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Abstract: The technology of remote sensing image segmentation has made great progress in recent
years. However, there are still several challenges which need to be addressed (e.g., ground objects
blocked by shadows, higher intra-class variance and lower inter-class variance). In this paper, we
propose a novel high-resolution boundary-constrained and context-enhanced network (HBCNet),
which combines boundary information to supervise network training and utilizes the semantic
information of categories with the regional feature presentations to improve final segmentation
accuracy. On the one hand, we design the boundary-constrained module (BCM) and form the parallel
boundary segmentation branch, which outputs the boundary segmentation results and supervises
the network training simultaneously. On the other hand, we also devise a context-enhanced module
(CEM), which integrates the self-attention mechanism to advance the semantic correlation between
pixels of the same category. The two modules are independent and can be directly embedded in
the main segmentation network to promote performance. Extensive experiments were conducted
using the ISPRS Vahingen and Potsdam benchmarks. The mean F1 score (m-F1) of our model reached
91.32% and 93.38%, respectively, which exceeds most existing CNN-based models and represents
state-of-the-art results.

Keywords: remote sensing image; semantic segmentation; attention mechanism; boundary information

1. Introduction

Semantic segmentation of remote sensing images plays a significant role in remote
sensing image processing. It aims to classify various ground object categories in the image
pixel by pixel (e.g., roads, buildings, trees, vehicles and fields) and give the corresponding
semantic information. It has been widely applied in urban planning [1], environmental
monitoring [2] and land resource utilization [3].

The main methods of remote sensing image segmentation are based on full convolution
neural networks and involve design of an appropriate model structure to extract as much
ground feature information as possible. To better integrate high-level and low-level features,
UNet [4] employs skip connection and SegNet [5] retains the maximum pool layer index in
the encoder. RefineNet [6] integrates the characteristics of ResNet [7] and UNet [4], and
introduces chain pooling to extract background semantic information. In addition, to solve
the multi-scale problem in remote sensing imagery, PSPNet [8] includes a pyramid pooling
module (PPM), which combines the global pooling and convolution cores of different sizes.
Deeplab [9–11] introduces the dilated convolution and atrous spatial pyramid pooling
module (ASPP), which reduces the number of down-sampling operations and enlarges
the reception field range. HRNet [12,13] maintains high-resolution representation by
connecting the high-resolution and low-resolution feature maps concurrently, and enhances
the high-resolution feature representation of the image by repeating parallel convolutions
and performing multi-scale fusion. In addition, a series of models (e.g., LinkNet [14],
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BiSeNet [15], DFANet [16]) are also designed for faster speed of inference and to include
fewer parameters in the model. However, for complex background and diverse types of
ground objects, there are still some tricky problems.

The first issue is that remote sensing image quality can be easily affected by external
factors, which creates challenges for the practical segmentation process. For instance, due
to different camera angles and ground heights, there are always shadows and occluded
objects in the real images, which could be segmented wrongly. To resolve this problem,
many scholars utilize auxiliary data to supervise network training. The most common
method is to take digital surface model (DSM) data corresponding to the remote sensing
image as supplementary information of the color channel, or to combine the open-source
map data. Moreover, considering that not all remote sensing images have DSM or open-
source map data, some scholars have introduced boundary information. In addition
to outputting image segmentation results, they also obtain image boundary results and
calculate the boundary loss. Nevertheless, as the image boundary belongs to low-level
feature information, direct combination of low-level information with the high-level feature
map may impose noise impacts on the final segmentation results. The image and its
boundary share the same output branch, which will also weaken the learning capacity
of the network for the original image. It is still challenging to integrate the boundary
information into the model effectively.

Another issue is that some ground objects are easily confused. In general, remote
sensing images have the characteristics of high intraclass variance and low interclass vari-
ance. For example, grass and trees, sparse grass and roads are intertwined and close in
color in some scenes—many models may make a discrimination error among them. To
solve the problem, some scholars have designed corresponding modules combined with
the attention mechanism, which mainly includes channel attention and spatial attention.
However, whether calculating the relationship of channels or pixels, it is essential that the
process assigns different weights, which will produce dense attention maps simultaneously.
It is hard to accurately capture the semantic information corresponding to different ground
objects in remote sensing images. If the related module is not devised properly, it will
not only increase the network complexity and the memory space, but also produce some
redundant features. To enable the model to better distinguish confused features, combining
category feature information with the attention mechanism can be considered. While calcu-
lating the contextual correlation between each pixel and other pixels in the surrounding
area, the same category will be enhanced, and any different category will be weakened.

