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Abstract: Traditional automatic pavement distress detection methods using convolutional neural
networks (CNNs) require a great deal of time and resources for computing and are poor in terms of
interpretability. Therefore, inspired by the successful application of Transformer architecture in natu-
ral language processing (NLP) tasks, a novel Transformer method called LeViT was introduced for
automatic asphalt pavement image classification. LeViT consists of convolutional layers, transformer
stages where Multi-layer Perception (MLP) and multi-head self-attention blocks alternate using the
residual connection, and two classifier heads. To conduct the proposed methods, three different
sources of pavement image datasets and pre-trained weights based on ImageNet were attained. The
performance of the proposed model was compared with six state-of-the-art (SOTA) deep learning
models. All of them were trained based on transfer learning strategy. Compared to the tested SOTA
methods, LeViT has less than 1/8 of the parameters of the original Vision Transformer (ViT) and 1/2
of ResNet and InceptionNet. Experimental results show that after training for 100 epochs with a
16 batch-size, the proposed method acquired 91.56% accuracy, 91.72% precision, 91.56% recall, and
91.45% F1-score in the Chinese asphalt pavement dataset and 99.17% accuracy, 99.19% precision,
99.17% recall, and 99.17% F1-score in the German asphalt pavement dataset, which is the best per-
formance among all the tested SOTA models. Moreover, it shows superiority in inference speed
(86 ms/step), which is approximately 25% of the original ViT method and 80% of some prevailing
CNN-based models, including DenseNet, VGG, and ResNet. Overall, the proposed method can
achieve competitive performance with fewer computation costs. In addition, a visualization method
combining Grad-CAM and Attention Rollout was proposed to analyze the classification results and
explore what has been learned in every MLP and attention block of LeViT, which improved the
interpretability of the proposed pavement image classification model.

Keywords: pavement distress; image classification; deep learning; vision transformer; LeViT; visual
interpretation

1. Introduction

Cracks are common pavement distress caused by vehicle loading and environmental
conditions. Pavement cracking can cause damage to pavement structures, and the area
of pavement structure damage can increase over time, affecting the performance of the
pavement. Therefore, the timely detection and monitoring of pavement cracks and other
distress is essential for road maintenance [1,2].

The traditional manual pavement distress detection method is inefficient and sig-
nificantly affected by subjective factors, restricting the development of maintenance in-
telligence. In response to such problems, benefiting from the development of artificial
intelligence technology, researchers have continuously applied the latest image-processing
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methods to pavement disease recognition [3]. Deep learning is the state-of-the-art (SOTA)
artificial intelligence method. Compared with traditional image-processing and machine-
learning methods, complex image preprocessing is not required in deep learning. Deep
learning has the characteristics of automatic feature learning, which can significantly
improve the efficiency of pavement distress recognition. It is a general trend to collect
pavement images using automated detection equipment and adopt advanced algorithms
to identify pavement distress [4,5].

Convolutional Neural Network (CNN) has been well established in image recognition
among all the deep learning methods in pavement distress identification. Since AlexNet was
proposed in 2012 [6], new CNN structures have been introduced every year. Breakthroughs
in early CNN structures such as VGG [7] and MSRANet [8] were mainly in larger width and
depth, resulting in more neurons and parameters. This may cause overfitting and requires
a large number of computation resources. The application of residual blocks significantly
improved the efficiency of training a CNN and was widely used in the architectures of some
SOTA CNN, such as ResNet [9] and DenseNet [10]. In the last 5 years, extensive research
has been conducted and has shown that the application of CNN in pavement distress
identification is feasible and scientific. Wang’s research team proposed several CNN-
based crack detection models named CrackNet and improved versions [11–13]. Because
training a CNN is time-consuming, the improvement direction of their proposed models
is mainly higher detection accuracy and faster performance. Hou et al. [14] proposed an
adaptive, lightweight CNN pavement object classification model named MobileCrack to
achieve more efficient training. Ali et al. [15] introduced a customized CNN for concrete
crack detection. By comparing existing well-known CNN models, they found that the
number of learnable parameters of models can significantly affect the computational time.
Kim et al. [16] employed a shallow CNN to acquire higher identification accuracy with
minimum computation. All of this research showed that computation time and accuracy
are critical for applying deep learning in pavement distress recognition. However, CNNs
still have the problem that the lower-level features outside the effective receptive fields
cannot be described [17,18]. It is not conducive to making full use of the context information
to capture features of images. Continuously stacking deeper convolutional layers can help
get more levels of image features, but it will cause a sharp increase in computation.

