
]T. vr is the

eigenvector corresponding to the smallest eigenvalue of

Rbr =
Re
{

zBrzH
Br
}
+ Ĩ3Re

{
zBrzH

Br
}

Ĩ3

2
(21)

where
~
I3 =

 0 0 1
0 1 0
1 0 0

 (22)

Next, the beamspace data with the highest power for the transmitting side are given as

zBt =

 YB
2,:,

∥∥∥YB
2,:

∥∥∥
2
≥
∥∥∥YB

3,:

∥∥∥
2

YB
3,:, otherwise

(23)

For the sake of analysis, it is assumed that zBt = YB
2,: and

zBt = γ
[

1 ε
]
CT

t (θ1) + nst (24)

where γ = α
√

LaH
r (0)br(θ1) is a constant and nst = aH

r (0)Ns0T∗t . Similarly, for the cases
where hr � Rd, vt =

[
vt1 vt2 vt3

]T can be obtained as the eigenvector corresponding
to the smallest eigenvalue of

Rbt =
Re
{

zBtzH
Bt
}
+ Ĩ3Re

{
zBtzH

Bt
}

Ĩ3

2
(25)
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The solution for the target angle based on zBt can also be obtained by

θ̂0
t = arcsin

arctan


√√√√√√
 vt2 − 2vt1 cos

(
π

Mt

)
vt2 cos

(
2π
Mt

)
− 2vt1 cos

(
π

Mt

)
2

− 1


λ

2πd

 (26)

Thus, the initial angle is estimated as

θ̂0
1 =

θ̂0
t + θ̂0

r
2

(27)

2.3. Multipath Coefficient Estimation for Scene Classification

The amplitude of the multipath coefficient can reflect the strength of the multipath
component in echo signals. According to [42], the surface reflection coefficient is primarily
influenced by working frequency, the type of surface, the signal polarization, and the undu-
lation of the reflection surface. The surface reflection coefficient amplitude (RCA) is greatly
affected by polarization and the undulation of the reflection surface. The strong multipath
component, i.e., a large surface reflection coefficient amplitude, is typically observed in the
case of horizontal polarization and flat terrain. In this scenario, the multipath signal is close
to the ideal specular reflection, and the surface reflection coefficient is relatively stable and
can be computed accurately. The weak multipath component is most prevalent in the case
of vertical polarization or undulating reflection surfaces. In this scenario, it is difficult to
identify the actual reflection conditions. The absence of a multipath component generally
occurs when obstacles prevent the multipath signal from entering the radar antenna.

In this subsection, the various multipath scenes are classified based on the amplitude
of the multipath coefficient. The BPS algorithm estimates the multipath coefficient of
the phase radar by eliminating unknown parameters. However, the BPS algorithm is
cumbersome for MIMO radar. Thus, a straightforward and effective estimation method is
required as an alternative.

The parameter η can be estimated from Equation (15) as follows

η = C+
r (θ1)YB

[
CT

t (θ1)
]+
− C+

r (θ1)TH
r Ns0T∗t

[
CT

t (θ1)
]+

(28)

Replacing θ1 with θ̂0
1 in Equation (28) and taking into account that noise is independent

of the target signals, Equation (28) can be approximated as

η ≈ C+
r

(
θ̂0

1

)
YB

[
CT

t

(
θ̂0

1

)]+
=

[
η11 η12
η21 η22

]
(29)

Then, ε is estimated from Equations (16) and (29) as follows:

ε̂ =
η21 + η22

η11 + η12
(30)

Again, according to the analysis of RCA in [42], the strength of the multipath compo-
nent is characterized by the amplitude of the multipath coefficient as

strong, |ε̂| ≥ 0.7

weak, 0.1 ≤ |ε̂| < 0.7

no, |ε̂| < 0.1

(31)

When |ε̂| is less than 0.1, the very weak multipath component is considered as noise in
Equation (31).
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2.4. Data Selection for Angle Estimation

