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Abstract: The classification accuracy of ground objects is improved due to the combined use of the
same scene data collected by different sensors. We propose to fuse the spatial planar distribution
and spectral information of the hyperspectral images (HSIs) with the spatial 3D information of the
objects captured by light detection and ranging (LiDAR). In this paper, we use the optimized spatial
gradient transfer method for data fusion, which can effectively solve the strong heterogeneity of
heterogeneous data fusion. The entropy rate superpixel segmentation algorithm over-segments
HSI and LiDAR to extract local spatial and elevation information, and a Gaussian density-based
regularization strategy normalizes the local spatial and elevation information. Then, the spatial
gradient transfer model and l1-total variation minimization are introduced to realize the fusion of
local multi-attribute features of different sources, and fully exploit the complementary information of
different features for the description of ground objects. Finally, the fused local spatial features are
reconstructed into a guided image, and the guided filtering acts on each dimension of the original
HSI, so that the output maintains the complete spectral information and detailed changes of the
spatial fusion features. It is worth mentioning that we have carried out two versions of expansion on
the basis of the proposed method to improve the joint utilization of multi-source data. Experimental
results on two real datasets indicated that the fused features of the proposed method have a better
effect on ground object classification than the mainstream stacking or cascade fusion methods.

Keywords: data fusion; gradient transfer; superpixel; hyperspectral image; LiDAR data

1. Introduction

The development of remote sensing sensor technology makes it possible to obtain
different types (e.g., hyperspectral image (HSI) and LiDAR) of remote sensing data in the
same observation scene, which can capture a full range of identification information of
ground coverings in the scene. A hyperspectral image (HSI) can provide rich spectral
information for several materials; its high spectral resolution is conducive to distinguishing
subtle spectral differences, and thus, making it widely used to identify and classify ground
coverings [1–3]. However, the types of ground coverings are often complex, which leads to
the phenomenon of the “same spectrum corresponds to multiple ground coverings” [4,5].
And HSI is a spatial flat spectral image degenerated from the real 3D spatial scene; thus,
the height information of the observation area is lost. By contrast, LiDAR can obtain the
digital surface model (DSM) information of the study area and is not easily restricted by
weather or light [6,7]. Therefore, compared with a single data source, effectively combining
HSI and LiDAR data and making full use of the complementary advantages of the two will
greatly improve the accuracy of ground covering recognition [8,9].

In recent years, many supervised paradigm spectral classifiers have been developed
to perform HSI classification tasks, such as the widely used support vector machine
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(SVM) [10,11], multinomial logistic regression classifier [12,13] and artificial immune net-
work (AIN) [14]. Although these classifiers can effectively use the spectral information of
HSI, they ignore the spatial context information of the pixels. To address this issue, many
scholars have proposed a variety of classification methods based on spatial-spectral feature
extraction [15–17]. In fact, these spectral-spatial classification methods are dedicated to
extracting highly discriminative spatial-spectral features to improve classification accuracy
further. For example, Wang et al. [18] design an extremely lightweight, non-deep parallel
network (HyperLiteNet) that independently extracts and optimizes diverse and divergent
spatial and spectral features. In [19], the adaptive sparse representation algorithm obtains
the sparse coefficients of the multi-feature matrix for HSI classification, and these features
reflect different kinds of spectral and spatial information. Furthermore, a Global Consistent
Graph Convolutional Network(GCGCN) is proposed in [20], which uses graph topology
consistent connectivity to explore adaptive global high-order neighbors to capture under-
lying rich spatial contextual information. The multiway attention mechanism has been
successfully applied to HSI analysis due to the inspiration of the attention mechanism of the
human visual system [21]. In addition to the above spatial-spectral classification methods,
other useful techniques have been encouraged for hyperspectral classification, such as
Markov random fields [22,23], collaborative representation [24,25] and edge-preserving
filtering [26,27].

As the requirements for the classification of remote sensing scenes continue to increase,
it is difficult for the single HSI data to meet the current interpretation task of ground
coverings [28–30]. Although HSI data can provide rich diagnostic information (spectral
features) for the identification of ground covering, it is limited by its low spatial resolution
characteristics, resulting in a performance bottleneck in the classification model. LiDAR
is a kind of digital image formed by digital surface model (DSM), which contains richer
spatial detail information. In fact, many studies have demonstrated that the interpretation
results of the gorund coverings are more accurate and stable by effectively combining the
complementary strengths of HSI and LiDAR information [31,32]. For instance, Jia et al. was
proposed a multiple feature-based superpixel-level decision fusion (MFSuDF) method for
HSIs and LiDAR data classification. The motivation behind the MFSuDF is to considers
the magnitude and phase information to obtain discriminative Gabor characteristics of
the stacked matrix of HSI and LiDAR. Chen et al. [32] used dual convolutional neural
networks (CNNs) to extract features from HSI and LiDAR data and a fully connected (FC)
network to fuse the extracted features. These fusion models can extract robust features, but
the fusion of HSI and LiDAR data still has many problems that should be explored in depth.
Recently, the more popular fusion models adopt the method of features cascade or stacking,
which ignores the difference in physical meaning and quantification range of different
types of features and cannot encourage complementary information in the description of
objects. Furthermore, the stacking mode may lead to information redundancy and Hughes
phenomenon, especially in the case of small samples, overfitting may occur.

In the remote sensing community, the superpixel segmentation algorithm as a tech-
nique for clustering pixels based on dominant features (such as image color and brightness)
has been widely used to extract the local spatial structure information of the pixels [33].
Some new technologies [34,35] that combine the spatial characteristics of superpixels have
been proven successful in multi-source remote sensing data fusion tasks and improving
the accuracy of ground object interpretation. Furthermore, Jiang et al. [36] introduced a
superpixel principal component algorithm (SuperPCA) for HSI classification, which incor-
porated spatial context information into a superpixel to eliminate the difference of spatial
projection between homogeneous regions. In [37], Zhang et al. constructed local-global
features by improving the SuperPCA and reconstructed each pixel by exploiting the nearest
neighbor pixels in the same superpixel to eliminate noise.

