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Abstract: The middle and lower reaches of the Yangtze River are the most important areas for geese to
overwinter in the East Asian–Australasian Flyway, where about 180,000 geese fly to overwinter each
year. Over the past 20 years, the region has experienced extensive and rapid land cover changes that
may have exceeded the adaptability of geese, and have led to suitable goose habitat area loss, thereby,
reducing the stability of the geese population. In order to identify the suitable goose habitat areas in
this region, based on ensemble modeling and satellite tracking data, in this study, we simulated the
spatial distribution changes in the suitable goose habitat areas over the past 20 years. The results
showed that the suitable goose habitat areas had suffered varying degrees of loss, among which, the
lesser white-fronted goose had the greatest suitable goose habitat area loss of over 50%. Moreover,
we found that wetlands, lakes, and floodplains were the key components of suitable goose habitat
areas, and the categories (land use) showed significant differences in different periods (p < 0.01). This
may be one of the main reasons for the decrease in suitable goose habitat areas. The results of this
study provide an important reference for the adaptive management and protection of geese in the
middle and lower reaches of the Yangtze River.

Keywords: habitat loss; geese; species distribution models (SDMs); land use change; middle and
lower reaches of the Yangtze River

1. Introduction

Habitat loss and degradation has been a major cause of wildlife population decline [1–5].
In the nonbreeding season (overwintering period), goose habitat areas mainly consist of
floodplains [1,6–9]. While floodplains are highly complex and dynamic ecosystems, they
are also among the most threatened ecosystems because they are often dominated by
humans and may experience a high intensity of anthropogenic activity [10–14].

The middle and lower reaches of the Yangtze River (MLYR) is one of the most im-
portant freshwater ecoregions in the world [15,16]. The numerous lakes connected to the
Yangtze River (such as Poyang Lake and Dongting Lake in this region) form a complex river-
lake relationship with the Yangtze River, creating extremely rich wetland ecosystem types
(nine Ramsar sites of international importance, http://www.ramsar.org/pdf/sitelist.pdf,
accessed on 11 October 2021) and providing a habitat for many important and endangered
waterbirds [17–19]. The population of geese accounts for about 35% of the total number of
waterbirds in the MLYR. This area constitutes the most important overwintering site for
geese in the East Asian–Australasian Flyway (EAAF), with nearly 180,000 geese overwinter-
ing there every year according to a 2004 survey of birds by [20]. The geese that overwinter
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in this area include the lesser white-fronted goose (LWFG, Anser erythropus), the greater
white-fronted goose (GWFG, Anser albifrons), the bean goose (BG, Anser fabalis), the swan
goose (SG, Anser cygnoides), and the greylag goose (GG, Anser anser), among which
the LWFG and SG have been recognized as vulnerable by the International Union for
Conservation of Nature (IUCN). The LWFG, SG, and GG in the EAAF generally overwinter
in this region [21–23], while 20% of GWFGs and 70% of BGs overwinter in this area, and the
other geese overwinter in Japan and Korea [24,25]. The population of these five species of
geese accounts for more than 99% of the total number of geese in the MLYR (unpublished
data from the Center for East Asian–Australasian Flyway Studies).

Waterbirds represent an important environmental indicator group, especially for the
status of wetland ecosystems in the MLYR [26]. Over the past 20 years, the MLYR has
become one of the regions with the fastest economic growth in China. Human activities in
the region have strongly disturbed the hydrological rhythm, especially the unreasonable
development and utilization of lakes, wetlands, and floodplains, as well as the cascade
development of hydropower stations in the Yangtze River Basin, such as the Three Gorges
Dam. As a result, the loss and degradation of goose habitat areas have resulted in a sharp
decline in the population of geese in the region [7].

Over the past two decades, species distribution models (SDMs) have been widely
used to study species spatial distribution patterns and guide conservation planning [27,28].
SDMs can be adapted to different spatial resolutions, and the available data sources can
help researchers to understand the population distribution of species and can provide
valuable insights even for species that are rarely studied [29]. Currently, common SDMs
include the generalized linear model (GLM) [30], random forest (RF) [31], and maximum
entropy (MAXENT) [21]. Each SDM has different characteristics and advantages. Therefore,
an increasing number of studies have used ensemble modeling to integrate the advantages
of various SDMs to study the spatial distribution of species [27,32]. By combining models
with different assumptions and algorithms, the integrated model can provide more robust
results than a single model [33].