Inspired by the two issues above, we propose a high-resolution boundary-constrained
and context-enhanced network (HBCNet) for remote sensing image segmentation. Differ-
ent from the traditional encode-decoder structure, we choose the pretrained HRNet as our
network baseline. HRNet connects the feature map from high-resolution to low resolution
in parallel and adopts repeated multi-scale fusion, which is more conducive to extraction of
the corresponding boundary information. We then devise the boundary-constrained mod-
ule (BCM) and the context-enhanced module (CEM). The boundary-constrained module
combines the high-resolution feature map from the network baseline to obtain boundary
information and multiple BCMs are cascaded to form a boundary extraction branch, which
is parallel with the main segmentation branch. The context-enhanced module consists of
three parts: contextual feature expression (CFE), semantic attention extraction (SAE) and
contextual enhancement representation (CER). We also adopt multi-loss which consists of
boundary and image loss to better train our network.

Together, the main contributions of this paper are the following:

1. We present a boundary-constrained module (BCM) and form a parallel boundary
extraction branch in the main segmentation network. Meanwhile, the boundary loss
and the image loss are successfully combined to supervise the network training.

2. We devise a context-enhanced module (CEM) with the self-attention mechanism to
introduce the contextual representation into the object region feature expression. This
promotes the semantic correlation among pixels of the same ground object type.
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3. Based on HRNet and the two modules above, we propose the HBCNet for remote
sensing image segmentation and adopt test-time augmentation (TTA) to improve the
final segmentation accuracy effectively.

The remainder of this paper is arranged as follows. Related work is introduced in
Section 2. The overview of HBCNet and its components are detailed in Section 3. The
experimental results on the ISPRS Vahingen and Potsdam benchmarks are presented in
Section 4. Discussion, including of an ablation study, is provided in Section 5. The final
conclusions are drawn in Section 6.

The related codes are publicly available at https://github.com/xyz043066/HBCNet
(accessed on 8 April 2022).

2. Related Work

In this section, we first review some recent research on semantic segmentation of
remote sensing images. Then, we turn to some approaches utilizing auxiliary data. Finally,
we consider some studies that utilize attention mechanisms.

2.1. Semantic Segmentation of Remote Sensing Images

The method of remote sensing image segmentation is similar to that for conventional
images, but, in the process of practical application, we need to consider the inherent
characteristics of remote sensing images, such as high-resolution, multi-scale ground
objects and so on. Chen et al. [17] added a skip connection and designed an overlapping
strategy for post-processing on the basis of FCN. Considering the problem of some ground
objects being confused in remote sensing images, Yue et al. [18] proposed the TreeUNet
which combines the confusion matrix and ResNetXt [19]. Yu et al. [20] presented a novel
pyramid pooling module to alleviate the problem of high intraclass variance and low
interclass variance. Ding et al. [21] designed a two-stage network for high-resolution remote
sensing images, which was trained by the compressed images and the cropped images,
respectively. Gao et al. [22] proposed a multi-feature pyramid network (MFPN) based on
PSPNet and achieved improved results in slender road segmentation. Shang et al. [23]
selected Deeplabv3+ [11] as the baseline and devised a multi-scale feature fusion network
(MANet), which consisted of a multi-scale semantic extraction module and an adaptive
fusion module.

2.2. Auxiliary Data

Considering the characteristics of different ground heights and blocked objects in
remote sensing images, several scholars have used auxiliary data to make improvements.
Kaiser [24] and Audebert [25] added open street maps to enhance model performance.
Cao et al. [26] fused DSM data with a processed feature map to improve the segmentation
effect. Zheng et al. [27] proposed the G2GNet, which consisted of two branches, to handle
DSM and RGB images in parallel. They designed the G2GM module to realize multi-mode
information fusion and to suppress redundant noise. In addition, some scholars have also
introduced boundary information into the networks. Liu et al. [28] constructed a boundary
loss enhancement network, in which the boundary loss was calculated by combining
the binarization of the model feature map and the boundary ground truth. Jiao [29] and
Xu [30,31] also designed related modules to extract the image edge and calculate the
boundary loss to supervise model training.

2.3. Attention Mechanism

The attention mechanism applied in semantic segmentation mainly aims to find
the relationship among image pixels or feature channels. It is similar to the attention
mechanisms of the human brain involving applying different attention to different regions.
The actual operation in the network is to distribute distinct weights. SENet [32] obtains
the weight relationship among each channel of the feature maps through global average
pooling and two full-connection layers. EncNet [33] includes a context-coding module and

https://github.com/xyz043066/HBCNet


Remote Sens. 2022, 14, 1859 4 of 19

semantic coding loss to capture global context information. PSANet [34] calculates the pixel
relationship on the feature map through adaptive learning of an attention mask and then
ameliorates the local domain constraints caused by convolution operations. DANet [35]
integrates the dependence between local and global features by combining spatial and
channel attention. Other networks based on attention mechanisms (e.g., CCNet [36],
EMANet [37]) are rapidly emerging.