Strong isomerism of features limits the performance of feature fusion classification for
heterologous data. The widely used stacking or cascading data fusion methods ignore the
problems of different physical meanings, different data forms, and high feature dimensions
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describing the same scene with heterogeneous data. Therefore, the fusion method of
stacking heterogeneous data cannot effectively achieve complementary information fusion.
The basic motivation behind this paper is to use mathematical optimization to fuse the
elevation information of single-band LiDAR with the spatial information of hyperspectral
images for local feature fusion, which overcomes the high-order nonlinear phenomenon
of multi-sensor data space and improves the information fusion performance of multi-
dimensional heterogeneous feature discrimination of ground objects.

Specifically, the entropy rate superpixel segmentation algorithm over-segments HSI
and LiDAR to extract local spatial and elevation information, and a Gaussian density-
based regularization strategy normalizes the local spatial and elevation information. Then,
the spatial gradient transfer model and l1-total variation minimization are introduced to
realize the fusion of local multi-attribute features of different sources, and fully exploit
the complementary information of different features for the description of ground objects.
Finally, the fused local spatial features are reconstructed into a guided image, and the
guided filtering acts on each dimension of the original HSI, so that the output maintains
the complete spectral information and detailed changes of the spatial fusion features.

In addition, Figure 1a gives the part of the first principal component of the Houston
data set. Figure 1b depicts LiDAR data, which contain distinct boundary and objects
elevation information. Figure 1c simulates a fusion image obtaining by a stack-based fusion
method. Figure 1d is the fusion result of the proposed OSGT algorithm. It can be seen
from Figure 1 that the proposed OSGT method can capture more detailed spatial structure
information than the stack-based fusion method. Specifically, the main contributions of the
proposed OSGT method are summarized as follows.

1. We define homogeneous region fusion between PC and LiDAR data as a mathematical
optimization problem and introduce the gradient transfer model to fuse spectral and
DSM information from various superpixel blocks for the first time. It is found that the
model can alleviate the heterogeneity of different sources of remote sensing data by
optimizing the objective function.

2. The l1-total variation minimization is designed to fuse information between the PC
and DSM within each superpixel block to accurately describe the observed details.
It is found that the problem of HSI weak boundary affected by the weather can be
effectively overcome.

3. The proposed OSGT algorithm can fully extract the complementary features in the ho-
mogeneous regions corresponding to HSI and LiDAR to further promote classification
of ground coverings competitive methods.

(a) (b) (c) (d)

Figure 1. Schematic illustration of image fusion. (a) The first PC of the Houston dataset. (b) LiDAR
data. (c) The fusion result of stacking method. (d) OSGT-based fusion image.

The rest of this paper is organized as follows. The entropy rate superpixel (ERS) and
guided filter (GuF) are reviewed in Section 2, and the proposed OSGF method for HSI and
LiDAR data classification is introduced in Section 3. In Section 4, the experimental setup
and results are described. Finally, the conclusions of our research are presented in Section 5.
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2. Related Work

This section briefly describes some related algorithms, i.e., entropy rate superpixel
(ERS), Guided Filtering (GuF). These algorithms play a relevant role in the design of the
proposed method.

2.1. Entropy Rate Superpixel (ERS)

Entropy rate superpixel (ERS) [38] is an efficient graph-based over-segmentation
method that generates a graph topology of Ns connected subgraphs corresponding to
homogeneous superpixels by maximizing the objective function containing an entropy rate
term and a balancing term. The ERS method maps the image to a weighted undirected
graph G = (V, E), where the node set V and the edge weight E are the pixels of the image
and the pairwise similarity given by the similarity matrix, respectively.

Consequently, the segmentation is formulated as a graph division problem, where
V is divided into a series of disjoint sets S = [S1, S2, . . . , SNA ], in which the intersection
of any two subsets is empty, and the union of all subsets is equal to V. When selecting a
subset A of E from G = (V, E) is finished, an undirected graph composed of Ns subgraphs
G
′
= (V, A) is generated. The segmentation problem is formulated as maximizing the

following objective function:

max
A

H(A) + λB(A) s.t. A ⊆ E (1)

where H(A) is the entropy rate of the random walk encouraging uniform and compacting
clusters, B(A) represents the balance term controlling clusters with similar sizes, and λ
refers to the weight of the constrained entropy rate term and the balance term.

2.2. Guided Filtering

Guided filtering (GuF) [39] is an edge-preserving smoothing filter based on a local
linear model. It has been successfully applied to various computer vision tasks, such as
image edge smoothing [40], detail enhancement [41], and image fusion denoising [42]. The
GuF typically uses a guided image to filter the input image. The output image contains the
global features of the input image and the detailed changes of the guided image. The input
image and the guided image are denoted as g and I, respectively. The output image is then
defined as

t = Φg f (g, I, r, ξ) (2)

where r is the filter window size, and ξ is the normalization parameter. g is a two-
dimensional function whose output is linearly related to the guide input:

ti = ak Ii + bk, ∀i ∈ wk (3)

where wk is a square window with radius r and the linear factors ak and bk are fixed values.
The gradient of the output image is taken, ∇t = a∇I. Therefore, if the guiding image has
gradient property, the output image will also encourage the gradient. This is the reason
why the GuF can smooth the background and maintain the high quality of the edge. The
optimal linear factor ak and bk are obtained by minimizing the following cost function:

E(ak, bk) = ∑
i∈wk

[
(ak Ik + bk − gi)

