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Abstract: Due to sensor instability and atmospheric interference, hyperspectral images (HSIs) often
suffer from different kinds of noise which degrade the performance of downstream tasks. Therefore,
HSI denoising has become an essential part of HSI preprocessing. Traditional methods tend to tackle
one specific type of noise and remove it iteratively, resulting in drawbacks including inefficiency
when dealing with mixed noise. Most recently, deep neural network-based models, especially genera-
tive adversarial networks, have demonstrated promising performance in generic image denoising.
However, in contrast to generic RGB images, HSIs often possess abundant spectral information; thus,
it is non-trivial to design a denoising network to effectively explore both spatial and spectral charac-
teristics simultaneously. To address the above issues, in this paper, we propose an end-to-end HSI
denoising model via adversarial learning. More specifically, to capture the subtle noise distribution
from both spatial and spectral dimensions, we designed a Residual Spatial-Spectral Module (RSSM)
and embed it in an UNet-like structure as the generator to obtain clean images. To distinguish the real
image from the generated one, we designed a discriminator based on the Multiscale Feature Fusion
Module (MFFM) to further improve the quality of the denoising results. The generator was trained
with joint loss functions, including reconstruction loss, structural loss and adversarial loss. Moreover,
considering the lack of publicly available training data for the HSI denoising task, we collected
an additional benchmark dataset denoted as the Shandong Feicheng Denoising (SFD) dataset. We
evaluated five types of mixed noise across several datasets in comparative experiments, and compre-
hensive experimental results on both simulated and real data demonstrate that the proposed model
achieves competitive results against state-of-the-art methods. For ablation studies, we investigated
the structure of the generator as well as the training process with joint losses and different amounts
of training data, further validating the rationality and effectiveness of the proposed method.

Keywords: hyperspectral images; image denoising; adversarial learning mechanism; residual learning

1. Introduction

Hyperspectral sensors collect spatial and spectral information from the Earth’s surface,
producing hyperspectral images (HSIs) with massive discrete wavebands. Compared to
general RGB images, HSIs often contain abundant spectral information, the exploration
of which is critical for various remote sensing applications [1] such as classification [2,3],
unmixing [4] and tracking [5]. However, due to sensor instability and atmospheric inter-
ference, HSIs often suffer from various kinds of noise [6] such as Gaussian noise, impulse
noise, stripe noise and deadlines. Gaussian noise represents statistical noise with a normal
distribution. The impulse noise is the white or black pixel that occurs randomly, due to the
circuit failure, power switching, etc. The stripe noise is the one with striped distributions
which are often caused by instrument instability and light interference. Furthermore, dead-
lines can be regarded as a special case of stripe noise. Kinds of noise reduce the quality of
HSIs, which easily degrades the performance of downstream HSI tasks.
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To overcome the above issue, various methods have been proposed for HSI denoising
from different perspectives. Early works considered HSI denoising as the extension of gray
or RGB image denoising. They often utilize the existing denoising methods band-wisely to
remove noise in HSIs, e.g., block-matching, 3D filtering (BM3D) [7] and weighted nuclear
norm minimization (WNNM) [8]. However, only the spatial information is considered in
these works, while the rich spectral information is neglected, resulting in spectral distortion
in the outputs.

To model the correlation in the spectral dimension, researchers have proposed spatial-
spectral-based methods which jointly utilize spatial and spectral information to reduce the
HSI noise. Othman et al. [9] proposed a hybrid spatial-spectral noise removal (HSSNR)
method working with wavelet shrinkage, which benefits from both the spatial and spectral
information. A denoising framework with bivariate wavelet thresholding and principal
component analysis was proposed by Chen et al. [10] to reduce the dimensionality of
HSIs and simultaneously remove the noise. Considering the noise intensity difference in
different bands, Yuan et al. [11] proposed a spectral-spatial adaptive total variation (TV)
model. As the extension of the BM3D algorithm, Maggioni et al. [12] presented the BM4D
algorithm with the grouping and collaborative filtering paradigm for the 3D cube data
noise reduction. He et al. [13] proposed the removal of mixed noise via the TV-regularized
low-rank matrix factorization.