As for the semantic segmentation of remote sensing images, interest in attention mech-
anisms has grown rapidly in recent years. Niu et al. presented HMANet [38] by effectively
combining multiple attention modules based on the mechanism of category attention.
Ding et al. [39] analyzed deficiencies in global average pooling in remote sensing images
and designed the local attention network (LANet) to integrate high-level and low-level
features. In light of the multi-scale problem in remote sensing images, Liu et al. [40] con-
structed the adaptive fusion network (AFNet) which consisted of a scale-feature attention
module and a scale-layer attention module. Considering that texture information is rich
in low-dimension features, and semantic information is rich in high-dimension features,
Jiao et al. [29] devised a semantic boundary awareness network (SBANet). Xu et al. [30]
proposed a high-resolution context extraction network (HRCNet) which was composed
of a lightweight dual-attention module, a feature pyramid enhancement module, and a
boundary attention module.

3. Methods

In this section, we first provide an overall introduction to the HBCNet, and then
demonstrate the basic principles and internal structure of the boundary-constrained module
and the context-enhanced module. Finally, we illustrate the related multi-loss function in
the process of network training.

3.1. Overview

The overall structure of the high-resolution boundary-constrained and context-enhanced
network (HBCNet) is shown in Figure 1.

Figure 1. The overall structure of our network.

The network consists of three parts: the image branch, the boundary branch and the
context-enhanced module. The image branch takes HRNet, which includes four stages, as
the baseline for feature extraction. Each stage connects the multi-resolution feature maps in
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parallel and repeatedly exchanges information on the sub-network for multi-scale fusion.
The boundary branch is cascaded by three boundary-constrained modules. The first BCM
inputs are the highest resolution feature maps of stage 1 and stage 2 in the baseline, and the
next two BCM inputs come from the previous BCM and the corresponding baseline stage
output. The last BCM not only outputs the results of boundary extraction, but also transfers
them to the context-enhanced module (CEM). The CEM also consists of three portions:
contextual feature expression (CFE), semantic attention extraction (SAE) and contextual
enhancement representation (CER). First, the deep network features and the boundary
representation are concatenated as input and the feature vectors of the different categories
are obtained. Then, the previous outcome is handled with a self-attention mechanism
and the feature expression combined with semantic information is extracted. Finally, the
contextual enhancement representation is generated by integrating the semantic feature
expression and the deep network features.

3.2. Boundary-Constrained Module

The boundary-constrained module is the critical part of the whole boundary branch.
As shown in Figure 2, there are two inputs to this module: the first is a highest resolution
feature map inside the stage of the baseline, the other is the previous BCM output.

Figure 2. The detailed framework of boundary-constrained module.

Given a high-resolution input feature map X1 ∈ RC1×H×W , we extract the dependen-
cies of the internal channels of the feature maps through the global average pooling and
obtain the result U. The channel c in U could be formalized as

Uc = Fgap(X1) =
1

H ×W

H

∑
i=1

W

∑
j=1

Xc(i, j) (1)

Next, two full-connection layers are used for adaptive calibration so that the network
can learn the interaction between each channel. The first connection layer is composed
of a linear layer and a ReLU function, and the second is composed of a linear layer and a
sigmoid function. The related process can be written as

Z = Fe(U, L) = σ(L2δ(L1U)) (2)

Here, σ denotes sigmoid function, δ denotes ReLU function, L1 means linear layer

RC1 → R
C1
r , L2 means linear layer R

C1
r → RC2 , and r is the compression factor, which is

used to reduce the amount of calculation with a default setting of 4.
After passing through the full-connection layers, we obtain the corresponding global

feature expression Z and then utilize it to perform pointwise multiplication with the
previous BCM output X2 ∈ RC2×H×W and obtain high-resolution representations. Finally,
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we concatenate the initial input feature map with the high-resolution representations and
gain the BCM output Y. The whole process can be defined as

Y =
(
X2 � σ

(
L2δ
(

L1Fgap(X1)
)))
⊕ X2 (3)

where � denotes matrix pointwise operation, ⊕ denotes concatenation of channels.
The BCM makes full use of the high-resolution feature representation of HRNet.

The high-resolution feature maps have richer boundary and texture information, and the
receptive field gradually increases with the continuous convolution operations. If we want
to supervise the network training with boundary information, it is practical to do the
extraction in high-resolution feature maps.

3.3. Context-Enhanced Module

The context-enhanced module (CEM) is designed with a self-attention mechanism and
comprises many mathematical operations. As shown in Figure 3, the CEM is composed
of three portions as follows: contextual feature representation (CFR), semantic attention
extraction (SAE) and contextual enhancement representation (CER).

Figure 3. The elaborate structure of the context-enhanced module.