2 + ξa2
k

]
(4)

where ε is the adjustment parameter of ak. The linear regression analysis method [43] is
selected, and the optimal solution expression is written as:

ak =

1
|w| ∑

i∈wk

Ii gi−µk gk

σ2+ξ
(5)

bk = gk − akµk (6)
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where |w| is the number of pixels in wk, σ2
k and µk are the variance and mean of I in wk,

respectively. Similarly, gk is the mean value of g in the window. Considering that pixel i
may be contained in many windows, the linear coefficients calculated in different windows
are divergent and, thus, the average value of ak and bk in the window centered on pixel i is
obtained. The output image is then formulated as follows:

ti =
1
|w| ∑

k,i∈w
(ak Ii + bk) = ai Ii + bi (7)

3. Proposed Approach

In this section, we introduce in detail the architectural steps of the proposed OSGT
method for the classification of HSI and LiDAR data. The overall summary of the OSGT
method is shown in Figure 2, A pseudo-code of our newly developed OSGT is given in
Algorithm 1, and the specific steps are shown below.

Gaussian 
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p q

i i i i i
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Figure 2. Outline of the proposed OSGT method for hyperspectral and LiDAR data classification.

Algorithm 1: OSGT.
Inputs: the HSI H; LiDAR data L; the number of superpixel Ns; the control
parameter λ; the training set T; and test set t;

Outputs: Classification result;
1. Superpixel Oversegmentation

Obtain Hs and Ls based on PCA for H and L, by Equation (1)
For i = 1:Ns

Regularization strategy transforms Si and Ii into Xi and Yi
End

2. optimize spatial gradient transfer algorithm
For i = 1:Ns

Determine y∗i , by Equations (8)–(12)
Obtain the fused superpixel blocks f ∗i = y∗i + vi
Reconstruct the fused superpixel blocks

End for
Generate the fused image F

3. Classification
Use F as the guided image to filter H, by Equation (13)
Apply SVM to classify

3.1. Oversegmentation

The hyperspectral cube H ∈ RM×N×B is composed of hundreds of continuous spec-
tral bands. M, N, and B are the numbers of image rows, columns, and spectral chan-
nels, respectively. We have an observed 3D hyperspectral dataset in the 2D matrix form,
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Hx∈D×B(D = M× N), in which each column represents a pixel vector. Similarly, let
L ∈ RM×N denote the LiDAR data.

The superpixel segmentation algorithm divides the target image into many disjointed
regions. The samples in each region have the same or similar texture, color, and brightness.
Assuming that the number of superpixels is Ns, the oversegmented images of the first
principal component of H and L are Hs = {S1, S2, . . . , SNs} and Ls = {I1, I2, . . . , INs},
where Si and Ii represent the superpixel blocks of H and L, respectively.

In order to alleviate the problem of the weak boundary of the super pixel, and the
negative influence of the weak boundary on the edge gradient of the super pixel. As
shown in Figure 3, a local space mean regularization strategy based on Gaussian density
is designed. Specifically, the Gaussian kernel function calculates the samples density
of Si and Ii to describe the information between adjacent samples, and then averages
the Gaussian density to fill the irregular Si and Ii into regular matrix (i.e., Xi and Yi,
i ∈ {1, 2, . . . , Ns}), which not only maintains the spatial information of the superpixels but
also avoids excessive edge gradient.

0

1
Gaussian density 

distribution

Gaussian mean 
density

Rule matrixing

Superpixel Ganssian density map Regularized 
density map

Figure 3. A local spatial mean regularization strategy based on Gaussian density.

3.2. The Proposed OSGT Method

(1) Superpixel-guided gradient transfer fusion: The goal that the superpixel block
Xi of HSI and the superpixel block Yi of LiDAR fuse is to generate a fusion image that
contains both spectral information and elevation features. Xi, Yi and the fusion result can
be regarded as grayscale images with a scale of m× n, and their column vector forms are
represented by ui, vi, fi∈ Rmn×1, respectively.

HSI contains dense spectral information and scene detail information, and its high
spectral resolution is conducive to distinguish the difference of different materials, which
restricts the fusion result fi should have similar pixel intensity to ui. For the empirical error
measured by lp norm should be as small as possible.

Λ1( fi) =
1
p
‖ fi − ui‖p (8)

The spatial dimension data of HSI is actually a 2-D image, but fusion image showing
the 3-D spatial information of the observation area is necessary based on the importance of
visual perception. The gray value of each point in the LiDAR image reflects the elevation
information of the point and hence, we design fusion image fi to maintain similar pixel
gradients instead of intensity to vi. For this, the error that is measured by lq norm must be
as small as possible and is as follows:

Λ2( fi) =
1
q
‖∇( fi)−∇(vi)‖q (9)

We define the fusion problem of superpixel blocks Xi and Yi as minimizing the follow-
ing objective function:

Λ( fi) =
1
p‖ fi − ui‖p + λ 1

q‖∇( fi)−∇(vi)‖q (10)
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Here, the first term of the objective function is the data fidelity term, which indicates
that fi should have the same pixel intensity as ui. The second term is the regularization term,
which guarantees the same gradient information of fi and vi. λ is the control parameter that
constrains the data fidelity term and regularization term. The objective function transfers
the gradient information or elevation information of Yi to the corresponding position in Xi.

(2) Total variation minimization: When the relationship between the fusion image
and the constraint target is Gaussian, the l2 norm is appropriate. However, We expect that
the fusion result will be encouraged to retain more features of Xi, as HSI exhibits texture
features and spatial features, etc. besides spectral information. Therefore, most entries of fi
and ui should be the identical. Only several entries are relatively large due to the gradient
transfer of vi, so here (p = 1) is the appropriate choice in this paper. In contrast, enhancing
the sparsity of LiDAR image gradients can rely on minimizing LiDAR image l0, i.e., (q = 0).
However, the l0 norm is NP-hard; thus, we replace l0 with l1, implying that q = 1.