Recurrent neural networks (RNNs), including LSTM [19] and GRU [20], are also
typical deep learning methods. RNNs have the advantage that they can combine contextual
information and are widely used in speech recognition. Sequential data are required to
conduct the RNN model, which differs from the pavement image dataset. Limited studies
about RNN-based pavement image recognition have been completed. Zhang et al. [21]
defined the sequence of pixels in an image as the input sequence of RNN. They proposed
CrackNet-R for pavement crack detection, which revealed the potential of sequence-based
deep learning in pavement image recognition. In the application of computer vision in
pavement image recognition, CNNs remain dominant.

Self-attention is a structure to help deal with the problem of parallelization within
training examples in recurrent models [22]. A network called Transformer entirely based on
attention mechanism and eliminates recurrence and convolutions was proposed to solve the
parallel processing of words in a sentence in RNN-based models and achieved considerable
success in natural language processing [22,23]. Inspired by the successful application of
Transformer in natural language processing, an image classification model that displaced
the traditional convolutional networks and was based entirely on Transformer architecture
called Vision Transformer (ViT) was initially introduced in computer vision and turned
out to have competitive performance in a large-scale image database [24]. Nevertheless,
the original ViT model still has some problems, such as its poor generalization ability on
inadequate data. Thus, more and more improved versions of ViT-based image recognition
methods were proposed recently [25–28].

A typical Transformer block contains multi-head self-attention, skip connection, and
normalization. In terms of pavement image recognition, researchers have also made
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preliminary attempts to apply Transformer to pavement distress detection. Liu et al. [29]
employed a network called CrackFormer using the self-attention modules embedded
in the CNN structure. Guo et al. [30] adopted a vision transformer structure to detect
the crack boundary and found it precedes several SOTA schemes. These works focus
on the edge detection of crack images. Image classification is a fundamental task in
deep learning and is the backbone of other complex tasks such as object detection and
semantic segmentation. However, deep learning-based object classification in pavement
images remains challenging because of the inconspicuous features, low contrast and noisy
background, and high economic cost of computation. To solve the above problems, a
faster inference vision transformer model called LeViT [31] was applied in pavement
object classification in this study. It combined the convolutional operation in the original
ViT structure and achieved competitive classification accuracy with a relatively higher
processing speed.

On the other hand, as deep learning-based algorithms were once addressed as ‘black
box’, the interpretability matters of deep learning have been a problem for many years [32,33].
Moreover, as deep learning models become increasingly complex, it is also becoming
increasingly difficult for us to understand our model [34]. To build up trust in the AI-based
pavement distress recognition models for engineers, ensuring the ability to understand why
a particular prediction is made is critical. Therefore, in our study, a visual interpretation
method for both multilayer perceptron (MLP) and self-attention blocks was proposed to
better understand the mechanism of the employed deep learning model. Our work is a
potential solution for the interpretability matters in deep learning-based pavement distress
detection models.

The rest of this paper is structured as follows: Section 2 presents the methodology,
including the introduction of the original ViT methods, the overall structure of the LeViT
model, visual explanation methods, and the evaluation matrix; Section 3 presents the
experimental results of the proposed classification model and the analysis of the visual
interpretation results; Section 4 presents the discussion and comparison of other SOTA
models; and, finally, Section 5 offers the research conclusion.

2. Methodology and Materials
2.1. Overall Procedure

Figure 1 shows the framework of the proposed work. We collected the pavement
images from three distinct sources, forming three different datasets for comparison ex-
periments. The original images were then preprocessed to a smaller size that meets the
computer training requirements. Next, the three datasets were divided in the ratio of 6:2:2
to form the training set, validation set, and test set, respectively. A transformer-based deep
learning approach called LeViT was used to automatically classify the pavement images.
During training, pre-trained weights based on the ImageNet were obtained, and then the
model was trained based on our datasets using the transfer learning strategy. The proposed
method was also compared with other prevailing deep learning networks. Subsequently,
a visualization strategy was proposed to visualize the classification results and what has
been learned at each layer of our proposed network.

2.2. Data Acquisition

Three different pavement datasets are used in our experiments.