1. Contextual Feature Representation

First, the module input is processed with 1 × 1 Conv of quantity K and reshaped
as X ∈ RK×H·W . Simultaneously the module input is also managed with 1 × 1 Conv of
quantity C (equal to the total number of categories) and the distribution map ω ∈ RH·W×C

is obtained by matrix reshape and transpose operation. Then the above outputs are handled
with matrix multiplication, and we denote the result as contextual feature representation
Y ∈ RK×C. The mth category feature vector Ym ∈ RK can be formalized as

Ym = F

(
H×W

∑
i=1

wimXi

)
(4)

where the Xi ∈ RK(1 ≤ m ≤ H·W) means the feature vector of the ith pixel in X,
wim(1 ≤ m ≤ C) is the relation between the ith pixel and the mth category, F denotes
the transfer function, and H and W are the length and width of the feature map.



Remote Sens. 2022, 14, 1859 7 of 19

2. Semantic Attention Extraction

Similar to [41,42], we adopt self-attention to perform semantic attention extraction.
The Query matrix is calculated from the deep feature maps of the network and reshaped
as Q ∈ RK×H·W , in which the corresponding feature expression vector size of each pixel is
also K. The Key matrix K ∈ RK×C and the Value matrix V ∈ RC×K are further generated
by 1 × 1 Conv-BN-ReLU with contextual feature representation that is derived from the
previous step. While calculating the attention weight of a single pixel between different
categories, we also use the softmax function to do the normalization. The related process
can be written as

αij = so f tmax

(
QTK√

d

)
=

e
1√
d

qi
Tkj

c
∑

j=1
e

1√
d

qi
Tkj

(5)

Here, qi denotes the Query vector of the ith pixel (1 ≤ i ≤ H·W), kj denotes the Key
vector of the jth category (1 ≤ j ≤ C), and α ∈ RH·W×C means the semantic attention
weight matrix. Then we utilize α to do matrix multiplication with the Value matrix, which
aims to add weights on the Value vector of different categories and obtain the semantic
attention extraction Z ∈ RH·W×K. The corresponding formula is

Z =
c

∑
j=1

αijvj (6)

where vj denotes the Value vector of the jth category (1 ≤ j ≤ C).

3. Contextual Enhancement Representation

After gaining the semantic attention extraction, we concatenate it with the deep
network feature, which comes from the initial module input to better train our network.
The process can be defined as

Y = δ f ((σ( f (X))⊕ Z)) (7)

Here, both σ and δ denote BN-ReLU operation, f denotes 1 × 1 Conv, and ⊕ denotes
concatenation of channels.

3.4. Multi-Loss Function

As mentioned above, the boundary segmentation result originates from the boundary
branch and calculates the corresponding boundary loss with the boundary ground truth.
Meanwhile, the boundary ground truth is extracted from the image ground truth by Sobel
operator. The specific process is as follows: First, the original image ground truth is
processed by Sobel operators, and the gradient images corresponding X direction and Y
direction are obtained, respectively. Then these two gradient images are weighted and
merged into the overall gradient image. The final boundary ground truth is gained after
the binarization of the overall gradient image.

We adopt a binary cross-entropy function to compute the boundary loss. The related
formula can be written as

Lboundary = −
H

∑
i=1

W

∑
j=1

[
yijlog

(
pij

)
+
(

1− yij

)
log
(

1− pij

)]
(8)

where y is the one-hot vector and yij ∈ {0, 1}, yij = 1 means that the pixel (i, j) is the
boundary pixel. p denotes the probability distribution of pixels classified as boundary in
the image, and pij represents the probability that pixel (i, j) is a boundary pixel.
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The original image segmentation loss is calculated by the multi-classification cross-
entropy function and can be defined as

Limage = −
H

∑
i=1

W

∑
j=1

yijlog

 epc

C
∑

k=1
epk

 (9)

Here, y is the one-hot vector and yij ∈ {0, 1}. yij = 1 means that the pixel (i, j)
belongs to the cth category. p denotes the probability distribution of the pixel (i, j) and pc
represents the probability that pixel (i, j) belongs to the cth category. C denotes the number
of categories.

The total loss is obtained by adding the image loss Limage and the boundary loss
Lboundary which is weighted by the factor λ. The related formula is as follows

Ltotal = Limage + λLboundary (10)

The default setting of λ is 0.2.

4. Experiment

In this section, the datasets are first introduced and then the experiment settings
and the evaluation metrics are elaborated. Finally, the experimental results for the ISPRS
Vahingen and Potsdam benchmarks are analyzed.

4.1. Datasets

We performed experiments on the ISPRS 2D semantic benchmark datasets, including
the Vahingen dataset and the Potsdam dataset [43]. Both datasets are typical and are always
used as the benchmark datasets in remote sensing image segmentation. They consist of
six ground categories with different labeled color, including impervious surfaces (white),
building (blue), low vegetation (cyan), tree (green), car (yellow), and cluster (red). Figure 4
shows the overall view of the two datasets.