In this study, SDMs combined with GPS satellite tracking data were used, for the first
time, to study the large-scale biogeography of five species of geese in the MLYR, aiming to
determine the main environmental variables affecting their habitat areas, and to evaluate
their habitat conditions in different periods and the change trends of their habitat areas,
which is of great scientific significance to the protection of geese in the research area.

2. Data and Methods
2.1. Study Area

The Yangtze River, the longest river in Asia and the third longest river in the world [34],
is unique in its extensive transitory basin wetlands. The wetlands are replenished by
summer monsoon rains, bringing nutrient-rich and sediment-rich water, followed by
falling water levels in autumn and winter [34]. The MLYR, from the Three Gorges Dam to
the estuary, mainly covers most of Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Zhejiang, and
Shanghai, as well as some regions of Guangxi and Henan, with a watershed area of about
800,000 km2 (Figure 1) [35].

2.2. Data and Model

For comparative analysis, we divided the 20 years from 2000 to 2019 into four periods,
namely, Period 1 from 2000 to 2004, Period 2 from 2005 to 2009, Period 3 from 2010 to 2014,
and Period 4 from 2015 to 2019.

The calculation results of geese in Period 4 were used as the current distribution, and
then, the final ensemble model was projected to the past by using the occurrence and
environment data of other periods.
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2.2.1. Goose Occurrence Data

Since 2015, GPS trackers have been applied to 141 geese, and by 2019, 403,811 goose
occurrence data were obtained. Because the MLYR is the overwintering grounds for geese,
we only selected the occurrence data from October to December and from January to March.
In order to avoid interference with the model due to differences in sites during the migration
of geese, we eliminated all sites with velocities greater than 1 [1]. In order to reduce
the error of occurrence data in geographical coordinates and reduce the sampling bias
effect of the occurrence dataset, the occurrence data were compiled at a spatial resolution
of 1 × 1 km [27]. After removing duplicate records within each grid cell, we obtained
2664 presence records to simulate the habitat areas of these five goose species (Table 1).

Table 1. Number of occurrence data points for five species of geese (lesser white-fronted goose
(LWFG), greater white-fronted goose (GWFG), bean goose (BG), swan goose (SG), and greylag
goose (GG)).

Species Number of Occurrence Data Points

LWFG 419
GWFG 752

BG 852
SG 487
GG 154

Total 2692

2.2.2. Climate Data

The data of climate variables are important for predicting species distribution, es-
pecially for analyses over long time spans [36,37]. The climate variables used in this
study were derived from CHELSA (http://chelsa-climate.org, accessed on 5 September
2021) [38,39], mainly using the three variables of monthly rainfall (PRE), monthly average
maximum temperature (TMAX), and monthly average minimum temperature (TMIN). The
time period was 2000–2018, although the precipitation data for 2018 were missing, and the
climate data accuracy was 30 arc seconds (about 1 km2). In order to effectively assess the
goose habitat in the MLYR, only the data during the overwintering period were selected in

http://chelsa-climate.org
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this study. For example, the averages of October to December of the first year and January
to March of the next year were taken as one data point (the rainfall in 2000 was the average
of the rainfall from October to December of 1999 and January to March of 2000).

2.2.3. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water
Index (NDWI)

The NDVI and NDWI have been widely used to evaluate the distribution of geese [7,8,40].
Our NDVI and NDWI data were derived from the “Landsat 7 Collection 1 Tier 1 1 8-Day
NDVI/NDWI Composite” database in the Earth Engine Data Catalog. At the same time, we
used the Google Earth Engine platform (https://code.earthengine.google.com/, accessed
on 15 August 2021) to download directly for the period 2000–2019. These data have a
resolution of 30 m. In order to ensure the consistency of the data time, we adopted the
same processing method as that used for climate data.