To keep the computational complexity of the BSC algorithm low, the algorithm em-
ploys an angle-estimation strategy at the transmitter and receiver, which necessitates the
creation of appropriate data. The variable δ is specified using a piecewise function as below

δ =

{
1, |ε̂| ≥ 0.1
0, |ε̂| < 0.1

(32)

When δ = 0, the signal subspace for the 3D beamspace data is one-dimensional,
which means that the eigenvector corresponding to the minimum eigenvalue of the co-
variance matrix is not orthogonal to the signal subspace. In such cases, the estimations
in Equations (20) and (26) are invalid. When δ = 0, the beamspace data are abandoned in
the negative angle direction in order to find a one-dimension noise subspace orthogonal
to the one-dimension signal subspace in the eigenvector space of the beamspace sample
correlation matrix. Equation (12) allows for the expression of 3D and 2D beamspace data as

YB3 =

 y11 y12 y12
y21 y22 y23
y31 y32 y33

 (33)

YB2 =

[
y22 y23
y32 y33

]
(34)

During the initial estimation, the beamspace data with the highest power are selected,
which corresponds to a certain loss. Although the data of the three beams cannot be
coherently accumulated, it is possible to process the data of the three beams incoherently.

The deviation between the target angle and the beam pointing is used to evaluate the
gain of the beams on the target signal. Specifically, the gain coefficient for the receiving side
is defined as

gi
r =

f i
r

3
∑

i=1
f i
r

(35)

f i
r =

δ + (1− δ)(i− 1)i−3(
θ̂0

r − (i− 2)θr
)2 , i = 1, 2, 3 (36)

The gain coefficient for the transmitting side, gi
t, can also be obtained by θ̂0

t and θr in
the same way as for the receiving side. Then, the fused 3D and 2D beamspace data for
receiving and transmitting sides can be obtained as

zBr3 =
[

y1
r y2

r y3
r
]T (37)

zBt3 =
[

y1
t y2

t y3
t
]T (38)

zBr2 =
[

y2
r y3

r
]T (39)

zBt2 =
[

y2
t y3

t
]T (40)

where

yi
r =

3

∑
j=1

gj
ryij (41)

yj
t =

3

∑
i=1

gi
tyij (42)
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2.5. The Angle Estimation for Transmitting and Receiving Sides

The preceding section transformed the MIMO radar data into phase radar data. The
angle-estimation methods corresponding to three cases with distinct multipath components
are developed in this subsection.

2.5.1. The Angle Estimation for Strong Multipath Component

When |ε̂| ≥ 0.7 holds, the surface reflection coefficient can generally be calculated
accurately. The BPS algorithm is an excellent candidate angle-estimation method for
ideal specular reflection. Similarly to the method described in Section 2.3, a more concise
method than the BPS algorithm is developed here, which has the same accuracy as the
BPS algorithm.

From Equation (18), it can be inferred that

ηr = β

[
1
ε

]
= C+

r (θ1)zBr − C+
r (θ1)nsr (43)

Replacing θ1 with θ̂0
1 in Equation (43), and taking into account that noise is independent

of the target signals, Equation (43) can be approximated as

ηr ≈ C+
r

(
θ̂0

1

)
zBr =

[
ηr1
ηr2

]
(44)

Then, the multipath coefficient is estimated for the receiving side as

ε̂r =
ηr1

ηr2
(45)

The corresponding multipath phase estimate reads as

ψ̂r0 = arctan(Im{ε̂r}/Re{ε̂r}) (46)

Due to the periodic nature of the phase, the estimation of ψ̂r0 may be ambiguous. The
multipath phase corresponding to the initial estimate θ̂0

1 is

ψ
(

θ̂0
1

)
= φρ −

4πhr
(
sin θ̂0

1 + hr/Rd
)

λ
(47)

The approximate value of the multipath phase is known from Equation (47), which
can be used to correct the estimated value. The difference between the approximate and
true values is approximately an integer multiple of 2π. Thus, the correct estimation of the
multipath phase is obtained as