Since an HSI can be viewed as a collection of multiple 2D images, tensor-based
denoising methods have been proposed by treating the HSI as a 3D tensor. Liu et al. [14]
presented the parallel factor analysis (PARAFAC) method to estimate the clean HSIs with a
powerful multilinear algebra model. By explicitly considering the spatial nonlocal similarity
and the correlation among bands of multispectral images, Peng et al. [15] constructed the
decomposable nonlocal tensor dictionary learning model for denoising. Wang et al. [16]
proposed the low-rank tensor decomposition with the anisotropic spatial-spectral TV
(LRTDTV) method by identifying the structures of noise-free images and the noise for the
HSI denoising task. Fan et al. [17] proposed the spatial-spectral TV regularized low-rank
tensor factorization (SSTV-LRTF) method which can maintain the spatial smoothness while
removing the Gaussian noise. Though existing methods have obtained decent performance
in certain cases, there are still several bottlenecks that need to be addressed. First of all,
these methods manage to achieve better results in relatively simple cases and are unable to
satisfy the complex mixed noise. Secondly, HSI denoising tasks are generally regarded as
an optimization problem to be solved iteratively in traditional algorithms, bringing time-
consuming drawbacks. Therefore, it is necessary to find an efficient and robust method to
address the aforementioned issues.

In recent years, deep learning-based methods have been successfully applied in the
image processing field due to the better capability of the graphics processing unit (GPU)
with advanced results in various vision tasks such as classification, detection and image
synthesis. Most recently, some researchers have applied deep neural network-based meth-
ods in HSI denoising tasks. Xie et al. [18] employed a deep stage convolutional neural
network (CNN) with trainable non-linearity functions in an HSI denoising task for the
first time and confirmed its reliability. Yuan et al. [19] proposed a spatial-spectral convolu-
tional neural network named HSID-CNN to learn a non-linear mapping between the noisy
and noise-free images, simultaneously considering the spatial and spectral information.
Inspired by the structure of UNet [20], Dong et al. [21] proposed a modified 3D UNet to
fully exploit the multiscale information of HSIs and decompose 3D convolutional kernels
to reduce the computational complexity. Zhang et al. [22] presented a spatial-spectral
gradient network (SSGN), which simultaneously handles different types of noise.

Apart from optimizing the generated predictions towards given objectives, the genera-
tive adversarial network (GAN) [23] consists of a generator and a discriminator trained in
an adversarial fashion. The generator learns from the distribution of real data to generate
the synthetic data, and the discriminator tries to distinguish the output of the generator
from the real data [24]. With the joint training, the generator and discriminator finally reach
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the Nash Equilibrium. GAN has been widely utilized in image synthesis-related tasks such
as super-resolution [25], face synthesis [26] and image restoration [27]. Jelmer et al. [28]
trained a CNN jointly with a discriminator in a medical images-denoising task to improve
the CNN ability to generate noise-free medical images. Chen et al. [29] proposed a GAN-
based network to reduce the speckle noise and preserve the texture details in the optical
coherence tomography images. Lyu et al. [30] proposed a novel denoising GAN-based
model to remove the mixed noise in RGB images and the generator learns the direct map-
ping from the noisy images to clean ones. To solve the blurriness issue caused by current
CNNs, Niu et al. [31] applied the GAN-based network in the cell image denoising task
which can recover feature details in the cell images.

In contrast with general RGB images, the abundant spectral information of HSIs needs
to be leveraged during the denoising process. Inspired by the architecture of GANs, we
proposed an adversarial learning-based residual network for handling the complex cases
of mixed-noise removal including Gaussian noise, impulse noise, stripe noise, deadlines
and their mixture. The main contributions of our proposed model can be summarized
as follows:

1. We designed an adversarial learning-based network architecture to model the dif-
ference between noisy and noise-free HSIs. The adversarial learning mechanism
encourages the network to generate more realistic clean HSIs.

2. For the generator, we designed a Residual Spatial-Spectral Module (RSSM) with
an UNet-like structure to capture the subtle noise distribution of each HSI by fully
exploring both spatial and spectral features at multiple stages. The generator is trained
with joint loss functions including the reconstruction loss to recover the details of
images, the structural loss to maintain the structural similarity and the adversarial
loss to improve the realistic degree of the generated images. For the discriminator,
to distinguish between the generated and ground-truth clean data, we propose a
Multiscale Feature Fusion Module (MFFM) to enhance the discrimination ability by
leveraging the features across scales.