Figure 4. The overall view of ISPRS 2D semantic benchmark datasets. (From left to right) Columns
show the images of the Potsdam dataset and images of the Vahingen dataset.
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Potsdam: There are 38 high-resolution images of dimensions 6000× 6000 with 5 cm
ground sampling distance (GSD). Each image has three data formats, including IRRG, RGB,
RGBIR—we only employ the IRRG images. Each image also has the corresponding ground
truth and digital surface model (DSM)—we only use the ground truth. The same as the
ISPRS 2-D semantic labeling contest, we use 24 images for training and validation—the
remaining 14 images are only used for testing. Considering the limitation in GPU memory,
we crop the image to slices with a size of 512× 512 pixels, each slice overlapped with
256× 256 pixels. The ratio of the training set to the validating set is 4 : 1. Finally, we obtain
10,156 slices for training, 2540 slices for validation, and 7406 slices for testing.

Vahingen: There are 33 high-resolution images with 9 cm ground sampling distance
of sizes ranging from 1996× 1995 to 3816× 2550. All the images are in IRRG data format
with the corresponding ground truth and DSM. The same as the ISPRS 2D semantic labeling
contest, we employ 16 images for training and validation—the remaining 17 images are
kept only for testing. We crop the image to slices of size 256× 256, each slice overlapped
with 128× 128 pixels. The ratio between the training set and the validation set is also
4 : 1. In the end, we obtain 3540 slices for training, 886 slices for validation and 5074 slices
for testing.

We apply the ground truth with eroded boundaries to evaluate the model performance.

4.2. Experiment Settings and Evaluation Metrics

The HBCNet was constructed under the PyTorch deep-learning framework with a
Pycharm compiler and used the pretrained HRNet_w48 as the network baseline. All
the experiments were conducted on a single NVIDIA RTX 3090 GPU (24 GB RAM). The
stochastic gradient descent with momentum (SGDM) optimizer was set to guide the
optimization. The initial learning rate was 0.005 and the momentum was 0.9. A poly
learning rate policy was adopted to adjust the learning rate during the network training.
The batch size was 8 and the total number of training epochs was 200. In terms of data
augmentation, we only employed random vertical and horizontal flip, and random rotation
with specified angles

(
0 90

◦
180

◦
270

◦)
. In addition, we applied the test-time augmentation

(TTA) method during the inference process, which included multi-scale input and transpose
operations. All the settings are detailed in Table 1.

Table 1. Experimental settings.

Configuration Contents

Operating system Ubuntu 18.04.5 LTS
Deep-learning framework Pytorch 1.7.1 and Torchvision 0.8.2

GPU NVIDIA RTX 3090 GPU (24 GB RAM)
Parallel computer platform Cuda 11.0 and Cudnn 8.0.5

Program Python 3.8.5
IDE Pycharm 2020.2.5

Baseline HRNet_w48
Optimizer SGDM

Learning rate 0.005
LR policy Poly
Batch size 8

Total epochs 200
Momentum 0.9

Data augmentation Random flip and Random rotate
Loss function CrossEntropy

The evaluation metrics to measure the performance on the two datasets were the same,
including overall accuracy (OA), F1 score, m-F1 (mean F1 score), intersection over union
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(IoU), mean intersection over union (mIoU), precision (P), and recall (R). The corresponding
calculation formulas are as follows

OA =

N
∑

k=1
TPk

N
∑

k=1
(TPk+FNk)

Pk= TPk
TPk+FPk

Rk= TPk
TPk+FNk

F1k= 2×Pk×Rk
Pk+Rk

mF1= 1
N

N
∑

k=1
F1k IoUk= TPk

TPk+FPk+FNk
mIoU= 1

N

N
∑

k=1
IOUk

(11)

Here, TP, TN, FP, FN denote true positive, true negative, false positive and false
negative number of pixels, respectively, in the confusion matrix. Figure 5 shows the
variation in the evaluation metrics (m-F1, OA, mIoU) and loss during the training phase
with 200 epochs for the Potsdam validation dataset.

Figure 5. The variation in evaluation metrics and loss during the training phase with 200 epochs for
the Potsdam validation dataset. (From left to right) Columns reveal the process of OA, m-F1, mIoU
changing with epochs, and the process of loss changing with epochs.

4.3. Experiment Results
4.3.1. Results for the Vahingen Dataset

Table 2 shows the experimental results for HBCNet and other models in the published
paper for the Vahingen dataset. The results of some methods can be found on the official
website of ISPRS 2D semantic labeling contest [44], including UFMG_4 [45], CVEO [17],
CASIA2 [46] and HUSTW [47]. Based on the original paper, we selected the dilated ResNet-
101 [48] as the baseline to train some networks, which consisted of FCN [49], UNet [4],
EncNet [33], PSPNet [8], DANet [35] and Deeplabv3+ [11]. The corresponding super
parameters and image size used in network training were the same as for HBCNet. In
Table 1, the values in bold are the best and the values underlined are the second best. It is
obvious that the HBCNet far outperformed the other models, achieving the highest m-F1
of 91.32%, OA of 91.72% and mIoU of 84.21%. An improvement of 0.72% in mIoU and
of 0.36% in m-F1 compared with the second-best methods was observed. The F1-score
for building was also the highest among the ground categories. Figure 6 demonstrates
qualitatively the partial inference results of HBCNet and other models on the test dataset.
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Table 2. Experimental results (%) for the Vahingen dataset. The values in bold are the best and the
values underlined are the second best.