ψ̂r = ψ̂r0 +

〈
ψ
(
θ̂0

1
)
− ψ̂r0

2π

〉
2π (48)

From Equation (7), the angle is estimated for receiving side as

θ̂r1 = arcsin

{
λ
[
φρ − ψ̂r

]
4πhr

− hr

Rd

}
(49)

To obtain high accuracy in angle estimation, the estimation process is performed twice,
with the angle estimate in the first instance replacing θ̂0

1 in the second instance.
In the same way, the results for the transmitting side can be derived as

ηt = γ

[
1
ε

]
≈ zBt

[
CT

t

(
θ̂0

1

)]+
=

[
ηt1
ηt2

]
(50)
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ε̂t =
ηt1
ηt2

(51)

ψ̂t0 = arctan
(

Im{ε̂t}
Re{ε̂t}

)
(52)

ψ̂t = ψ̂t0 +

〈
ψ
(
θ̂0

1
)
− ψ̂t0

2π

〉
2π (53)

θ̂t1 = arcsin

{
λ
[
φρ − ψ̂t

]
4πhr

− hr

Rd

}
(54)

2.5.2. The Angle Estimation for Weak Multipath Component

When 0.1 ≤ |ε̂| < 0.7 holds, the actual reflection conditions are generally unstable and
difficult to determine precisely because of vertical polarization or an undulating reflection
surface. The angle-estimation process outlined in Section 2.2 is therefore taken into account.
Based on the beamspace data of Equations (37) and (38), the angle estimates θ̂r2 and θ̂t2 can
be obtained by Equations (20) and (26).

2.5.3. The Angle Estimation for no Multipath Component

When |ε̂| < 0.1, the weak multipath component is treated as noise. According to the
solution method for 2D beamspace data described in [3], the closed-form solution of the
target angle can be obtained using the eigenvector corresponding to the smallest eigenvalue
of the 2D beamspace sample correlation matrix.

Based on Equations (39) and (40), the 2D beamspace sample correlation matrices for
receiving and transmitting sides are given as

RBr2 = Re
{

zBr2zH
Br2

}
(55)

RBt2 = Re
{

zBt2zH
Bt2

}
(56)

Let pr =
[

pr1 pr2
]T and pt =

[
pt1 pt2

]T be the eigenvectors corresponding to
the smallest eigenvalue of RBr2 and RBt2. The closed-form solutions of the target angle for
2D beamspace data can be derived as [3]

θ̂r2 = arcsin
{

λ

2d

{
1

Mr
+

2
π

arctan
{[

pr1 + pr2

pr1 − pr2

]
tan
(

π

2Mr

)}}}
(57)

θ̂t2 = arcsin
{

λ

2d

{
1

Mt
+

2
π

arctan
{[

pt1 + pt2

pt1 − pt2

]
tan
(

π

2Mt

)}}}
(58)

Then, the angle estimation for the receiving and transmitting sides can be expressed as

θ̂r =
[

θ̂r1 θ̂r2 θ̂r3
]
ξ (59)

θ̂t =
[

θ̂t1 θ̂t2 θ̂t3
]
ξ (60)

where

ξ =



[
1 0 0

]T
, |ε̂| ≥ 0.7[

0 1 0
]T

, 0.1 ≤ |ε̂| < 0.7[
0 0 1

]T
, |ε̂| < 0.1

(61)
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2.6. Fusion of Two Angle Estimations

We had two angle estimations above: one for the receiving side and one for the
transmitting side. To attain a high estimation accuracy, it is necessary to identify two
appropriate weights wr and wt to fuse θ̂r and θ̂t as

θ̂1 = wr θ̂r + wt θ̂t (62)

According to the criterion of minimizing the MSE, Chen et al. [26] determined the
optimal weights wr and wt as

wr =
σ2

θt
σ2

θt + σ2
θr

(63)

wt =
σ2

θr
σ2

θt + σ2
θr

= 1− wr (64)

where σ2
θr and σ2

θt are the MSE of θ̂r and θ̂t. This required the determination of the MSE.
For |ε̂| ≥ 0.7, the estimation is performed based on the refined signal model, which

assumes that the surface reflection coefficient and the geometric information between θ1
and θ2 are known. As demonstrated in [43,44], the MSE of θ̂r and θ̂t utilizing the refined
signal model for 3D beamspace data can be deduced as