(1) JCAPs: The first dataset was collected from the multi-functional intelligent road
detection vehicle on asphalt pavement on Lanhua Road, Nanjing, Jiangsu Province,
China, in April 2018. This multi-functional pavement detection vehicle was equipped
with onboard computers and embedded integrated multi-sensor synchronous control
units to automatically capture pavement pictures. It took about half an hour for
the vehicle to collect the original images. The original data collected were RGB
images of 4096 × 2000 pixels. To satisfy the training requirements, the original
images were processed to a proper size. First, the original images were horizontally
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resized to 4000 × 2000 pixels via bilinear interpolation. Then, the resized images
were continuously clipped to 400 × 400 pixels. Subsequently, the sub-images were
resized to 224 × 224 pixels. To balance the number of images of various samples in
the dataset, 1600 images were selected, including 400 pavement background images,
pavement marking images, crack images, and sealed crack images. In terms of the
crack images, transverse and longitudinal crack images are included in the dataset.
This dataset is named as JCAPs. Example images of different classifications in JCAPs
are shown in Figure 2. As the images were affected by the equipment and lighting
conditions, the original dataset contained road images with good lighting exposure
and poor lighting exposure. In addition, the cracks in this image dataset have a
relatively smaller width, and the image feature is inconspicuous, which may increase
the difficulty of classification for deep learning models.

Figure 1. The framework of the proposed work.
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Figure 2. Example images from the JAPs dataset used in this study: (a) background, (b) crack,
(c) pavement marking, and (d) sealed crack.

(2) GAPs: The German Asphalt Pavement Distress (GAPs) dataset is an open-source
dataset with various classes of distress using a mobile mapping system. Four-year
cycle images are contained in the original GAPs dataset. The resolution of the original
images is 1920 × 1080 pixels. More details of the dataset are presented in [35]. We
randomly selected several of the original images and cropped the original GAPs
images into tiny images with 400 × 400 pixels using the sliding-window method and
resized them into 224 × 224 pixels to prevent the problem of running out of memory
while computing. A total of 1200 images with the size of 224 × 224 were manually
labeled, including 400 pavement background images, pavement marking images, and
crack images. Longitudinal and transverse cracking are included in the crack images.
Figure 3 shows the example images from the GAPs dataset.

Figure 3. Example images from the GAPs dataset used in this study: (a) background, (b) crack, and
(c) pavement marking.

(3) Crack500: This dataset is also an open-source dataset collected from the main campus
of Temple University, Philadelphia, Pennsylvania, U.S. The resolution of the original
images in the Crack500 dataset is 2000 × 1500 pixels. More details of the dataset
are presented in [36,37]. We also randomly selected several of the original images
and cropped the original images into 500 × 500 pixels using the sliding-window
method. The tiny images were also resized to 224 × 224 pixels before inputting into
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the training networks. A total of 2000 images with the size of 224× 224 were manually
categorized, including 1000 pavement background images and 1000 crack images.
The crack images include longitudinal and transverse cracks. Figure 4 shows the
example preprocessed images in the Crack500 dataset.

Figure 4. Example images from the Crack500 dataset used in this study: (a) background and (b) crack.

In this study, 60% of every dataset was used as the training set for network training,
20% of every dataset was used as the validation set for network validation and monitoring,
and 20% was allocated as the test set to evaluate different models. The different classes of
samples in the dataset had a balanced distribution. Table 1 describes the distribution of
pavement images in each classification in every dataset.

Table 1. Distribution of different datasets used in this study.

Datasets Number of Images Background Crack Pavement Marking Sealed Crack

JCAPs

Training set 960 240 240 240 240

Validation set 320 80 80 80 80

Test set 320 80 80 80 80

All 1600 400 400 400 400

GAPs

Training set 720 240 240 240 -

Validation set 240 80 80 80

Test set 240 80 80 80 -

All 1200 400 400 400 -

Crack500

Training set 1200 600 600 - -

Validation set 400 200 200 -

Test set 400 200 200 - -

All 2000 1000 1000 - -

2.3. Vision Transformer

The structure of ViT entirely replaces the convolution operation in image recognition.
The original architecture of ViT splits images into patches. Then, the patches are flattened
and linear projected into learnable features. To acquire the position information of image
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patches, position encoding is added to the Patch embedding. Moreover, an extra learnable
class embedding, named class token, is also input into the transformer encoder. Layer
normalization and two fully connected layers are included in the classifier. The output of
the class token is taken as the classification result of the whole network. Figure 5 shows the
framework of the original ViT.

Figure 5. Structure of Vision Transformer (ViT).

Residual connection is applied in the transformer encoder. This structure was first
proposed in ResNet [9]. It allows lower layers to directly connect to higher layers and skip
one or more middle layers. It does not introduce additional parameters or add computation
complexity but can help improve the accuracy with the same computation resources.