Method Imp. Surf. Building Low Veg. Tree Car m-F1 OA mIoU

CVEO [17] 90.50 92.40 81.70 88.50 79.40 86.50 88.30 76.63
UFMG_4 [45] 91.10 94.50 82.90 88.80 81.30 87.72 89.40 78.51
HUSTW [47] 93.30 96.10 86.40 90.80 74.60 88.24 91.60 79.99

FCN [49] 91.27 94.16 81.81 88.52 86.59 88.47 89.14 79.58
TreeUNet [18] 92.50 94.90 83.60 89.60 85.90 89.30 90.40 \

UNet [4] 92.66 95.25 83.52 89.36 86.16 89.39 90.41 81.08
EncNet [33] 92.49 95.33 83.56 89.25 86.82 89.49 90.38 81.23
PSPNet [8] 92.50 95.24 83.48 89.31 87.08 89.52 90.36 81.28
DANet [35] 92.60 95.27 83.60 89.43 87.28 89.64 90.44 81.46

Deeplabv3+ [11] 92.87 95.60 84.31 89.74 87.92 90.09 90.85 82.19
CASIA2 [46] 93.20 96.00 84.70 89.90 86.70 90.10 91.10 82.59
SBANet [29] 94.36 92.91 83.44 89.58 91.43 90.34 90.59 \
AFNet [40] 93.40 95.90 86.00 90.70 87.20 90.60 91.60 83.10

HMANet [38] 93.50 95.86 85.41 90.40 89.63 90.96 91.44 83.49

HRNet [13] 92.73 95.74 83.70 89.61 88.54 90.06 90.70 82.17
HBCNet 93.60 96.13 85.95 90.53 90.40 91.32 91.72 84.21

Figure 6. Qualitative comparisons between our method and other models for the Vahingen test
dataset. (From left to right) Columns demonstrate the original images, the image ground truth, the
predictions of FCN, UNet, DANet, Deeplabv3+ and the predictions of our method.
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FCN had a good segmentation effect on large-scale objects, such as buildings, but it
was not sensitive to details, and there were many noise points. UNet adopted the skip
connection to integrate the shallow and the deep feature information, making up for the
loss of details to some extent. Compared with the two models above, Deeplabv3+ and
DANet achieved better effects. The former obtained a larger receptive field through atrous
spatial pyramid pooling, and the latter employed channel and spatial attention mechanisms
to capture more context feature information. However, it is clear from Figure 6 that some
buildings and trees had shadows and were intertwined with impervious surfaces, and
that the above models often generated errors when dealing with such cases. HBCNet
introduced boundary information for supervision in the training process and achieved the
best result. While learning ground feature information, it also combined image boundary
features for feedback and then enhanced the model anti-interference capability to shadows
and other external factors.

4.3.2. Results for the Potsdam Dataset

Table 3 displays the results for HBCNet and the other networks for the Potsdam
dataset. Related results for UFMG_4 [45], CVEO [17], CASIA2 [46] and HUSTW [47] can be
found on the official website [50]. It was evident that HBCNet produced positive results.
The evaluation metrics for m-F1 and mIoU surpassed those of the other methods. There
was a 0.53% improvement in mIoU and a 0.18% improvement in m-F1 compared with the
second-best methods. Moreover, the F1-scores of HBCNet for impervious surfaces, tree and
car were also the best.

Table 3. Experimental results (%) for the Potsdam dataset. The values in bold are the best and the
values underlined are the second best.

Method Imp. Surf. Building Low Veg. Tree Car m-F1 OA mIoU

UFMG_4 [45] 90.80 95.60 84.40 84.30 92.40 89.50 87.90 81.61
CVEO [17] 91.20 94.50 86.40 87.40 95.40 90.98 89.00 83.75
FCN [49] 92.07 95.66 86.27 87.44 95.75 91.44 89.63 84.48

TreeUNet [18] 93.10 97.30 86.80 87.10 95.80 92.00 90.70 \
UNet [4] 93.03 96.79 87.01 88.02 96.53 92.28 90.63 85.94

EncNet [33] 93.34 96.85 87.21 88.26 96.35 92.40 90.92 86.14
CASIA2 [46] 93.30 97.00 87.70 88.40 96.20 92.52 91.10 86.49
PSPNet [8] 93.23 96.91 87.73 88.46 96.34 92.53 91.04 86.34
DANet [35] 93.37 97.02 87.73 88.47 96.30 92.58 91.15 86.42