2.2.4. Land Use

The use of land use data plays an important role in predicting species distribution
at large landscape scales [41–43]. The land use data used in this study were obtained
from the Data Center for Resources and Environment of the Chinese Academy of Sciences
(http://www.resdc.cn/, accessed on 20 August 2021) and included cultivated land, forest
land, grassland, water areas, residential land, and unused land as six primary types, with
20 secondary types. These data have a resolution of 1 km2. Based on the needs of this
study, we selected four primary types and 12 secondary types (Table 2). In this study,
the land use data of the first year of each period were selected as the land use data of
the period, that is, the land use date of Period 1 was 2000 (it contains 4 years of land use
data, 2000, 2005, 2010, and 2015, respectively, Appendix A, Figure A1). Because the land
use data were the classification variable and the partial SDM model was not conducive to
the classification variable, in order to conduct the quantitative analysis, in this study, we
transformed 12 types of land use into a continuous variable using Euclidean distance. For
example, wetlands were transformed into the distance to wetland (dis_wl).

Table 2. Land use classification.

Level 1 Level 2 Meaning

Cropland

Paddy Field (dis_pf)
Cropland with a guaranteed water source and irrigation facilities
that can be irrigated normally in normal years and used to grow

rice, lotus root, and other aquatic crops.

Upland Field (dis_uf)

Cropland without an irrigation water source or facilities that
depends on natural water to grow crops; dry-crop-cultivated land
with a water source and irrigation facilities that can be irrigated

normally in normal years; cultivated land mainly used for
vegetable cultivation.

Water

River (dis_ri)
Land below the perennial water level of rivers and main rivers
formed by natural or artificial excavation. Artificial channels

include an embankment.

Lake (dis_la) Land below the perennial water level in a natural water
accumulation area.

Reservoir (dis_re) Land below the perennial water level in an artificial water
storage area.

Mudflat (dis_mf) The tidal zone between the high tide level and the low tide level
of the coastal spring tide.

Floodplain (dis_fp) Land between the water levels of rivers and lakes in normal
seasons and those in flood seasons.

https://code.earthengine.google.com/
http://www.resdc.cn/
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Table 2. Cont.

Level 1 Level 2 Meaning

Construction land

Urban Land (dis_ul) Land used in large, medium, and small cities and built-up areas
above the county level.

Rural Land (dis_rl) Rural settlements that are independent of cities and towns.

Other Construction Land (dis_ocl)
Land used for factories and mines, large industrial areas, oil
fields, salt fields, quarries, traffic roads, airports, and other

construction land uses.

Unused Land

Wetland (dis_wl)
Land with flat and low-lying terrain, poor drainage, long-term

moisture, seasonal water accumulation or perennial water
accumulation, and surface growth of hygrophytes.

Bare Land (dis_bl) Land covered by surface soil where the vegetation coverage is
less than 5%.

2.2.5. Elevation Data

The elevation data were obtained from a digital elevation model (DEM) with a 30 m
resolution and downloaded from the International Scientific and Technical Data Mirror
Site, Computer Network Information Center, Chinese Academy of Sciences (http://www.
gscloud.cn, accessed on 15 August 2021) [44]. To match the resolution of climate variables,
the DEM data were resampled at 1 km2 resolution using a bilinear interpolation

2.2.6. Model

We used the stacked species distribution model (SSDM) software package in R software
to simulate the suitable goose habitats [45,46]. For this purpose, we used seven species
distribution models for the calculations: the GLM, RF, support vector machines (SVM) [47],
artificial neural network (ANN) [48], generalized additive model (GAM) [49], classification
tree analysis (CTA) [50], and generalized boosting model (GBM) [51].