Multi-head attention is the core block in transformer models. The architecture of
attention was firstly introduced in 2014 [38]. The neural network can pay more attention to
relevant information in input vectors using an attention mechanism. An illustration of the
multi-head self-attention is presented in Figure 6. The input vector of embedded patches
after normalization is I. By multiplying with three different trainable weight matrices Wq,
Wk, and Wv, the input of multi-head attention is query Q, key K, and value V. All of them
are linear projected, and then scaled dot-product is applied to calculate attention score, seen
in Equation (1) [22], and SoftMax function is used as alignment function, and Equation (2).

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (1)

so f tmax(xi) = exi /
n

∑
j

xj (2)

where dk is the dimension of K. xi is the input activation of attention blocks. n is the
dimension of the input vector.
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Figure 6. Illustration of multi-head self-attention in Transformers.

Multi-head attention is to conduct different linear transformations by h times to project
Q, K, and V. After that, attention results of different heads are concatenated, shown in
Equation (3) [22] and Equation (4) [22]:

headi = Attention(QWQ
i , KWk

i , VWV
i ) (3)

MultiHead(Q, K, V) = Concat(head1, . . . , headh)Wo (4)

where WQ
i , Wk

i and WV
i present learnable weight matrix in the ith head, and h is the number

of head.

2.4. Levit Structure

LeViT is a newly developed approach proposed in 2021 [31]. It reintroduced con-
volutional operations, which replaced some Transformer components to achieve a faster
inference speed. The architecture of LeViT is similar to LeNet [39], where the whole net-
work presents a pyramid shape with pooling. Specifically, the difference between LeViT
and original ViT can be summarized in the following aspects.

(1) Convolutional layers

The convolution operation is adopted in this network to extract features. Four convo-
lutional layers with the kernel size of 3 × 3 are added to process the input images. After the
convolutional layers, a tensor with more channels and smaller width and height is acquired
as the input of Transformer Blocks. Batch normalization [40] is used to stabilize the training
process. All of the activation function in LeViT is Hardswish, shown in Equation (5) [41]:

Hardswish(x) =


0
x

x·(x + 3)/6

x ≤ −3
x ≥ +3

−3 < x < +3
(5)

The size of the output feature map of the last convolutional layers is 13 × 13. The
number of the channels of the output of the previous convolutional layer determines the
input size of the transformer blocks. LeViT-192 represents that the number of channels
on the input of transformer stage is 192. The architecture of the LeViT-192 is presented in
Figure 7.
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Figure 7. The architecture of the LeViT-192.

(2) Transformer stages

There are three Transformer stages in LeViT. Attention and MLP blocks alternate with
a residual structure in every transformer stage. The following is the description of the
attention and MLP blocks.

Attention blocks—There are two kinds of attention blocks in LeViT, seen in Figure 8.
One is in Transformer Blocks, seen in Figure 8a; another is between the stages, seen in
Figure 8b, and has the function of subsampling. Position embeddings are replaced by
attention bias to get position information not only in the input layer but also in the inner
layers of transformer blocks. Assume that C × H ×W is the input activation map. N is the
number of heads. D is the output dimension of Q and K. Operator V has 2D channels. For
two pixels (x, y) and (x′, y′) belonging to H ×W for one head h, their attention value can be
calculated as Equation (6) [31]:

Ah
(x,y),(x′ ,y′) = Q(x,y)•K(x′ ,y′) + Bh

|x−x′ |,|y−y′ | (6)

Figure 8. The structure of multi-head attention in LeViT: (a) Regular attention block; (b) Attention
block with subsampling function (shrink attention blocks). C is the channel of feature maps, and
H and W represent the height and width, respectively, of the feature map. N is the number of
self-attention heads. D is the output dimension of key K and query Q. Operator V has 2D channels.

MLP blocks—The structure of MLP in traditional ViT is linear transformation. In LeViT,
a convolutional kernel with the size of 1 × 1 is adopted. Every convolution operation
is followed by batch normalization. The expansion factor of the convolution is 2, which
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means the number of neurons will double in the first layer of MLP and return the same
number of neurons as the input vector in the second layer of MLP.

(3) Classification layers

In classification layers of LeViT, Globel Average Pooling (GAP) [42] is used. All pixel
values of the feature map in one channel are added to get a vector with the same dimension
as the channel of the feature maps. The output vector of the GAP is the basis of the
supervised classifier and distillation classifier. The supervised classifier compares the loss
between the predicted label and the ground truth label to calculate the cross-entropy loss
(LCE), shown in Equation (7). The distillation classifier will calculate the Lgloble, shown in
Equation (8) [26], the loss between the predicted label and the teacher-predicted label. The
average of these two predicted labels is set as the ultimate label of this model.