HUSTW [47] 93.60 97.60 88.50 88.80 94.60 92.62 91.60 86.72
Deeplabv3+ [11] 93.55 97.22 87.65 88.57 96.69 92.73 91.20 86.71

SBANet [29] 93.83 98.06 88.97 89.48 94.71 93.01 92.80 \
AFNet [40] 94.20 97.20 89.20 89.40 95.10 93.02 92.20 87.10

HMANet [38] 93.85 97.56 88.65 89.12 96.84 93.20 92.21 87.28

HRNet [13] 93.66 97.14 87.51 88.47 96.33 92.62 91.15 86.51
HBCNet 94.29 97.54 88.49 89.58 97.00 93.38 91.97 87.81

Figure 7 presents a comparison of partial inference results for HBCNet and the other
models. Compared to the original images, the trees and grassland are staggered and the
ground color is close to that of the grassland. During the actual segmentation process, UNet
and other models often produce errors and the boundary accuracy among different ground
categories needs to be reinforced. HBCNet not only introduces boundary information, but
also enhances the semantic correlation between pixels of the same category with the context-
enhanced module. The contextual representation of the same category has been advanced
and has alleviated the problem of high intra-class variance and low inter-class variance.
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Figure 7. Qualitative comparisons between our method and other models for the Potsdam test
dataset. (From left to right) Columns demonstrate the original images, the image ground truth, the
predictions of FCN, UNet, DANet, Deeplabv3+, and the predictions of HBCNet.

5. Discussion

In this section, we consider the ablation study on the Vahingen and Potsdam datasets
in detail to validate the effects of the corresponding modules. We also explore the huge
benefit of the test-time augmentation (TTA) method. Finally, we discuss the limitations of
our model and future research directions.

5.1. Ablation Study

To avoid the TTA method interfering with the ablation experimental results, we did
not adopt it in the ablation study. The comparison of the functions with different modules
included four combinations: the original baseline, adding the boundary-constrained mod-
ule only, adding the contextual enhanced module only, and adding both modules. The
evaluation metrics still employed m-F1, OA and mIoU.

Table 4 shows the effects of the two modules for the Vahingen dataset. Compared to
not adding any module, adding BCM and CEM advanced the accuracy to some extent.
BCM achieved an approximately 0.24% improvement in m-F1 and a 0.37% improvement in
mIoU. CEM yielded 0.1% and 0.14% improvement for m-F1 and mIoU. After integrating
both BCM and CEM, there were further enhancements. The HBCNet combining BCM
and CEM together obtained the highest m-F1 of 90.44%, an mIoU of 82.76% and OA
of 90.82%. The m-F1 and mIoU increased significantly, with nearly 0.38% and 0.59%
improvement, respectively.
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Table 4. Ablation experimental results (%) for the Vahingen dataset. The values in bold are the best.

Method BCM CEM m-F1 mIoU OA

Baseline 90.06 82.17 90.70
Baseline + BCM 3 90.30 82.54 90.76
Baseline + CEM 3 90.16 82.31 90.70

Baseline + BCM + CEM(HBCNet) 3 3 90.44 82.76 90.82

Table 5 shows the ablation experimental results for the Potsdam dataset. In comparison
with the original baseline, both BCM and CEM resulted in improvements. BCM resulted in
a 0.15% improvement in m-F1, a 0.27% improvement in mIoU and a 0.17% improvement in
OA. CEM resulted in approximately 0.2%, 0.35% and 0.24% increases in m-F1, mIoU and
OA, respectively. Incorporating both BCM and CEM, HBCNet also resulted in significant
improvements, with the best m-F1 results of 92.86%, mIoU of 86.92% and OA of 91.39%.

Table 5. Ablation experimental results (%) for the Potsdam dataset. The values in bold are the best.

Method BCM CEM m-F1 mIoU OA

Baseline 92.62 86.51 91.15
Baseline + BCM 3 92.77 86.78 91.32
Baseline + CEM 3 92.82 86.86 91.39

Baseline + BCM + CEM(HBCNet) 3 3 92.86 86.92 91.39

The following figures are qualitative results for the ablation study on the Potsdam test
dataset. Figure 8 shows comparisons of partial segmentation results between the baseline
and HBCNet. The grass and ground are interweaved and the color of some building
surfaces are similar to the low vegetation. The baseline produced segmentation errors
while handling the above cases, but HBCNet, by integrating boundary information and
contextual features, can achieve good performance. Figure 9 shows the visual feature maps
of the last BCM output. It is evident that the boundary information in the original images is
effectively extracted by the boundary branch. Figure 10 displays the predictions of baseline
and the predictions of baseline with CEM. In the results of baseline, the grassland and
ground, and grassland and building are easily confused. After adding the CEM, the results
were effectively improved, as CEM introduced contextual representations and enhanced
the semantic correlation between pixels of the same category.