To evaluate the accuracy of each algorithm, we performed 10 cross-validations for
each algorithm; 70% of each dataset was used as training data and the remainder was used
to test algorithm performance. The area under the receiver operating characteristic curve
(AUC) [27,29,46] was used to evaluate the goodness-of-fit of each model. When the AUC
value of the model was greater than 0.9, it was considered to be an excellent fit; when the
AUC was 0.9–0.8, it was considered to be a good fit; when the AUC was 0.8–0.7, it was
regarded as an acceptable fit; and when the AUC was less than 0.7, the model was regarded
as a poor fit [28]. The habitat suitability maps were converted to binary presence absence
maps using a threshold that maximums model sensitivity plus specificity [27].

To avoid possible multicollinearity leading to biased model estimates, we tested
Pearson correlations between environmental factors and defined the absolute value of the
correlation coefficient R > 0.7 as a threshold [27]. Finally, we selected 18 variables, such
as land use and climate, among which the correlation between TMAX and TMIN was 0.9.
Because these were important indicators for predicting suitable goose habitat, they were
also included in the analysis (Appendix A, Figure A2).

All environmental variables for this study were processed using ArcGis 10.6 in order
to obtain a uniform resolution and coordinate system. The comparative analysis of all
results was completed in R (version 4.1.1) software.

3. Results
3.1. Model Performance and Variable Contribution

It was found that the seven algorithms used for species distribution models had
excellent recognition abilities for the five species of geese, and the average AUC values
of LWFG, GWEG, SG, and BG were higher than 0.9. The results showed that the models
had excellent fits, with AUC values of 0.944 ± 0.002, 0.938 ± 0.002, 0.930 ± 0.002, and

http://www.gscloud.cn
http://www.gscloud.cn
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0.920 ± 0.002 for the LWFG, GWEG, SG, and BG models, respectively. The average AUC
value of GG was 0.886 ± 0.004, indicating that the model fit was good (Figure 2). Overall,
among the seven model algorithms, SVM had the lowest AUC value (0.916 ± 0.031), while
GAM had the highest AUC value (0.934 ± 0.028).
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Figure 2. Box plots of interquartile range (IQR), range, and median model performance of the seven
modeling algorithms used to predict the habitat suitability of five goose species. The dots are potential
outliers which are greater than the 75th percentile + 1.5 IQR or less than the 25th percentile − 1.5 IQR.
The medians are represented by thick black lines. Generalized linear model (GLM); random forest
(RF); support vector machines (SVM); artificial neural network (ANN); generalized additive model
(GAM); classification tree analysis (CTA); generalized boosting model (GBM); lesser white-fronted
goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose (SG); and greylag
goose (GG).

The results showed that land use data contributed the most to the simulation of suitable
goose habitat areas, with an average contribution rate of 0.781 ± 0.009, followed by climate
data, with a contribution rate of 0.097 ± 0.009. Altitude, NDVI, and NDWI contributed
less at 0.053 ± 0.008, 0.045 ± 0.011, and 0.023 ± 0.004, respectively (Appendix B, Table A1).
Specifically for each variable, among all 18 variables, the contributions of dis_la, dis_fp,
dis_wl, altitude, NDVI, and TMIN were more than 0.05, and the contributions of dis_la,
dis_fp, and dis_wl to all the goose habitat areas were more than 0.05 (Figure 3). Although
all geese have a high demand for dis_la, dis_fp, and dis_wl, the degree of their specific
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needs varies. The contributions of dis_wl to the suitable habitat of LWFG, GWFG, and SG
geese were 0.294 ± 0.022, 0.238 ± 0.019, and 0.225 ± 0.017, respectively. The contributions
of dis_la to the suitable habitat of BG and GG were the highest, at 0.219 ± 0.015 and
0.268 ± 0.018, respectively (Appendix B, Table A1).
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Figure 3. Box plots of interquartile range (IQR), range, and median model performance of algorithms
used to predict the variable contribution to the model. The dots are potential outliers which are
greater than the 75th percentile + 1.5 IQR or less than the 25th percentile − 1.5 IQR. The medians are
represented by thick black lines. Lesser white-fronted goose (LWFG); greater white-fronted goose
(GWFG); bean goose (BG); swan goose (SG); and greylag goose (GG).