3. Due to the lack of training data for the HSI denoising task, we collected an additional
dataset named Shandong Feicheng dataset. Comprehensive experiments were con-
ducted on public and collected datasets, and the experimental results demonstrate
that the proposed model achieves results rivalling those of state-of-the-art methods.

The remainder of this paper is organized as follows. Section 2 introduces the proposed
network in detail. Section 3 presents the investigated datasets and reports the experimental
results including comparisons with state-of-the-arts denoising methods, comprehensive
ablation results, and real-data experiments. Finally, Section 4 concludes the proposed
method of our work.

2. Materials and Methods
2.1. HSIs Degradation

Generally, an HSI can be denoted by a 3D tensor Y ∈ RH×W×C and can be described as

Y = X + N, (1)

where X ∈ RH×W×C is the noise-free HSI data, N ∈ RH×W×C is the noise of HSI data
including Gaussian noise, impulse noise, stripe noise and deadlines, H and W are the
height and width of the HSI, respectively, C represents the number of spectral bands.
Naturally, the HSI denoising task is to estimate the noise-free HSI data X from the noisy
HSI data Y.

2.2. Model Overview

Inspired by the advanced image restoration ability of adversarial learning, we designed
a GAN-based model for the HSI denoising task. For a general GAN, the generator G learns
the distribution of noisy data whilst the discriminator D estimates the probability that the
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data come from the clean ground truth or the generator. When D cannot judge whether the
image is true or fake and G cannot generate a more realistic image to deceive D, the training
process reaches stability. Considering the abundant spatial-spectral information of HSIs,
appropriate designs for the generator and discriminator are necessary. To improve the
network’s estimation of noisy areas and noise intensity, we adopt the residual blocks [32] to
each layer of the generator, so that the generator can capture nuanced details while reducing
the gradient-vanishing problem. In terms of the discriminator, to make the network fully
utilize the spatial-spectral information of HSIs, the multiscale feature extraction mechanism
is employed in the discriminator. In part of the loss function, to constrain the training
process from diverse perspectives, we jointly consider the pixel-wise difference, structural
similarity and adversarial penalty as the combined loss function with appropriate weights.
The overall network architecture is shown in Figure 1.
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Figure 1. The proposed network architecture including the generator and the discriminator. The noisy
HSIs are fed to the generator, and the denoising HSIs are then generated and fed to the discriminator.
The discriminator learns to distinguish whether the input HSIs are from the generator or ground
truth. The generator intends to generate more realistic HSIs to deceive the discriminator.

2.3. Generative Network

As shown in Figure 1, the generator is a UNet-based network with a residual learning
mechanism. Considering the sparsity of the noise, instead of learning the complex direct
mapping from noisy HSIs to their noise-free counterparts, the noise distributions can be
relatively easier to capture. More specifically, the generator mainly consists of three parts,
including the initial convolutional layer, the UNet-based feature extraction module and the
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recovering convolutional layer. In the initial convolutional layer, 3× 3 convolutional kernels
are used to acquire the initial feature maps with 64 channels. These feature maps are then
fed to the UNet-based feature extraction module, which is composed of an encoder part
and a decoder part. To obtain the feature maps of the noise distribution, we downsampled
the input three times by maxpooling operation with 2× 2 kernel size in the encoder part.
Accordingly, we upsampled the encoded features three times by deconvolutional operation
with a 2× 2 kernel size to obtain the spatial information of noise.

Between the adjacent downsampling layers and upsampling layers, the RSSM are
proposed to extract feature maps. As shown in Figure 2, there are two cascaded residual
blocks in the RSSM.

Conv

BN

LeakyReLU

Conv

BN

LeakyReLU

Conv

BN

Conv

BN

Conv

BN

LeakyReLU

Conv

BN

LeakyReLU

Conv

BN

Input Feature Map
(h×w×c_1)

Output Feature Map
(h×w×c_2)

(h×w×c_2)

Residual Spatial-Spectral Module

3×3×c_2

3×3×c_2

3×3×c_2

3×3×c_2

3×3×c_2

3×3×c_2

3×3×c_2

Element-wise Add

Element-wise Add

Figure 2. The architecture of the Residual Spatial-Spectral Module, where h, w and c represent the
sizes of the feature maps and the kernel size of each convolutional layer is marked out.