σ2
θr1 =

σ2
r

2|β|2Re(dH
r (θ1)P⊥brdr(θ1))

(65)

σ2
θt1 =

σ2
t

2|γ|2Re(dH
t (θ1)P⊥btdt(θ1))

(66)

where σ2
r and σ2

t are the noise power of a single beam, respectively. dr(θi) = TH
r

∂

∂θi
ar(θi)i = 1, 2,

dt(θi) = TH
t

∂

∂θi
at(θi)i = 1, 2, P⊥br = I − Pbr, Pbr = bBr(θ1)

[
bT

Br(θ1)bBr(θ1)
]−1

bT
Br(θ1),

P⊥bt = I− Pbt, Pbt = bBt(θ1)
[
bT

Bt(θ1)bBt(θ1)
]−1

bT
Bt(θ1). Then, the corresponding weights

are obtained as

wr1 =
σ2

θt1
σ2

θt1 + σ2
θr1

=
1

1 +
Mr‖br(θ1)‖2

2Re(dH
t (θ1)Pbt

⊥dt(θ1))

Mt‖bt(θ1)‖2
2Re(dH

r (θ1)Pbr
⊥dr(θ1))

=
1

1 + w01
(67)

where

w01 =
Mr‖br(θ1)‖2

2Re(dH
t (θ1)Pbt

⊥dt(θ1))

Mt‖bt(θ1)‖2
2Re(dH

r (θ1)Pbr
⊥dr(θ1))

(68)

For 0.1 ≤ |ε̂| < 0.7, the geometric information between θ1 and θ2 is assumed to be
given. As demonstrated in [26,44], the MSE of θ̂r and θ̂t utilizing the geometric information
for 3D beamspace data can be obtained as

σ2
θr3 =

σ2
r

2|β|2Re(ΓHDH
r P⊥CrDrΓ)

(69)

σ2
θt3 =

σ2
t

2|γ|2Re(ΓHDH
t P⊥CtDtΓ)

(70)



Remote Sens. 2022, 14, 1917 12 of 21

where Γ =
[

1 ε
]T, Dr = [dr(θ1), dr(θ2)], Dt = [dr(θ1), dr(θ2)], P⊥Ct = I3 − PCt,

PCt = Ct(θ1)
[
CT

t (θ1)Ct(θ1)
]−1

CT
t (θ1). Then, the corresponding weights are derived as

wr2 =
σ2

θt2
σ2

θt2 + σ2
θr2

=
1

1 +
Mr‖br(θ1)‖2

2Re(ΓHDH
t P⊥CtDtΓ)

Mt‖bt(θ1)‖2
2Re(ΓHDH

r P⊥CrDrΓ)

=
1

1 + w02
(71)

where

w02 =
Mr‖br(θ1)‖2

2Re(ΓHDH
t P⊥CtDtΓ)

Mt‖bt(θ1)‖2
2Re(ΓHDH

r P⊥CrDrΓ)
(72)

For |ε̂| < 0.1 when the beamspace data in the negative angle direction are abandoned,
the MSE of θ̂r and θ̂t for 2D beamspace data can be estimated as [43]

σ2
θr2 =

2/3σ2
r

2|β|2Re(dH
r (θ1)P⊥Drdr(θ1))

(73)

σ2
θt2 =

2/3σ2
t

2|β|2Re(dH
t (θ1)P⊥Dtdt(θ1))

(74)

where P⊥Dr = I2 − PDr, P⊥Dt = I2 − PDt, PDr = TH
r2ar(θ1)

[
aT

r (θ1)T∗r2TH
r2ar(θ1)

]−1aT
r (θ1)T∗r2,

PDt = TH
t2at(θ1)