Because dis_la, dis_fp, and dis_wl are important for predicting suitable goose habitat
areas, we compared the differences in these three variables in different periods. This study
found that dis_fp and dis_la showed a downward trend from Period 1 to Period 4, while
dis_wl showed an upward trend (Appendix B, Table A2). The results showed that the
three variables exhibited significant differences in the four periods (ANOVA test, p < 0.01,
Figure 4).
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asterisks indicate a significant difference.

3.2. Suitable Habitat

Using the habitat classification thresholds (LWFG 0.48, GWFG 0.41, BG 0.44, SG 0.43,
and GG 0.39) calculated by the SSMD model, we classified the suitable and unsuitable
goose habitat areas (Figure 5). The results showed that the largest suitable goose habitat
area for all geese was found during Period 1, and the suitable goose habitat areas for all
geese were mainly distributed in the Dongting Lake and Poyang Lake areas, as well as the
areas near the mainstream of the Yangtze River between the two lakes. In the same period,
the suitable goose habitat area of GG was the largest among the five species of geese, while
the suitable goose habitat area of LWFG was the smallest. In terms of suitable goose habitat
area loss, the suitable goose habitat area of all geese has declined over the past 20 years,
with the LWFG losing the most suitable goose habitat area and GG losing the least suitable
goose habitat area. Specifically, LWFG and GFWG decreased the most from Period 3 to
Period 4, with a loss of 15,905 km2 (45.85%) and 9217 km2 (23.26%) of suitable habitat area,
respectively; BG and GG lost 7191 km2 (14.97%) and 2550 km2 (3.88%) of suitable habitat
area from Period 2 to Period 3, respectively. SG lost the most suitable habitat area from
Period 1 to Period 2 (3926 km2, 9.75%, Table 3).

Table 3. The suitable habitat area (km2) loss and the relative change ratio (%) of suitable habitat
between two consecutive periods. Lesser white-fronted goose (LWFG); greater white-fronted goose
(GWFG); bean goose (BG); swan goose (SG); and greylag goose (GG).

Species Suitable Habitat
Area/Change Period 1 Period 1 vs. Period 2 Period 2 vs. Period 3 Period 3 vs. Period 4

LFWG Suitable habitat 37,872
Lost suitable habitat −2922 −260 −15905
Relative change ratio −7.72% −0.74% −45.85%

GFWG Suitable habitat 46,067
Lost suitable habitat −2747 −3699 −9217
Relative change ratio −5.96% −8.54% −23.26%

BG Suitable habitat 52,613
Lost suitable habitat −4576 −7191 −4441
Relative change ratio −8.70% −14.97% −10.87%

SG Suitable habitat 40,253
Lost suitable habitat −3926 −1591 −2757
Relative change ratio −9.75% −4.38% −7.94%

GG Suitable habitat 67,697
Lost suitable habitat −1972 −2550 −1554
Relative change ratio −2.91% −3.88% −2.46%
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Figure 5. Suitable and unsuitable goose habitat areas in the MLYR for the four periods. Period
1 is 2000–2004, Period 2 is 2005–2009, Period 3 is 2010–2014, and Period 4 is 2015–2019. Lesser
white-fronted goose (LWFG); greater white-fronted goose (GWFG); bean goose (BG); swan goose
(SG); and greylag goose (GG).

In order to elucidate the overall situation of suitable goose habitat loss, we compared
suitable goose habitat areas in two periods: Period 1 and Period 4. The results showed that
during the 20 years from 2000 to 2019, the suitable goose habitat area of LWFG increased
by 486 km2 in some areas and decreased by 19,573 km2 in other areas, with a total suitable
habitat area loss of 50.40%, which was the greatest suitable goose habitat area loss among
the five species; the suitable goose habitat area of GWFG increased by 1163 km2 and
decreased by 16,826 km2, with a total suitable habitat area loss of 34.00%; the suitable goose
habitat area of BG increased by 817 km2 and decreased by 17,025 km2, with a total suitable
habitat area loss of 30.81%; the new suitable goose habitat area of SG was 3076 km2, while
it decreased by 8593 km2, with a total suitable goose habitat area loss of 13.71%; the new
suitable goose habitat area of GG was 4688 km2, while it decreased by 8792 km2, with a
total suitable habitat area loss of 6.24%. GG was the species with the least suitable goose
habitat area loss among the five species of geese (Figure 6).