The first residual block consists of two branches including three convolutional layers
and a shortcut connection with a linear projection in which we expand the number of
feature map channels and extract essential spectral features. The second one consists of
two branches including three convolutional layers and a shortcut connection, in which
higher-level features and larger receptive fields are obtained to enhance the spatial features.
It can be described as:

y = C32(C31(x) + S(x)) + C31(x) + S(x), (2)
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where x is the input, y is the output of the first residual block, C31(·), C32(·) denotes the
three convolutional layers in the first residual block and the second block, respectively,
and S(·) indicates the shortcut connection operation with a linear projection. Moreover,
3× 3 convolutional kernels are utilized in all convolutional layers in RSSM that the spectral
information and the neighborhood information can be fully exploited. With the multiple
connected convolutional layers in RSSM, the receptive field becomes larger so that the
spatial information can also be fully considered simultaneously. Taking advantage of
the different levels of the feature maps, we concatenate the same-sized feature maps as
skip connections.

It is worth noting that the noise values in the HSIs are not significantly larger than
zero; thus, we utilize the LeakyReLU as the activation function in the whole generator.
Meanwhile, the LeakyReLU function can also prevent the network from zero gradients.
The LeakyReLU function we adopted is defined as:

y =

{
x, x > 0,

ax, x < 0,
(3)

where x is the input, y is the output of the LeakyReLU function and a is a constant parameter
in the range of (0, 1), which is empirically set to 0.2. The last recovering convolutional layer
is added to keep the size of the output feature maps the same as the input images, and the
output feature maps are finally added to the input images.

2.4. Discriminative Network

To obtain more realistic denoising results via adversarial learning, we designed a fully
convolutional network with MFFM as our discriminator. The MFFM structure is shown in
Figure 3.

Taking both spatial and spectral information into consideration, we utilized two
multiscale feature extraction blocks with three different convolutional kernel sizes. To
exploit the correlation in the spectral dimension, 1× 1 convolutional kernels are utilized
to extract the spectral feature of each pixel. For leveraging the spatial information, 3× 3
convolutional kernels focus on the neighboring features around the center pixel, and
5× 5 convolutional kernels can obtain more abundant spatial features with large receptive
fields. The multiscale feature maps are then aggregated to generate representative features.
Instead of element-wisely addition, we employed the concatenation operation of multiscale
feature maps on the channel dimension to preserve more detailed information. The MFFM
is defined as:

y = Cat[ReLu(C1(x)), ReLU(C3(x)), ReLU(C5(x))], (4)

where x is the input feature map, y is the output of the MFFM, Cat[·] represents the
concatenation operation, ReLu(·) denotes the ReLu activation function and Cn(·) represents
the convolutional layer with an n× n kernel size. To obtain more accurate local details,
we designed a 32× 32 matrix instead of one value as the final output of the discriminator
inspired by PatchGAN [33]. Each spatial element of output represents a 16× 16 receptive
field in the input data and the value measures whether the given region from the input
data is true.



Remote Sens. 2022, 14, 1790 7 of 23

Conv
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ReLU
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Figure 3. The architecture of Multiscale Feature Fusion Module, where h, w and c represent the sizes
of feature maps and the kernel size of each convolutional layer is marked out.

2.5. Loss Function

To ensure the network generates realistic hyperspectral images, three types of loss
functions were jointly considered, including reconstruction loss structural loss and ad-
versarial loss. The reconstruction loss was utilized to measure the distance between the
generated HSIs and ground truth. The structural loss captures the structural differences
between the generated HSIs and ground truth, while the adversarial loss measures the
authenticity of generated HSIs, which improves the image quality.

We utilized the Mean Square Error (MSE) as the reconstruction loss function to reduce
the difference between the generated HSIs and noise-free ones:

Lr = (X− G(Y))2, (5)

where G(·) means the generator, X is the noise-free HSIs and Y is the input HSIs. Recon-
struction loss is the most commonly used loss function for general image reconstruction.
However, the reconstruction loss often produces blurry results indicating that only utilizing
the reconstruction loss is not enough.