Let yi = fi − vi, the optimization problem (10) can be rewritten as:

y∗i = arg min
yi

{
mn
∑

j=1

∣∣yij −
(
uij − vij

)∣∣+ λJ(yi)

}
(11)

J(yi) =
mn
∑

j=1

∣∣∇ijyi
∣∣ = ∑mn

j=1

√(
∇h

ijyi

)2
+
(
∇v

ijyi

)2
(12)

where |a| =
√

a2
1 + a2

2 for every a = (a1, a2) ∈ R2. ∇h
ij and ∇v

ij represent the horizontal and
vertical gradients of pixel j, respectively. The objective function in Equation (11) is solved
directly using the proposed algorithm in [44]. y∗ is obtained by optimizing Equation (11)
using the technique of l1-TV minimization; thus, the target fusion outcome f ∗i is decided
by f ∗i = y∗i + vi.

(3) Compute the global optimal solution: Ns hyperspectral image superpixel blocks Xi
and LiDAR data superpixel blocks Yi have been obtained in Section 3.1 . The total variable
minimization method optimizes the objective function to fuse superpixel pairs. We denote
by
{

f ∗1 , f ∗2 , . . . , f ∗i , . . . , f ∗Ns

}
the column-vector form of the fusion result set of Ns superpixel

pairs, and the regular matrix form of the fusion result is expressed as {r1, r2, . . . , ri, . . . , rNs}.
We perform superpixel refactor technology. Specifically, the position information of each
pixel of Si and Ii is used to select the pixel of the corresponding position in ri, and then
an irregular superpixel block with the same size as the superpixel Si and Ii is obtained.
Finally, the Ns inverted superpixel blocks are combined into a global fusion image F, where
F ∈ RM×N .

3.3. Classification for HSI and LiDAR Data

One of the important factors affecting the filtering result is the guiding image, and the
gradient of the output image obtained by guiding filtering is completely determined by the
gradient of the guiding image.

In Section 3.2, the proposed method fuses HSI and LiDAR into a single-band image
F. To some extent, it can be considered that the proposed method transfers the elevation
information of the LiDAR data to the corresponding position of the HSI. Therefore, the
fused image looks like the first principal component of HSI, but supplements the spatial
detail information and cloud occlusion information to make the boundary contour of the
object of interest more complete.

We choose the fusion image F as the guiding image, and the original hyperspectral
image H as the guiding filter input. Specifically, given the guiding filter window radius r,
and the filter ambiguity ξ, we can obtain the following filtering equation:

FH = GFr,ξ(H, F) (13)
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The filtered output can preserve the overall features of the input image and the
detailed changes of the guided image through the adjustment of related parameters. It is
worth mentioning that the samples in Figure 4 are closer to each other than the samples
in Figure 4a, which indicates that the samples in Figure 4b have a higher quality. The
structure transfer characteristics of the guided filtering can eliminate edge blocking effects
and enhance the ability of feature expression. The filtered features are passed through the
SVM classifier to obtain the final classification result.

(a) (b)

Figure 4. Spectral characteristics (a) before and (b) after Guided filtering. We take class Railway in
Houston dataset for example.

3.4. Extension Method

In this section, the two extended methods we propose are implemented from the
perspectives of band fusion to reduce data dimensionality and multi-branch to enrich
detailed information, respectively.

(1) We propose an optimized spatial gradient fusion algorithm based on band group-
ing cooperation aiming to reduce dimensionality while maintaining the physical properties
of the data. Since the adjacent bands of hyperspectral image are redundant and highly
correlated, the fusion operation can reduce dimensionality and reduce image noise. Specifi-
cally, BG-OSGT does not change the main algorithm structure of OSGT. It divides and fuses
the filter result graph obtained by the OSGT algorithm instead of directly using SVM for
classification. In Section 3.3, the filtering feature map is determined, and in this section we
divide it into K adjacent band subsets in the spectral dimension. The kth (k ∈ (1, . . . , K))
group is defined as follows:

Pk =

{
(xk, . . . , xk+bB/Kc), if k + bB/Kc ≤ B
(xk, . . . , xB), otherwise

(14)

where x =(x1, . . . , xB) ∈ RB×D denotes the filtering feature map containing B feature
vectors and D pixels, and then bB/Kc represents an integer not greater than B/K. Then, the
adjacent bands in the kth group are fused by the mean value strategy, that is, the calculation
formula of the fusion feature Rk of the kth group is:

Rk =
∑

Nk
i=1 Pi

k
Nk

(15)

where Pi
k is the ith band in the kth band grouping and Nk is the total number of bands in

the kth band grouping.
By taking advantage of the each grouping feature, the decision fusion strategy can

effectively increase the classification accuracy. Specifically, we fused the label information of
each test pixel predicted by different groups. The final classification map is determined by

Fc = arg max
c=1,...,G

∑K
i=1 χ(li = c) (16)
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where Fc is the class label from one of the G possible classes for the test pixel, χ represents
the indicator function. Algorithm 2 describes the overall process of the method.