From 2000 to 2019, the peripheries of the suitable goose habitat area for all geese were
lost to varying degrees, and the greatest suitable goose habitat area loss was in the marginal
areas. The LWFG lost most of its habitat area, except for the Dongting Lake and Poyang
Lake areas, especially the suitable habitat area in the northwest of Dongting Lake. Most
of the suitable GWFG habitat in the Tai Lake area was lost, and the GWFG habitat in the
periphery of the two lakes was also lost. Similar to the GWFG, the BG lost suitable habitat
in the Tai Lake area. Moreover, most of the suitable habitat in the peripheries of the two
lakes were also lost. Much of the suitable SG habitat in the peripheries of the two lakes was
lost as well, but it had also increased in some areas, especially in the lower reaches of the
Yangtze River. Among all the geese, the GG had the least suitable goose habitat area loss,
which was mainly concentrated in the peripheries of the two lakes, while it had a large
increase in suitable goose habitat area in the lower reaches of the Yangtze River (Figure 7).
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4. Discussion

SDMs are widely used to address a variety of ecological problems, including pre-
dicting the geographic range of species, assessing the impact of biological invasions, and
developing conservation strategies [52–54]. However, some studies have shown that a
single-species distribution model has greater uncertainty, while an ensemble model can
provide more accurate results [55–57]. In this study, seven SDMs (ANN, GAM, GLM,
RF, CAT, GBM, and SVM) were used to combine the individual SDMs with the SSDM
model, combined with GPS tracking data and environmental data of five goose species
from 2015 to 2019. The habitat adaptability and spatial distribution of these geese in the
MLYR over the past 20 years were mapped. These findings were basically in line with the
scientific consensus on the habitats of these five species, and a large number of areas lost in
previous surveys were also found. These results are of great significance for supporting the
protection of goose habitats in the MLYR.

The study area is the most important overwintering site for geese on the EAAF. The
goose habitat loss in this area means a decrease in food availability and energy reserves,
which lead to a series of problems, such as an increase in intraspecific and interspecific
competition pressure, a decrease in the subadult survival rate, and an increase in mortality
during migration. Over the past 20 years, the suitable goose habitat areas in the MLYR
have been reduced to different degrees. Among the five species studied, LWFG, GWFG,
and BG lost more than 16,000 km2 of suitable habitat area (accounting for 50.40%, 34.00%,
and 30.81% of their original habitat areas, respectively). However, the suitable habitat areas
of SG and GG only decreased by about 8000 km2 (13.71% and 6.24%, respectively). As
compared with LWFG, GWFG, and BG, the suitable habitat area losses for SG and GG
have had less impact on these species. Zhang et al. [7] found that large geese showed
better adaptability to environmental changes, while small geese had a smaller range of
feeding habits due to the length and hardness of their beaks, which made small geese more
sensitive to environmental changes. This may be one of the reasons why the LWFG had
the greatest suitable habitat area loss and GG had the least suitable habitat area loss. The
most direct manifestation of habitat loss is a decline in population size, which has declined
significantly for LWFG, GWFG, and BG over the past 20 years. In particular, the eastern
population of the LWFG (all of which overwinter in the MLYR) decreased from 65,000 geese
in the 1980s to 4020 geese in 2020 [58], and its suitable habitat was the most reduced of all
five species. The suitable habitat area losses of SG and GG were less, and their populations
were relatively stable in the MLYR. This also reflects that habitat area plays an extremely
important role in the stability of goose population.

Our results show that the suitable goose habitat areas in the MLYR are shrinking to
the area around the two lakes (Figure 7). Many reports in the literature have also reflected
this finding [7,22,23,26]. The reason for this phenomenon may be that the two lakes are
the two largest freshwater lakes in China and provide abundant food resources for geese.
In addition, there are many nature reserves in the region, with large, protected areas and
low human disturbance, which makes the habitat of this region better than that of other
regions. The vast waters and floodplains in the two lakes areas are also the largest and
most complete natural wetlands in the MLYR, and geese overwintering in China prefer
natural wetlands [59,60].