[
aT

t (θ1)T∗t2TH
t2at(θ1)

]−1aT
t (θ1)T∗t2. In the same way, the corresponding

weights can be obtained as

wr3 =
1

1 + w03
(75)

w03 =
M2

r Re(dH
t (θ1)P⊥Dtdt(θ1))

M2
t Re(dH

r (θ1)P⊥Drdr(θ1))
(76)

Then, by substituting θ̂r and θ̂t for θ1, and ε̂r and ε̂t for ε on the receiving and trans-
mitting sides, the weights wr and wt are obtained. To sum up, the weight wr can then be
expressed as

wr =
[

wr1 wr2 wr3
]
ξ =

1
1 +

[
w01 w02 w03

]
ξ

(77)

with wt = 1− wr, the final estimation of the target angle reads as

θ̂1 = wr θ̂r + wt θ̂t =
θ̂r +

[
w01 w02 w03

]
ξθ̂t

1 +
[

w01 w02 w03
]
ξ

(78)

It is worth noting that the closed-form solutions for the weak multipath component
and the absence of a multipath component are constrained by the structure of the uniform
linear array. Furthermore, the proposed method is only applicable to the scene of a single
target in a multipath environment. In a multiple target scenario, multiple targets require
separation in the range, Doppler, and angle dimensions through signal processing. The
flow chart of the BSC algorithm is summarized in Figure 2.
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Figure 2. The flow chart of the BSC algorithm.
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2.7. The Simplified Angle-Estimation Method

Furthermore, in the case of Mr = Mt, the beamspace data for the receiving and
transmitting sides are identical to the two samples of the same signal. Thus, the beamspace
data for both the receiving and transmitting sides can be added directly. Then, the solution
of the simplified BSC algorithm for target angle can be achieved directly without requiring
a fusion process.

3. Results

This section discusses the angle-estimation performances of the BIML, 3D-BMLF,
and BSC algorithms, as well as the CRB for refined signal models [5] through computer
simulations.

Consider a narrowband collocated MIMO radar equipped with a uniform linear array.
The linear array is mounted vertically in the horizontal plane. The input parameters are
set to λ = 0.3 m, d = 0.15 m, hr = 1.2 m, Mt = Mr = 12, and Rd = 50 km. The radar
transmits signals with an orthogonal waveform and a bandwidth of 1 MHz. A pulse
contains 800 sample points, and the signal envelope follows a Swerling 0 nonfluctuation
model. Other simulation parameters are discussed in further detail below. The number
of Monte Carlo realizations is set to 500 in each of these simulations. Next, the SNR is
defined as

SNR =
Mt Mr|α|2

σ2
n

(79)

Firstly, the RMSEs of the target angle for each of the three algorithms are shown
against the target angle in a flat reflector scene. For ρ = 0.9 exp(jπ) and SNR = 15 dB,
the RMSE of the target angle corresponding to the three algorithms is plotted against the
angle and the CRB in Figure 3. The BSC algorithm outperforms the BIML and 3D-BMLF
algorithms, especially in high-angle areas, and the BSC algorithm is closer to the CRB than
others. When the angle is small, the RMSE of the three algorithms is greater. In addition,
the RMSE fluctuates more significantly for BIML and 3D-BMLF.

Figure 3. The RMSEs of the target angle for the three algorithms against the angle.

Secondly, the influence of the RCA on the estimation accuracy is investigated. As-
suming θ1 = 1.5◦, SNR = 15 dB, and ρ = |ρ| exp(jπ), the RMSEs of the target angle for
the three algorithms are plotted against the RCA in Figure 4, where the RCA = 0 indicates
that no multipath signal exists in the target echo. The estimation error of the BIML and
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3D-BMLF algorithms diminishes as the RCA grows. The BSC algorithm achieves the lowest
estimation error when the RCA is large than 0.7 or less than 0.1. When the RCA is small
but greater than 0.1, the BSC algorithm performs identically to the 3D-BMLF algorithms in
terms of estimation accuracy.