Algorithm 2: BG-OSGT.
Inputs: H; L; Ns; λ; T; and t;

Outputs: Classification result;
1. Superpixel Oversegmentation

Obtain Hs and Ls based on PCA for H and L, by Equation (1)
For i = 1:Ns

Regularization strategy transforms Si and Ii into Xi and Yi
End

2. optimize spatial gradient transfer algorithm
For i = 1:Ns

Determine y∗i , by Equations (8)–(12)
Obtain the fused superpixel blocks f ∗i = y∗i + vi
Reconstruct the fused superpixel blocks

End for
Generate the fused image F

3. Classification
Use F as the guided image to filter H, by Equation (13)
Apply band grouping strategy to the filtered result
Multi-branch classification and decision fusion by using SVM

(2) The first principal component of hyperspectral image contain most of the main
information, the OSGT algorithm fuses the first principal component of hyperspectral
image with LiDAR data. However, if only the first principal component is encouraged,
some details may be lost. As shown in Figure 5, there is still information available in
the second and third principal components. Therefore, the multi-branch optimize spatial
gradient transfer (MOSGT) decision fusion framework is proposed, which aims to enrich
image details and corner pixels. Specifically, MOSGT uses the OSGT algorithm to fuse
the first three principal components of hyperspectral image with LiDAR data to generate
three fused images. Then, the fused feature maps are used as guide images to filter the
original hyperspectral image to obtain filtered feature maps, which can make full use of
the complementary information between different guide images. In this section, we still
use the majority voting decision strategy due to its insensitivity to inaccurate estimates of
posterior probabilities.

The 1st dimension The 2nd dimension The 3rd dimension The 9th dimension The 10th dimension

Figure 5. The first 10 principal component images of the MUUFL Gulfport dataset are based on
PCA algorithm.
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Algorithm 3: MOSGT.
Inputs: H; L; Ns; λ; T; and t;

Outputs: Classification result;
1. Extract the first three principal components Mpc

i of H, where i = 1, 2, 3
2. Oversegmented Mpc

i and L by using ERS method, and then generate
oversegmented maps Spc

i and Ls

3. Apply Gaussian regularization strategy to Spc
i and Ls

4. Fusion of Spc
i and Ls according to (8)–(12)

5. Obtain the fused superpixel blocks f ∗i = y∗i + vi
6. Reconstruct the fused superpixel blocks
7. Generate the fused image set Fi
8. Use Fi as the guided images to filter H, by Equation (13)
9. Classify filtering feature images and decision fusion strategy.

4. Experimental Results
4.1. Datasets

(1) Houston Dataset: The University of Houston image is over the University of
Houston campus and surrounding area [9]. It is composed of HSI and LiDAR data, both of
which have a spatial dimension of 349× 1905 and spatial resolution is 2.5 m per pixel. The
HSI used in the experiments contains 144 bands, and the wavelength ranges from 380 to
1050 nm. Figure 6 illustrates the false-color composite of the University of Houston image,
a grayscale image of the LiDAR data, and the corresponding reference data—there are
15 different classes. The exact numbers of samples for each class are reported in Table 1.

Healthy grass Stressed  grass Synthetic  grass Tree Soil

Water Residential Commercial Road Highway

Railway Parking lot 1 Parking lot 2 Tennis court Running track

(a)

(b)

(c)

Figure 6. Visualization of the Houston data. (a) Pseudo-color image for the hyperspectral data. (b) Grayscale
image for the LiDAR data. (c) Ground truth.

(2) MUUFL Gulfport Dataset: The MUUFL Gulfpor image is over the University
of Southern Mississippi Gulfport Campus [45,46]. The HSI has a spatial dimension of
325× 337 and 72 spectral bands. After discarding 8 bands contaminated by noise, the
image contains 64 bands. Furthermore, considering the invalid area of the scene, the
original hyperspectral is cropped to 325× 220× 64 as the new data set. The false-color
composite of MUUFL Gulfport, a grayscale image of the LiDAR data, and the corresponding
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reference data are shown in Figure 7. The nine land-cover classes are described in detail in
Table 1.

Mixed Ground

Water

Sidewalks

Trees

Dirt and Sand

Building Shadows

Mostly Grass

Roads

Buildings

Yellow Curbs

Cloth Panels

(a) (b) (c)

Figure 7. Visualization of the MUUFL Gulfport. (a) Pseudo-color image for the hyperspectral data. (b) Grayscale
image for the LiDAR data. (c) Ground truth.

Table 1. Different numbers of training and testing samples for fifteen classes in the Houston and
eleven classes in the MUUFL Gulfport.

Houston MUUFL Gulfport

Class Land-Cover Type Training Test Class Land-Cover Type Training Test
C1 Healthy grass 10 1241 C1 Trees 10 23,236
C2 Stressed grass 10 1244 C2 Mostly Grass 10 4260
C3 Synthetic grass 10 687 C3 Mixed Ground 10 6872
C4 Tree 10 1234 C4 Dirt and Sand 10 1816
C5 Soil 10 1232 C5 Roads 10 6677
C6 Water 10 315 C6 Water 10 456
C7 Residential 10 1258 C7 Building Shadows 10 2223
C8 Commercial 10 1234 C8 Buildings 10 6230
C9 Road 10 1242 C9 Sidewalks 10 1375

C10 Highway 10 1217 C10 Yellow Curbs 10 173
C11 Railway 10 1225 C11 Cloth Panels 10 259
C12 Parking lot 1 10 1223
C13 Parking lot 2 10 459
C14 Tennis court 10 418
C15 Running track 10 650
Total 150 14,879 110 53,577

4.2. Quality Indexes

In order to objectively evaluate the performance of the proposed methods (i.e., the
OSGT, BG-OSGT, and MOSGT method), the experiments adopt three objective indicators,
i.e., overall accuracy (OA), average accuracy (AA), and Kappa coefficient. OA refers
to the probability that the classification result is consistent with the ground truth. AA
considers the imbalance of the number of samples in different classes. Kappa represents the
consistency between the classification results and the true classes of ground objects—the
greater its value, the more accurate the classification result. To eliminate the influence of
randomness, the results of all quantitative indicators are averages of ten results.