A large number of research results have shown that wetlands, floodplains, and lakes
were the main components of goose habitat areas in the MLYR [22,23,25,26,59]. In the
present study, it was found that dis_wl, dis_fp, and dis_la were very important for predict-
ing the suitable habitat areas of the five species of geese. However, these three variables
have changed dramatically over the past two decades, and there were significant differences
in the four periods (Figure 4). These changes have posed significant challenges for geese
and have led to the loss of suitable habitat areas for geese with poor adaptability. These
three variables are closely related to the hydrological rhythm of the Yangtze River [35,61],
and the MLYR is a typical case [7]. During the first 20 years of the 20th century, the economy
of the MLYR developed rapidly. To satisfy the high demand for electricity, the Yangtze
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River was used for hydropower generation. As of 2019, there were 159 hydropower stations
with an annual power generation of more than 300 thousand kilowatts in the Yangtze River
Basin [62]. This high quantity of hydropower stations has significantly changed the hy-
drological rhythm of the Yangtze River Basin, leading to changes in wetlands, floodplains,
and lakes [35] that have been disastrous for geese. Some studies have concluded that
the construction of hydropower stations has destroyed the natural hydrological rhythm,
resulting in early or delayed recession of floodplains in the MLYR, thus, affecting the timing
and trends of food growth. These phenological changes no longer match the time when
geese arrive at overwintering sites, and therefore geese are unable to obtain food in their
original habitat areas [7]. The MLYR is the main grain-producing area in China, with well-
developed agriculture; the lake areas in the region are shrinking due to reclamation and the
demand for agricultural irrigation. The region also exhibits rapid economic development,
a large population, rapid expansion of urban areas, rapid growth of tourism and other
tertiary industries, and a large number of natural wetlands that have been exploited, which
may be one of the reasons for the greater loss of suitable habitat margins for geese [63,64].

This study found that the use of land use data played an important role in simu-
lating suitable goose habitat in the MLYR, with an average contribution rate as high as
0.781 ± 0.009 (Appendix B, Table A1). The contributions of climate (PRE, TMAX, and
TMIN), DEM, NDVI, and NDWI were relatively small at 0.032 ± 0.004, 0.053 ± 0.008, and
0.045 ± 0.011, and 0.023 ± 0.004, respectively (Appendix B, Table A1). This was different
from the results of many studies on goose habitat areas, some of which found that hy-
drological changes were the key factors in changes in goose distribution [65], and some
scholars have indicated that food resources were important limiting factors [66,67]. These
contrasting results are due to the differences in the scale of the study areas, and the use of
land use data plays an extremely important role in predicting the distribution of species at
a large landscape scale [41–43]. Studies that have suggested food resources or hydrological
changes were the key factors affecting the distribution of geese have mostly been based on
small spatial scales, and our research area covers the whole middle and lower reaches of
the Yangtze River. Therefore, the difference in spatial scales is an important reason for the
differences between our results and those of other studies.

Over the past 20 years, the habitat of wild geese overwintering in the MLYR has
experienced different degrees of loss, and suitable goose habitat area has been significantly
reduced, resulting in a significant decline in their population. This decline has mainly
been caused by human activities. The MLYR is among the areas with the fastest economic
development in China, but this rapid economic growth has led to environmental deteri-
oration, especially excessive utilization and development of water resources, which has
led to shrinkage of lakes, a reduction in floodplains, and loss of wetlands and other factors
that are crucial to goose habitat [14,17,18,35]. The Chinese government has taken many
measures to protect and restore the environment in recent years, such as returning farmland
to wetlands and the Yangtze River protection strategy, and although the environment in
some areas has been improved, the geese in the MLYR still face enormous challenges.