Figure 4. The RMSEs of the target angle for the three algorithms against the RCA.

Thirdly, the RMSE of the target angle for the three algorithms is shown against SNR.
Assuming θ1 = 1.5◦ and ρ = 0.9 exp(jπ), the RMSEs of the target angle for the three
algorithms are shown against SNR in Figure 5. As the SNR increases, the estimation error
of the three algorithms reduces. The RMSE of the BSC algorithm is closer to the CRB and is
lower than that of the other algorithms. The RMSE of the target angle for the BSC algorithm
and the simplified BSC algorithm are plotted against SNR in Figure 6. As observed, the BSC
algorithm performs identically to the simplified BSC algorithm in cases where Mr = Mt.

Figure 5. The RMSEs of the target angle for the three algorithms against the SNR.
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Figure 6. The RMSEs of the target angle for the BSC and simplified BSC algorithms against the SNR.

Fourthly, the RMSE of the target angle for the BSC algorithm under different noise
types is shown against the angle. For SNR = 15 dB and ρ = 0.9 exp(jπ), Figure 7 shows
the RMSE of the target angle for the BSC algorithm against the angle, where the three noise
types are Gaussian white noise with a mean value of zero, Gaussian white noise with a
mean value of 0.1, and Gaussian colored noise with a mean value of zero, denoted by GW-0,
GW-1, and GC, respectively. As can be observed, the BSC algorithm performs differently
under various noise types. The estimation accuracy under colored noise is inferior to the
estimation accuracy under white noise.

Figure 7. The RMSEs of the target angle for the BSC algorithm under different noise types against
the angle.
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Fifthly, the influence of the target distance error and the antenna center height error on
the accuracy is investigated for the BIML, 3D-BMLF, and BSC algorithms. It is assumed that
θ1 = 1.5◦ and SNR = 15 dB. For ρ = 0.9 exp(jπ), the RMSEs of the target angle for the three
algorithms are plotted against the target distance error in Figure 8. For ρ = 0.6 exp(jπ), the
RMSEs of the target angle for the three algorithms are illustrated against antenna center
height error in Figure 9. As can be observed, the influence of target distance and antenna
center height errors on the accuracy of these three algorithms is negligible.

Figure 8. The RMSEs of the target angle for the three algorithms against the target distance error.

Figure 9. The RMSEs of the target angle for the three algorithms against the antenna center
height error.



Remote Sens. 2022, 14, 1917 18 of 21

4. Discussion
4.1. Estimation Accuracy Analysis

The RMSEs of the target angle for each of the three algorithms are plotted against
the target angle in a flat reflector scene in Figure 3. The BSC algorithm identifies the ideal
scene according to the amplitude of the multipath coefficient and then utilizes the reflection
coefficient information. The BIML and 3D-BMLF algorithms suffer from a mismatch
problem for composite steering vectors caused by the unused reflection coefficient [5],
resulting in a substantial fluctuation in the RMSE variation. When the angle is small, the
direct and multipath signals cancel each other, reducing the effective signal power [5]. In
addition, although the BSC algorithm separates the transmitting and receiving sides to
reduce the computational complexity, it does not take advantage of the aperture expansion
of MIMO radar, resulting in estimation accuracy that is insufficient to meet the CRB.

Figure 4 shows the influence of the RCA on the estimation accuracy. The effective
signal power increases as the RCA increases. However, estimation accuracy is not solely
determined by the effective signal power. In the absence of a multipath scene, the low
angle problem is degraded to the angle estimation of a single source. With the strong
multipath scene, it is possible to dramatically enhance estimation accuracy by utilizing as
much information as possible. When the RCA is large, the BSC algorithm first identifies
the ideal scene using the amplitude of the multipath coefficient and then performs angle
estimation using the reflection coefficient information; when the RCA is less than 0.1, the
BSC algorithm identifies the no-multipath scene and provides an appropriate scheme for
estimation. As a result, the BSC algorithm achieves a higher estimation accuracy than other
algorithms. When the RCA is small but greater than 0.1, the BSC algorithm identifies the
weak multipath scene without relying on information pertaining to reflection coefficients.