4.3. Analysis of Parameters Influence

(1) Effect of number of superpixels: In this section, the effect of the number of super-
pixels on the performance of the proposed OSGT method is evaluated on the Houston and
MUUFL Gulfport dataset. As shown in Figure 8, it can be seen that the performance of the
proposed OSGT method decreases significantly when the number of superpixels is less
than 500 or 600. However, when the number of superpixels is higher than 500 or 600, the
classification accuracy slowly decreases. The primary reason is that the large homogeneous
region (small number of superpixels) causes the oversegmented map to contain many
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boundary superpixels that need to be further segmented. And a smaller homogeneous
region (large number of superpixels) leads to poor discrimination of features in the regions.
Furthermore, a small number of superpixels can reduce the computational cost. Therefore,
the number of superpixels is fixed to 500 for the Houston data set and 650 for the MUUFL
Gulfport dataset in this work.

(a) (b) (c)

(d) (e) (f)

Figure 8. Effect of the number of superpixels on the overall classification accuracy (%) of OSGT
method for Houston (a–c) and MUUFL Gulfport (d–f) datasets. Different numbers of training samples
determine the results of each column. Specifically, the first to third columns are the classification
accuracy when the number of training samples is 5, 10, and 15 per class, respectively.

(2) Effect of window radius and ambiguity of the GuF: The influence of two parameters,
i.e., the window radius r and ambiguity ξ of the guided filtering, are analyzed on the above
datasets. Figure 9 illustrates the OA versus r and ξ on different datasets; OA decreases
significantly as the window radius r increases. When r and ξ are very small, useful detailed
information and corner pixels can be determined. For the Houston dataset, the proposed
OSGT method achieves the highest OA when r is set to 2 and ξ is equal to 0.2. For
the MUUFL Gulfport dataset, when r = 1 and ξ = 2.5× 10−3, the OSGT method obtains
satisfactory classification accuracy.

(a) (b)

Figure 9. Effect of r and ξ to the performance of classification for different datasets. (a) Houston
dataset. (b) MUUFL Gulfport dataset.

(3) Effect of free parameter: The free parameter λ that controls the data fidelity and
regularization terms of the objective function impacts the performance of the proposed
OSGT method. Figure 10 illustrates the visualized fusion results and the quantitative index
OA under different free parameters for the Houston dataset. As λ increases, the fusion
image contains the more abundant elevation information of LiDAR data. However, when
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the λ is too high, a small amount of detailed information disappears in the fused image
because they only belong to HSI. Our goal is to retain more information existing in HSI,
so that the fusion image still resembles HSI. When λ is set to approximately 5, the fusion
result retains the small-scale details of the edge of HSI and adds the elevation feature of the
ground object. Similarly, Figure 11 reflects that the parameter λ can balance the detailed
appearance information and elevation features of the MUUFL Gulfport dataset. When λ is
equal to approximately 6, the fusion result is satisfactory.

(a) (b) (c) (d)

(e) (f) (g) (h) (i)

Figure 10. Visualized fusion results and quantitative indicator under different free parame-
ters for Houston dataset. (a) The first PC image, (b) LiDAR data, (c–h) Fusion result when
λ = 0.1, 0.5, 1, 5, 10, 50, respectively. (i) Overall Accuracy.

(b)

(a)

(c) (d)

(e) (f) (g) (h)

(a)

(i)

Figure 11. Visualized fusion results and quantitative indicator under different free parameters for MUUFL
Gulfport dataset. (a) The first PC image, (b) LiDAR data, (c–h) Fusion result when λ = 0.1, 0.5, 1, 5, 10, 50,
respectively. (i) Overall Accuracy.

4.4. Analysis of Auxiliary between HSI and LiDAR Data

In this section, the auxiliary effect of LiDAR data on HSI is analyzed on the Huston and
MUUFL Gulfport datasets. In this experiment, the numbers of training and test samples are
selected to the same as those presented in Table 1. SVM-HSI indicates that SVM classifies the
original HSI. G-PCA and G-LiDAR indicate, respectively, that the first PC and the LiDAR
data are used as a guide image to filter the original HSI. G-PL represents that LiDAR data
is stacked as a band of HSI to form a new dataset, and then the new dataset is then filtered
using the first PCs as a guide image. For ensuring the experiment’s validity, a spatial
mean strategy based on Gaussian density is used for the guide images of the comparison
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methods. The super-segmented map of the guide image is subjected to Gaussian density
mean filtering in the homogenous region. The experiment is respectively performed on
the Houston and MUUFL Gulfport datasets to verify the classification performance of the
proposed OSGT method.

As shown in Figure 12, the SVM-HSI leads to an unsatisfactory classification accuracy
(OA = 76.32%), indicating that the original HSI contains fuzzy boundary information and
noise. Therefore, the classification performance of HSI without any preprocessing must
often be improved. Furthermore, the classification accuracy of G-PCA and L-PCA are
similar. This phenomenon indicates that the small-scale detail information of the PCA and
the elevation attributes of the ground features encouraged by LiDAR can be transferred to
the output of the filter as the structure of the guide image. Although their classification
performance is similar, the features used to guide filtering differ. G-PL does not significantly
improve classification performance because although HSI and LiDAR data are combined
into cascaded data, the stacking of two different information expression forms ignores the
feature heterogeneity. The proposed OSGT method in this paper fuses multi-source data
from the perspective of mathematical optimization, causing the fusion result to contain
both appearance detail information and elevates the features of the ground objects so that
the guide image structure information is closer to the ground truth value.

(a) (b)

Figure 12. Analyze the auxiliary effect of LiDAR data on HSI for (a) Houston dataset and (b) MUUFL
Gulfport.

4.5. Effect of Filtering Method

In this section, we analyze the impact of different filtering methods on the performance
of the proposed OSGT method, by comparing five widely used filtering methods: Gabor
filtering (GaF) [47], mean filtering (MF) [48], recursive filtering (RF) [49], bilateral filtering
(BF) [50] and guided filtering (GuF).