LCE(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)) (7)

where ŷ represents the prediction result of the model and y represents the ground truth labels.

Lglobal = (1− λ)LCE(ψ(Zs), y) + λτ2KL(ψ(Zs/τ), ψ(Zt/τ)) (8)

where Zt is the outputs of the teacher model, Zs is the outputs of the student model, τ is dis-
tillation temperature, and λ is the coefficient to balance KL Loss and the cross-entropy loss.

The number of parameters varies with the different sizes of the LeViT network. Table 2
shows the parameters of LeViT models.

Table 2. Parameters of LeViT-192. Each stage contains pairs of attention and MLP blocks. C is the
number of channels in MLP blocks. N is the number of heads in attention blocks. n is the number of
the classifications.

Layers Operation Output Size

Convolutional layers 4 × [Conv 3 × 3, stride = 2] 14 × 14 × 192

Transformer stages

Stage 1 4×
[

MLP, C = 192
Attention, N = 3

]
14 × 14 × 192

Subsample [Shrink Attention , N = 6] 7 × 7 × 288
Stage 2 4×

[
MLP, C = 288

Attention, N = 5

]
7 × 7 × 288

Subsample [Shrink Attention, N = 9 . ] 4 × 4 × 384
Stage 3 4×

[
MLP, C = 384

Attention, N = 6

]
4 × 4 × 384

Classification layers Average Pooling 384
Classifiers [n, n]

2.5. Visual Interpretation Methods

As the deep learning algorithms have been criticized as black boxes, this section will
try to interpret the proposed models visually and help us better understand the proposed
algorithms’ operation mode. Figure 9 shows the visual explanation methods used in this
study. The visual interpretation of MLP blocks and the attention blocks are both explored.

For MLP layers, a technique called Gradient-weighted Class Activation Mapping
(Grad-CAM) [33] was employed to explain what image features are learned at each
network layer.

The gradient information in the specific convolutional layers was attained to assign
an importance score for every neuron to acquire the class activation maps in Grad-CAM.
Assume the output logits of a specific layer of class c is yc and the activation of feature
map is Ak, the gradient of class c is calculated. Global average pooling is conducted in the
gradient of width and height. Then the importance weight of neurons is attained as αc

k,
shown in Equation (9) [33]:

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

(9)
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where i and j represent the index of gradients in width and height. A represents the output
feature map of this layer. k represents the channel of the feature map. ∂yc

∂Ak
ij

is the gradients

via back-propagation. Z is the total number of pixels in this feature map. 1
Z ∑

i
∑
j
· is the

function of global average pooling.

Figure 9. Visual interpretation methods used in this study.

All the channels of feature maps are linear weighted and sum up to get the heat map,
as shown in Equation (10) [33]. Only regions that have a positive effect on class c are
reserved using the activation function ReLU, seen in Equation (11).

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak) (10)

ReLU(x) =

{
x x > 0
0 x ≤ 0

(11)

For attention layers, the attention maps of each attention lay were computed using
the Attention Rollout [43]. It can be described as the following steps. First, the attention
weights from each attention layer of LeViT were attained. Then, the attention weights
across all heads of this layer were averaged. Next, recursively multiply the weight matrices
of all layers, as seen in Equation (12). The attention from all positions in layer li to all
positions in layer lj (j < i) is calculated:

Ã(li) =

{
A(li)Ã(li−1) i f i > j
A(li) i f i = j

(12)

where Ã is attention rollout. A is raw attention. Matrix multiplication is conducted.
The original input images were transformed into pseudo-color images to highlight the

attention mask applied to the input images. Finally, apply masks from the output token to
the input space.



Remote Sens. 2022, 14, 1877 12 of 20

2.6. Evaluation Indexes

To evaluate the performance of the proposed model, the indices of accuracy, precision,
recall rate, F1-score, and processing speed were calculated to evaluate the experimental results.

Accuracy (ACC) is the proportion of correctly classified samples in the total number
of samples, seen in Equation (13):

ACC =
nc

nt
(13)

where nc is the number of samples correctly predicted and nt is the total number of samples.
Precision (P) is the proportion of the samples predicted to be positive and is actually a

positive sample (Equation (14)):

P =
TP

TP + FP
(14)

where TP is the positive samples that are correctly predicted and FP is the negative samples
that are wrongly predicted to positive samples.

Recall (R) is the proportion of correctly predicted positive samples (Equation (15)):

R =
TP

TP + FN
(15)

where TN is the negative samples that are correctly predicted and FN is the negative
samples that are wrongly predicted to positive cracks.