5. Conclusions

Based on SSDM and GPS tracking data, in this study, we analyzed the changes in the
suitable goose habitat areas in the MLYR from 2000 to 2019. The results showed that the
suitable goose habitat areas in this region had experienced varying degrees of loss, and
that the suitable goose habitat area was significantly reduced. The LWFG had the greatest
suitable habitat area loss (over 50%), while the GG had the least suitable habitat area loss
(6.24%). GWFG, BG, and SG suitable habitat areas were reduced by 34.00%, 30.81% and
13.71%, respectively. The widespread and rapid changes in land use were one of the main
reasons, especially the changes in floodplains, lakes, and wetlands. These analyses show
that land use is an important factor in studying the spatial and temporal changes of suitable
goose habitat areas on a large scale, which is of great significance to the protection and
management of goose habitats.
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Appendix B

Table A1. Variable importance of 18 environmental variables of the GAM algorithm.

Variables LWFG GWFG BG SG GG

Dis_pf 0.012 ± 0.009 0.020 ± 0.010 0.011 ± 0.012 0.017 ± 0.007 0.008 ± 0.009
Dis_uf 0.015 ± 0.010 0.014 ± 0.016 0.019 ± 0.008 0.026 ± 0.011 0.018 ± 0.004
Dis_ri 0.032 ± 0.013 0.029 ± 0.006 0.020 ± 0.010 0.012 ± 0.012 0.022 ± 0.013
Dis_la 0.065 ± 0.021 0.156 ± 0.051 0.158 ± 0.028 0.167 ± 0.051 0.277 ± 0.097
Dis_re 0.015 ± 0.011 0.036 ± 0.016 0.014 ± 0.013 0.037 ± 0.017 0.032 ± 0.031
Dis_mf 0.086 ± 0.026 0.109 ± 0.025 0.066 ± 0.021 0.062 ± 0.023 0.046 ± 0.022
Dis_fp 0.125 ± 0.036 0.116 ± 0.044 0.137 ± 0.031 0.144 ± 0.046 0.131 ± 0.060
Dis_ul 0.014 ± 0.009 0.012 ± 0.012 0.025 ± 0.013 0.027 ± 0.014 0.013 ± 0.011
Dis_rl 0.016 ± 0.007 0.026 ± 0.012 0.021 ± 0.007 0.025 ± 0.013 0.032 ± 0.029

Dis_ocl 0.013 ± 0.010 0.022 ± 0.013 0.016 ± 0.013 0.017 ± 0.008 0.010 ± 0.011
Dis_wl 0.259 ± 0.045 0.188 ± 0.053 0.088 ± 0.031 0.217 ± 0.079 0.175 ± 0.065
Dis_bl 0.069 ± 0.018 0.078 ± 0.015 0.044 ± 0.015 0.044 ± 0.025 0.024 ± 0.015
DEM 0.019 ± 0.026 0.036 ± 0.047 0.041 ± 0.037 0.036 ± 0.050 0.021 ± 0.026
NDVI 0.022 ± 0.007 0.040 ± 0.014 0.060 ± 0.010 0.059 ± 0.028 0.112 ± 0.035
NDWI 0.020 ± 0.008 0.021 ± 0.012 0.041 ± 0.019 0.024 ± 0.017 0.027 ± 0.025

PRE 0.014 ± 0.011 0.019 ± 0.010 0.038 ± 0.015 0.010 ± 0.008 0.010 ± 0.010
TMAX 0.082 ± 0.032 0.042 ± 0.021 0.094 ± 0.036 0.037 ± 0.021 0.023 ± 0.017
TMIN 0.123 ± 0.031 0.035 ± 0.028 0.108 ± 0.041 0.040 ± 0.017 0.019 ± 0.011
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Table A2. The average of the three variables in the four periods.

Period Distance to Wetland Distance to Lake Distance to Floodplain

Period 1 128,104.553 ± 125.594 88,059.992 ± 101.239 18,951.819 ± 20.392
Period 2 137,343.562 ± 128.758 83,960.312 ± 99.655 17,731.429 ± 18.043
Period 3 156,412.35 ± 139.942 69,673.015 ± 74.446 17,362.222 ± 16.905
Period 4 156,595.611 ± 140.027 61,968.91 ± 63.665 17,159.595 ± 16.493
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