Figure 13 reports the classification accuracy of the above filtering methods. The
cascaded data combined with HSI and LiDAR data are used as the filtering input to test the
performance of these filtering methods in terms of extraction of structural information for
multi-source data. The relevant parameters adopt the default parameter settings; the GuF
parameters are the same as the parameters of the proposed OSGT method. Additionally, as
shown in Figures 14 and 15, it can be seen that the GuF method pays more attention to edge
detail information and effectively retains the overall spatial features of the input image.
Although the accuracy of the MF is slightly higher than GuF on the MUUFL Gulfport data
set, its filtering performance of the MF on the Houston data set is significantly worse.
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(a) (c)(b)

(d) (f)(e)

Figure 13. Classification accuracy (i.e., OA, AA, and Kappa) of the proposed OSGT method using different
filtering methods. (a) OA, (b) AA and (c) Kappa for Houston, (d) OA, (e) AA and (f) Kappa for MUUFL
Gulfport dataset.

(a) GaF (b) MF (c) RF

(d) BF (e) GuF (f) Pseudo-color image

(d) BF(b) MF(a) GaF (f) Pseudo-color image(c) RF (e) GuF

Figure 14. Visualization results of the proposed OSGT method with different filtering methods (i.e.,
(a) Gabor filtering (GaF), (b) mean filtering (MF), (c) recursive filtering (RF), (d) bilateral filtering (BF)
and (e) guided filtering (GuF).) and (f) pseudo-color image on the Houston dataset.
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(a) GaF (b) MF (c) RF

(d) BF (e) GuF (f) Pseudo-color image

(d) BF(b) MF(a) GaF (f) Pseudo-color image(c) RF (e) GuF

Figure 15. Visualization results of the proposed OSGT method with different filtering methods
(i.e., (a) Gabor filtering (GaF), (b) mean filtering (MF), (c) recursive filtering (RF), (d) bilateral filtering
(BF) and (e) guided filtering (GuF).) and (f) pseudo-color image on the MUUFL Gulfport dataset.

4.6. Effect of Local Features and Global Features

In this section, the influence of global and local features on image fusion is analyzed
in Table 2. The operation of LiDAR images without superpixel processing directly as a
guide map is denoted as NSL and the operation of the PCs images without superpixel
processing directly as a guide map is denoted as NSP. PCL-GTF and PC3L-GTF indicate that
the first PC and the first three PCs, respectively, are fused with the LiDAR data by global
gradient transfer. It can be observed from Table 2 that the proposed OSGT method achieves
the highest classification accuracy in terms of OA, AA, and Kappa. It is advantageous to
fuse the PCs image and LiDAR data in a homogeneous region because the local explicit
correlation of superpixels and the homogeneous regions of HSI can be used as the spatial
structure information of spatial-spectral classification, enriching the fusion results.

Table 2. Classification accuracy (in %) of Houston and MUUFL Guflport with no superpixels, global
feature fusion and local feature fusion methods.

Houston Data Set

metrics NSL NSP PCL-GTF PC3L-GTF OSGT
OA(%) 78.12 76.39 79.83 79.55 81.02
AA(%) 78.5 76.66 80.66 80.25 81.09
Kappa 0.76 0.75 0.78 0.78 0.79

MUUFL Gulfport Data Set

metrics NSL NSP PCL-GTF PC3L-GTF OSGT
OA(%) 68.68 68.85 70.82 71.12 72.59
AA(%) 52.71 56.58 56.06 56.54 68.69
Kappa 0.61 0.61 0.63 0.64 0.68

4.7. Comparisons with Other Approaches

A series of experimental verifications are conducted on the Houston and MUUFL Gulf-
port dataset to verify the effectiveness of the proposed OSGT method. The proposed OSGT
method is compared with seven other methods. The specific details of the comparison
methods are as follows:

1. SVM:The SVM classifier is applied to stacked HSI and LiDAR data, i.e., H.
2. SuperPCA: The SVM classifier is applied to H.
3. CNN: convolutional neural network [51] for HSI and LiDAR data.
4. ERS: SVM classifier is applied to H, and ERS guides the first three PCs to use the

spatial mean strategy based on Gaussian density.
5. NG-OSGT: SVM directly classifies the fusion image obtained by the proposed

OSGT method.
6. BG-OSGT: Fusion image band grouping cooperation.
7. MOSGT: Multi-branch decision fusion of the first three PCs and LiDAR data.

Specifically, the SVM parameters are set through five layers of cross-validation, and the
parameters of SuperPCA and CNN in the comparison method are the default parameters
in the corresponding paper.
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The first experiment is conducted on the Houston dataset. Table 1 illustrates the
number of training samples and testing samples. The classification performance obtained
by different methods is shown in Table 3, and the top results for each class are highlighted
in bold typeface. The visual classification maps associated with the corresponding OA of
different methods are depicted in Figure 16. As shown in Table 3, SVM just considers the
spectral information, so the value of OA is only 78.80%. The problem of cascaded data
that does not consider data heterogeneity is most evident in SuperPCA. The heterogeneity
of data increases the prominence of the implicit irrelevance pixels within the superpixel,
limiting classification performance. Moreover, ERS alleviates the problem of implicit
irrelevance using the spatial mean strategy based on Gaussian density. However, the
heterogeneity of multi-source data is still the most important influencing factor. The deep
learning method represented by CNN has poor algorithm performance under small-sample
conditions. NG-OSGT does not illustrate excellent classification accuracy because the fusion
result has only one band, and the rich spectral information of HSI is lost. Our purpose is to
supplement HSI information with the elevation attribute of LiDAR data as an auxiliary item,
rather than abandon the spatial-spectral features of HSI. Consequently, OSGT, BG-OSGT,
and MOSGT improve the accuracy of the classifier for ground objects identification.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 16. Houston dataset: classification maps obtained by: (a) SVM, (b) SuperPCA, (c) CNN,
(d) ERS, (e) NG-OSGT, (f) OSGT, (g) BG-OSGT and (h) MOSGT when the number of training samples
is ten per class.
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Table 3. Classification performance using SVM, SuperPCA, CNN, ERS, NG-OSGT, OSGT, BG-OSGT
and MOSGT for Houston dataset with ten labeled samples per class as training set.