As P and R were unable to achieve high performance simultaneously, F1-score was
used to take the harmonic mean of the two to measure the effectiveness of the model
(Equation (16)):

F1 = 2· P·R
P + R

(16)

As each class has equal weight, the Macro-Average principle is used when computing
the evaluation metric. Metric within each category was calculated first, then the average
resulting metrics across categories.

In addition, the computational costs were also evaluated for different methods. The
number of the parameters, average training time per epoch, and inference time per step
were set as the evaluation indexes.

3. Experimental Results and Analysis
3.1. Experimental Environment and Hyperparameters

The training software environment in this study was python 3.7, keras 2.3 with
TensorFlow-2.5.0 backend. The operating system is Linux. All the experiments in this study
were conducted in a supercomputing cluster equipped with a 7185 32C 2.0 GHz CPU with
a 64-core Processor, 256 GB memory, and 8 DCU accelerator card.

A total of 100 training epochs were conducted with a batch size of 16 to improve the
computation memory utilization. Adam [44] is the optimization algorithm for gradient
descent in back-propagation in this study. The hyperparameters of the Adam algorithm
were set as follows.

(1) The learning rate was 1 × 10−4. The learning rate can control the weight update ratio
and a lower learning rate allows the model to achieve better convergence.

(2) β1 was 0.9 and β2 was 0.999. β1 and β2 can control the decay rates of the first and
second moment means, respectively.

(3) ε was 1 × 10−8, which prevented a relatively fixed value division by zero in the
implementation.

Before training, the dataset was randomly shuffled before imputing into the net-
works. To reduce the training time, the transfer learning method was employed. The
models were pretrained based on ImageNet [45], a large public dataset with approximately
15 million images.
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3.2. Training Results of LeViT

The training loss curves of two classification heads in the different datasets are pre-
sented in Figures 10a, 11a and 12a. During training, the supervised classifier and the
distillation classifier work together, reaching convergence by the end of the training process.
The training accuracy curves of the training and validation sets of different datasets based
on LeViT are displayed in Figures 10b, 11b and 12b. The curves show that the training
and validation loss drops rapidly at the beginning epochs and, after several epochs, they
stabilize around a value with slight fluctuation.

Figure 10. Training curves of JCAPs. (a) Loss curves of two classifier heads, (b) Training curves of
training and validation set.

Figure 11. Training curves of GAPs. (a) Loss curves of two classifier heads, (b) Training curves of
training and validation set.

Figure 12. Training curves of Crack500. (a) Loss curves of two classifier heads, (b) Training curves of
training and validation set.
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After 100 epochs of training, the LeViT model was tested by different test sets. Figure 13
shows the classification confusion matrix of different datasets. The overall classification
accuracy of different test sets was 91.56%, 99.17%, and 94.50%, respectively. LeViT appears
to have an excellent performance in classifying the images in dataset GAPs and Crack500.
However, there are certain fusions of crack images. Among 80 crack images in the test set
of JCAPs, eight images are misclassified as background, and eight images are misclassified
as sealed crack images. The reason for these misclassifications could be the quality of the
images. To obtain a better classification result, image augmentation methods can be used
for further study.

Figure 13. Confusion Matrix of LeViT in different test set: (a) JACPs, (b) GAPs, and (c) Crack500.

3.3. Visual Interpretation

Visual interpretation results of both MLP blocs and attention blocks were explored.
Figure 14 shows the visual explanation results of MLP blocks based on Grad-CAM. Figure 15
displays the interpretation results of attention blocks based on Attention Rollout.

Figure 14. Cont.
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Figure 14. The heat maps and Grad-CAM images of different classifications in different datasets.
(a) JACPs, (b) GAPs, (c) Crack500.

The heat maps and Grad-CAM outputs from different MLP blocks of LeViT networks
in different datasets are illustrated in Figure 14. In heat maps, the brighter color indicates
regions that contribute more to the classification results in heat maps. Correspondingly in
Grad-CAM output images, the red areas present higher scores for the class. As can be seen,
for the ‘background’ class of the model, MLP blocks at the first stack have a wide range
of focuses. In the following stack, blocks start to focus on some small regions. At the last
stack, the blocks return to a broader focus and tend not to concentrate on small spots in the
‘background’ images. For the ‘crack’ and ‘sealed crack’ classes of the networks, as the layer
of the LeViT network goes deeper, it generally learns to focus on the regions related to the
specific objects and focus more on some small spots. As for the ‘pavement marking’, the
blocks at the first stack concentrate mainly on the pavement background regions. In the
following stacks, MLP blocks start to learn a more extensive range of area at the second
stack. Finally, at the last stack, blocks gradually shift their attention to areas relevant to
pavement marking and ignore the irrelevant regions. Overall, from the interpretation
results, we can find that as the layer of the network goes deeper, it will focus more on
the related part of the images. In addition, as can be seen in the heat maps of different
classifications, the ‘crack’ and the ‘sealed crack’ have similar features with a long and
wide light spot. To some extent, it explained why these two classifications of images were
misclassified in the same class.
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Figure 15. The attention score maps of different classifications. (a) JCAPs, (b) GAPs, (c) Crack500.