The RMSEs of the target angle for the three algorithms are plotted against the SNR
in Figure 5. When the SNR is greater than 20 dB, the estimation error of the BSC and
3D-BMLF algorithms is reduced more slowly, as both methods have approximate errors
when computing the closed-form solution. When the SNR is large, the influence of ap-
proximate errors may outweigh the impact of noise. However, when the SNR exceeds
20 dB, the estimation error is negligible. To achieve such low error with the search-based
BIML algorithm, the angle search interval must be less than 0.005◦, which is generally
unacceptable in engineering applications.

Figures 7–9 illustrate the performance of the BSC algorithm under various noise type,
target distance error, and antenna center height error conditions. Under identical SNR
and noise distribution conditions, the noise mean does not affect the estimation accuracy
of the BSC algorithm, but colored noise will significantly reduce the estimation accuracy.
Additionally, although these three algorithms make use of information on the distance and
antenna center height throughout the estimation process, the error has minimal effect on
the accuracy.

A limitation of this study is that the actual verification cannot be implemented at the
moment due to objective reasons. Once it becomes feasible in the future, this experiment
will be carried out completely. Additionally, the BSC algorithm is constrained by the
structure of the uniform linear array. Therefore, a method independent of the array structure
is worth investigating.

4.2. Computational Complexity Analysis

In this subsection, the computational complexity of the BIML, 3D-BMLF, and BSC
algorithms is investigated after a matched filter. The number of spectral search grids for the
BIML algorithm is P, and the number of beams is Q = Qt = Qr. The transmit beamformer
and receive beamformer were calculated in advance.

The BIML algorithm mainly involves converting the search vector from element space
to beamspace and calculating the cost function in the beamspace. The computational
complexity of the BIML algorithm is O

(
MtQ + MrQ + PQ4). The 3D-BMLF algorithm is
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primarily concerned with calculating the eigenvectors and weights, and the corresponding
computational complexity of the 3D-BMLF algorithm is O(Q3 + QMr + QMt).

The BSC algorithm mainly contains the computation of the initial estimation, the
multipath coefficient estimation, the angle estimation for the transmitting and receiving
sides, and the fusion. The computational complexity of these four parts of the BSC algorithm
is summarized in Table 2. As a result, the computational complexity of the BSC algorithm
is determined as O

(
Q3 + QMr + QMt

)
.

Table 2. Computational complexity of the BSC algorithm.

Computing Procedure Computational Complexity

The initial estimation O
(
Q3 + QMr + QMt

)
The multipath coefficient estimation O

(
Q3 + QMr + QMt

)
The angle estimation for two sides O

(
Q3 + QMr + QMt

)
The fusion O(QMr + QMt)

The computational complexity of these three algorithms is summarized in Table 3.
The computational complexity of the BSC algorithm is comparable to that of the 3D-BMLF
algorithm, and is obviously less than that of BIML. When combined with prior accuracy
estimation, the BSC algorithm becomes more desirable for engineering applications.

Table 3. Computational complexity of the three algorithms.

Algorithms Computational Complexity

BIML O
(

PQ4 + QMr + QMt
)

3D-BMLF O(Q3 + QMr + QMt)

BSC O
(
Q3 + QMr + QMt

)
5. Conclusions

This paper addresses the problem of beamspace low-angle estimation in MIMO radar.
The proposed BSC algorithm solves an initial estimate and the multipath coefficient using
3D beamspace data, constructs the appropriate beamspace data for transmitting and re-
ceiving sides, provides three estimation schemes for various multipath scenes, and fuses
the estimates for two sides. Although the BSC algorithm does not thoroughly exploit the
aperture expansion advantage of MIMO radar, the proposed method achieves high estima-
tion accuracy at a reasonable computational burden. The simulation results and theoretical
analysis indicate that the proposed method is more suitable for engineering applications.
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