Class SVM SuperPCA CNN ERS NG-OSGT OSGT BG-OSGT MOSGT

C1 93.12 54.12 79.36 77.96 72.94 93.68 90.73 90.03
C2 82.31 47.19 93.44 50.51 68.25 87.08 87.90 90.29
C3 68.65 98.11 99.89 94.76 80.13 89.94 83.75 87.71
C4 82.47 31.90 48.34 45.73 75.60 92.14 97.56 94.61
C5 92.01 77.09 81.05 78.17 69.06 90.85 90.22 86.38
C6 94.48 83.52 62.25 50.00 58.95 82.80 90.95 72.61
C7 67.27 36.41 77.46 78.38 69.14 78.83 78.21 76.59
C8 78.97 33.48 52.93 70.87 58.67 82.15 88.82 79.47
C9 83.03 37.11 61.18 76.73 70.93 76.44 73.08 79.56
C10 63.68 62.50 39.02 63.89 54.62 70.54 83.60 81.62
C11 59.16 76.86 54.80 60.65 62.04 70.23 76.75 80.40
C12 57.72 50.93 83.78 70.16 60.70 76.78 88.36 84.13
C13 40.78 58.00 0.98 59.16 47.62 55.25 70.44 71.44
C14 69.95 100.00 90.31 90.28 85.97 79.97 97.23 82.57
C15 98.63 81.23 88.38 98.19 76.65 98.04 98.64 98.05

OA 75.39 53.52 64.68 68.71 66.37 81.18 85.39 83.38
AA 77.38 49.09 64.81 71.34 67.42 81.59 86.40 83.36

Kappa 0.73 0.63 0.62 0.66 0.64 0.80 0.84 0.82

The second experiment is conducted on the MUUFL Gulfport dataset. Similarly, to
further analyze the classification performance of the proposed OSGT method, 10 training
samples of each class are randomly selected. The quantitative metrics and classification
maps of the compared methods are depicted in Table 4 and Figure 17. When only several
training samples are taken for per class, the proposed MOSGT outperforms other compari-
son methods in terms of visual quality and objective measurement. This demonstrated that
the effectiveness of the proposed method in the classification task of HSI and LiDAR data.

Table 4. Classification performance using SVM, SuperPCA, CNN, ERS, NG-OSGT, OSGT, BG-OSGT
and MOSGT for MUUFL Gulfpor dataset with ten labeled samples per class as training set.

Class SVM SuperPCA CNN ERS NG-OSGT OSGT BG-OSGT MOSGT

C1 96.94 40.34 62.37 96.72 93.38 96.95 94.35 94.54
C2 55.16 32.55 90.21 50.36 50.03 47.30 52.87 51.27
C3 65.42 27.83 33.79 52.93 66.27 68.71 70.02 74.71
C4 55.02 39.94 60.24 56.03 38.13 54.84 55.39 57.93
C5 87.24 28.55 60.15 69.90 68.47 77.63 73.12 78.49
C6 53.70 86.14 4.41 32.13 28.41 40.33 53.72 38.31
C7 39.01 77.22 78.69 52.82 41.46 51.29 47.48 56.20
C8 83.14 40.83 59.55 96.04 60.70 83.36 88.64 90.41
C9 30.91 36.67 23.48 34.28 12.83 25.64 41.19 44.60
C10 13.04 32.20 4.34 1.36 1.30 6.85 9.96 8.73
C11 54.31 85.56 58.19 99.58 32.46 56.21 86.54 83.57

OA 70.59 38.71 59.22 70.99 59.48 72.67 74.57 75.63
AA 57.62 27.45 48.67 58.37 44.86 64.67 61.21 61.71

Kappa 0.64 0.48 0.50 0.64 0.5 0.56 0.67 0.69
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 17. MUUFL Guflport: classification maps obtained by:(a) SVM, (b) SuperPCA, (c) CNN,
(d) ERS, (e) NG-OSGT, (f) OSGT, (g) BG-OSGT and (h) MOSGT when the number of training samples
is ten per class.

4.8. Computational Complexity

Table 5 reports the computational time (in seconds) of each component of the proposed
OSGT method. The experiments are performed using MATLAB on a computer with a
2.2 GHz CPU and 8 GB of memory. The training size is 10 per class for Houston and MUUFl
Gulfport data sets. As presented in Table 5, the main computational cost of the proposed
OSGT method is caused by guided filtering operation. The primary reason is that each
band of HSI is the operation object of guided filtering. To solve time-consumption problem,
we will study how to use graphics processing units (GPUs) to accelerate our algorithm in
future developments.

Table 5. Calculation time (in seconds) for different components and guiding images.

Data Set
Different Components Different Guide Images

ERS OSGT GF G-PCA G-LiDAR

Houston 8.69 0.19 33.47 32.94 32.76
MUUFL Gulfport 0.60 0.09 0.94 0.95 0.93

5. Conclusions

In this paper, a OSGT method is proposed for HSI and LiDAR data classification.
Specifically, we define homogeneous region fusion between PCs and LiDAR data as a math-
ematical optimization problem and introduce the gradient transfer model to fuse spectral
and DSM information from various superpixel blocks for the first time. Besides, A l1 total
variation minimization is designed to fuse information between the PC and DSM within
each superpixel block to accurately describe the observed details. Experimental results on
two real datasets indicated that the proposed methods outperforms the considered baseline
methods when there are only ten samples per class for training. In the future, injecting the
DSM information of LiDAR data into the classification task of HSI by effectively designing
a deep convolutional network is a research direction that we focus on.
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