Figure 15 shows the attention score map from the output of different attention blocks.
The regions with higher attention scores were highlighted by applying masks to areas with
lower attention scores. From the visual interpretation results of the attention layers, in
the first few attention blocks, the network pays almost equal attention to all regions in
the images. Subsequently, in the following few regions, the network begins to focus on
some separated and scattered regions in the images. As the layers get deeper, the regions
of the posterior attention layers are connected to a larger area. Overall, there is a trend
that the areas with higher attention scores will cover more effective feature areas in the
deeper layers.
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4. Discussion and Comparison

To validate the proposed methods, six popular models, including VGG-16 [7], ResNet-
50 [9], InceptionV3 [46], DenseNet121 [10], MobileNetV1 [47], and ViT-b16 [24], were
conducted for comparison. The basic principles of each method are as follows.

VGG-16 [7]: This adopts a convolution kernel with a smaller size (3 × 3) and uses deeper
layers to achieve good performance. VGG-16 means the number of its weight layer is 16.
ResNet-50 [9]: The core idea of this network is its shortcut or skip connections. In residual
blocks, the input information can detour to the output, which is helpful to decrease learning
difficulties. ResNet-50 represents that the number of its weight layer is 50.
InceptionNet-V3 [46]: Its main idea is to find out how to approximate the optimal locally
sparse junction with dense components.
Densenet-121 [10]: The core of the network is a dense block. The input to each layer of the
network in the structure comes from the outputs of all the previous layers.
MobileNet-V1 [47]: It is a lightweight network. A structure of depth-wise separable
convolutions was introduced in this network.
ViT-b16 [24]: The framework of ViT has illustrated in Figure 5. ViT-b16 means its base
version with 16 × 16 input image patches.

Before training on our experimental dataset, pre-trained weights based on ImageNet
of all the models were obtained to speed up the training process. During training, the
hyperparameters were kept the same with LeViT, seen in Section 3.1. Sparse categorical
cross-entropy was adopted to monitor the training process. The pre-trained weights of all
the comparison models were obtained. The test results are provided in Table 3.

Table 3. Classification results of different methods based on different datasets.

Dataset Method
All Classifications Background Crack Pavement Marking Sealed Crack

ACC (%) P (%) R (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

JCAPs

ViT 88.13 89.33 88.13 88.21 83.75 88.16 77.50 82.67 93.75 96.77 97.50 85.25
ResNet 88.75 89.12 88.75 88.80 88.75 87.65 85.00 85.54 87.50 92.71 93.75 89.29

DenseNet 88.75 89.55 88.75 88.61 97.50 96.30 70.00 79.43 97.50 96.89 90.00 81.81
VGG 89.38 90.16 89.38 89.45 92.50 82.50 87.50 87.50 91.25 94.81 96.25 87.50

InceptionNet 89.69 90.12 89.69 89.64 91.25 87.95 78.75 85.71 93.75 94.94 95.50 89.94
MobileNet 90.31 91.03 90.31 90.35 96.25 91.12 82.50 82.50 88.75 94.04 93.75 88.24
Levit(ours) 91.56 91.72 91.56 91.45 92.50 89.16 78.75 85.14 100.00 99.38 95.00 92.12

GAPs

InceptionNet 97.08 97.15 97.08 97.10 96.25 96.86 97.50 95.71 97.50 98.73 - -
DenseNet 98.33 98.38 98.33 98.32 100.00 98.16 95.00 97.44 100.00 99.38 - -

ViT 98.33 98.38 98.33 98.32 100.00 98.16 95.00 97.44 100.00 99.38 - -
ResNet 98.75 98.80 98.75 98.75 100.00 98.16 97.50 98.73 98.75 99.37 - -

MobileNet 98.75 98.80 98.75 98.75 100.00 98.16 96.25 98.09 100.00 100.00 - -
VGG 98.75 99.17 99.17 99.17 100.00 99.38 98.75 98.75 98.75 99.37 - -