Figure 8. Qualitative comparisons between the baseline and our method. (From left to right)
Columns show the original images, the image ground truth, the predictions of baseline and the
predictions of HBCNet.
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Figure 9. Visualizations of output features from the last BCM. (From left to right) Columns show the
original images, the image ground truth, the boundary ground truth and the output features of the
last BCM.

Figure 10. Qualitative comparisons between the baseline and the baseline with CEM. (From left to
right) Columns display the original images, the image ground truth, the predictions of baseline and
the predictions of the baseline with CEM.

We also employed the method of test-time enhancement (TTA) to reinforce the model
performance. The main process of TTA is as follows: Firstly, creating multiple inputs with
the same original image, such as clipping with different regions and zooming with different
scales; then inputting all the images into the model which has been trained well and obtain-
ing the corresponding outputs; finally, conducting the inverse transformation and obtaining
the average segmentation result of multiple outputs. In the actual process, we adopted
the two methods of TTA: multi-scale inputs with four image scales {0.5, 0.75, 1, 1.5} and
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various transpose operations. Tables 6 and 7 demonstrate the results for the Vahingen and
Potsdam datasets.

Table 6. Results of different TTA methods for the Vahingen dataset. MS means multi-scale inputs
and TS means transpose operations. The values in bold are the best.

Method MS TS m-F1 OA mIoU

HBCNet 90.44 90.82 82.76
HBCNet 3 91.17 91.47 83.97
HBCNet 3 91.23 91.64 84.06
HBCNet 3 3 91.32 91.72 84.21

Table 7. Results of different TTA methods for the Potsdam dataset. MS means multi-scale inputs and
TS means transpose operations. The values in bold are the best.

Method MS TS m-F1 OA mIoU

HBCNet 92.86 91.39 86.92
HBCNet 3 93.34 91.93 87.73
HBCNet 3 93.28 91.86 87.63
HBCNet 3 3 93.38 91.97 87.81

As is shown in Tables 6 and 7, both multi-scale inputs and transpose operations can
significantly improve the segmentation accuracy. It is possible that our model has the
capacity for multi-scale feature extraction. Large-scale ground objects, such as buildings
and impervious surfaces, can be segmented better on smaller resolution feature maps, while
small-scale ground objects, such as cars, need more detail and therefore the prediction
results on the higher feature maps may be better. We integrated the above characteristics
through multi-scale inputs and transpose operations to achieve acceptable improvements.

5.2. Limitations and Future Research Directions

In addition to the metrics (e.g., OA, F1-score and mIoU) to evaluate the segmentation
results, model complexity often needs to be considered. The most common indicators
of model complexity are floating point operations per second (FLOPs), and the number
of model parameters (Params). Table 8 displays the comparisons of model complexity
between HBCNet and other models. The calculation of FLOPs is affected by the size of the
input image; this was set to 256 × 256.

Table 8. Comparisons of model complexity between HBCNet and other networks. The values in bold
are the best.

Method FLOPs (G) Params (M)

FCNs 25.52 18.64
UNet 74.4 128.05

PSPNet 63.82 65.58
DANet 68.93 66.43

Deeplabv3+ 62.11 62.28
HBCNet 24.15 66.17

As shown in Table 8, the FLOPs of HBCNet were the lowest compared to the other
models, which implies a faster inference speed. However, HBCNet has relatively more
parameters and occupies more memory, which is an obvious deficiency of our network
at present. Our model is also still limited by the labels of datasets. Both image loss and
boundary loss need to be calculated in combination with the image ground truth. It is still
a typical fully supervised network. In the future, we intend to integrate the generative
adversarial network (GANs) [51] to reduce reliance on dataset labels and to obtain high
segmentation accuracy.
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6. Conclusions

In this paper, we propose the high-resolution boundary-constrained and context-
enhanced network (HBCNet) for remote sensing image segmentation. Considering the
problems of ground objects blocked by shadow, higher intra-class variance and lower
inter-class variance, we designed a boundary-constrained module and a context-enhanced
module. The boundary-constrained module is embedded into the main segmentation
network to form a parallel branch extraction branch, which not only outputs the boundary
segmentation results but also supervises the network training. The context-enhanced
module introduces contextual representations and enhances the semantic correlation among
pixels of the same category with the self-attention mechanism. We conducted experiments
using the ISPRS 2D semantic benchmark Vahingen and Potsdam datasets and obtained
excellent results. The m-F1 of HBCNet for the two datasets were 91.31% and 93.38%,
respectively, surpassing that for existing CNN-based methods. In the future, we will
undertake further research to ensure our model is lightweight and to reduce dependence
on dataset labels.
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