Levit(ours) 99.17 99.19 99.17 99.17 100.00 100.00 97.50 98.73 100.00 100.00 - -

Crack500

InceptionNet 92.00 92.60 92.00 91.97 98.00 92.45 86.00 91.49 - - - -
MobileNet 93.75 93.88 93.75 93.75 96.50 93.92 91.00 93.57 - - - -

VGG 94.00 94.02 94.00 94.00 95.00 94.06 93.00 93.94 - - - -
ViT 94.00 94.07 94.00 94.00 96.00 94.12 92.00 93.88 - - - -

LeViT(ours) 94.50 94.57 94.50 94.50 96.50 94.61 92.50 94.39 - - - -
ResNet 94.75 95.08 94.75 94.74 99.00 94.96 90.50 94.52 - - - -

DenseNet 95.00 95.11 95.00 95.00 97.50 95.12 92.50 94.87 - - - -

In the classification of dataset JCAPs, our model acquired the highest classification
accuracy (91.56%), precision (91.72%), recall (91.56%), and F1-score (91.45%), while the
original ViT network did not show competitive advantages compared with the equivalent
CNN-based image classification model. Among all the classifications, the ‘crack’ images of
our JCAPs dataset remain the biggest challenge for classification tasks.

In the test of dataset GAPs, our model also had the best performance with the highest
classification accuracy (99.17%), precision (99.19%), recall (99.17%), and F1-score (99.17%).
Among all the classifications, the ‘background’ images and the ‘pavement marking’ images
reached the classification accuracy of 100.00%.

In the classification tasks of dataset Crack500, the accuracy, precision, recall, and
F1-score of LeViT are 94.50%, 94.57%, 94.50%, and 94.50%, while the counterpart of the
best-performed model is 95.00%, 95.11%, 95.00%, and 95.00%. The gap between them
is acceptable.

Table 4 presents the comparison of training costs in dataset JCAPs. As the batch size
is 16, the inference time per step is the processing time for every 16 images. From the table,
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it can be found that the proposed LeViT model has the fastest inference speed (86 ms/step)
among all the comparison models. The average training time of LeViT for every epoch is
6.21 s, which is approximately 25% of the original ViT method and 80% of some prevailing
CNN-based models, including DenseNet, VGG, and ResNet. Furthermore, the number
of parameters in LeViT-192 is less than half of ResNet and InceptionNet, three-quarters
of VGG, and one-eighth of original ViT. Although MobileNet has the fewest number of
parameters among these methods, its inference speed is the lowest in our test. Overall,
LeViT achieved competitive results with relatively fewer computation costs.

Table 4. Comparison of training costs in JCAPs.

Method Number of Parameters Inference Time/Step Average Training
Time/Epoch

MobileNetV1 3.2 M 3 s 210.83 s
ViT-b16 85.8 M 333 ms 24.08 s

DenseNet-121 7.0 M 103 ms 7.45 s
VGG-16 14.7 M 107 ms 7.74 s

ResNet-50 23.6 M 108 ms 7.94 s
InceptionNetV3 21.8 M 95 ms 6.90 s

LeViT(ours) 10.2 M 86 ms 6.21 s

5. Conclusions

To solve the problem of high computation resources cost and poor interpretation of
deep learning-based pavement image recognition models, this paper introduced a fast
inference Transformer-based deep learning method called LeViT for the automatic object
classification of pavement images. A visual explanation method was also employed to
improve the interpretability of the proposed deep learning model. The performance of the
proposed methods was evaluated on three different sources of pavement datasets. Com-
pared to several state-of-the-art methods, LeViT attained the best classification accuracy,
precision, recall, and F1-score in two pavement image datasets tested in this study. More-
over, the proposed LeViT model has a relatively faster inference speed (86 ms/step) among
all the comparison models, which is approximately 80% of some prevailing CNN-based
models, including DenseNet, VGG, and ResNet. Overall, the proposed method can achieve
competitive performance with fewer computation costs. In addition, the proposed visual
interpretation methods combining Grad-CAM and Attention Rollout can well visually
explain the feature extraction mechanism of both MLP and attention blocks. Several issues
that were not addressed in this study need to be noted. First, the impact of the number of
the training images on the performance of the model was not be considered. Second, only
longitudinal and transverse cracks are included in this research. For further study, more
data containing alligator cracking can be added, and data augmentation methods can also
be applied to improve the prediction performance of pavement images with poor quality.
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