For structural loss, we employed the structural similarity (SSIM) to reduce the struc-
tural differences between the generated HSIs and noise-free ground-truth. Details of the
SSIM index can be found in [34]. The value of the SSIM index ranges from 0 to 1, and the
larger SSIM index means a more similar structure between the two images. Therefore, Ls is
defined as:

Ls = 1− SSIM(X, Y), (6)

where SSIM(X, Y) indicates the similarity between X and Y.
As for the adversarial loss, the objective of a general GAN can be expressed as

min
G

max
D

Ex∼Pdata(x)[logD(X)] +Ex∼PG(x)[log(1− D(G(X)))], (7)

where D(·) represents the discriminator. For the discriminator, we maximize the objective
function to identify the real data or the false data. For the generator, we minimize the
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objective function so that the generator can fool the discriminator. We train G(·) and
D(·) simultaneously to make the generated image close to the real data. Therefore, the
adversarial loss in our case can be described as:

La = max
D

Ex∼Pdata(x)[logD(X) + log(1− D(G(X)))]. (8)

In summary, we define the joint loss function as:

L = λrLr + λsLs + λaLa. (9)

where λr, λs and λa represent the weights of the reconstruction loss, the structural loss and
the adversarial loss, respectively.

2.6. Implementation Details

In the network training process, we utilized Adam [35] to optimize the proposed
network with momentum parameters of 0.9 and 0.99, while the initial learning rate was set
to 0.001. We employed the stage-wise training strategy, i.e., training the generator and the
discriminator separately first, and then the generator and the discriminator were trained
jointly to further finetune the performance of the generated HSIs. The batch size and the
maximum number of epochs were set to 16 and 300, respectively. It is worth noting that
the weights of the reconstruction loss, the structural loss and the adversarial loss were
empirically set to 100, 1, 0.001, respectively. The training process of the proposed network
takes approximately 30 hours on the Ubuntu 18.04 operating system with a GTX 3090 GPU.
Under the same setting, the proposed model can process approximately 672 HSIs with the
size of 128× 128× 63 per second for inference.

3. Results and Discussion
3.1. Datasets

The evaluation of denoising models was conducted on both public and collected
datasets for training and testing. Currently available HSI datasets are mostly used to
evaluate hyperspectral classification and unmixing tasks. Given the lack of abundant hy-
perspectral dataset for the denoising task, we collected a relatively large-scale hyperspectral
dataset in Feicheng City, Shandong Province, China. The Feicheng Hyperspectral Dataset
was obtained by China’s new generation of airborne high-resolution imaging spectrometer
(high score special aviation hyperspectral spectrometer). The wavelength range is from
0.4 to 1 µm, containing 63 wavebands, and the spatial resolution is 12.5 cm per pixel.
The size of the whole hyperspectral image is 262,748 × 10,983. To obtain a dataset with
diverse scenes, we chose six of them and cropped them to the size of 128× 128, resulting
in a denoising dataset containing 1596 HSIs, named Shandong Feicheng Denoising (SFD)
dataset. As shown in Figure 4, the six scenes are farmland, building, dirt, lake, road and
tree. Each scene apart from the road of the SFD dataset consists of three hundred images
and the road scene consists of 96 HSIs.

Apart from the collected dataset, five public HSI datasets were employed in this paper,
including the Washington DC Mall, Pavia University, Xiongan New Area [36], Indian Pines,
Urban and EO-1 Hyperion datasets; the details of these datasets are described as follows:

1. Washington DC Mall dataset was obtained by the Hyperspectral Digital Imagery Col-
lection Experiment (HYDICE) airborne sensor with a wavelength range of 0.4–2.4 µm
containing 191 wavebands after removing the water absorption bands. The image
size is 1208× 307 with a spatial resolution of 5 m per pixel.

2. Pavia University dataset, a 610× 610 pixels image, was collected by the Reflective
Optics System Imaging Spectrometer (ROSIS), where the wavelength ranges from
0.43 to 0.86 µm and includes 103 wavebands. The spatial resolution is approximately
1.3 m per pixel.
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3. Xiongan New Area dataset was acquired by the visible and near-infrared imaging
spectrometer and its spectral range is from 0.4 to 1 µm with 250 wavebands. The
image size is 3750× 1580 pixels with a spatial resolution of 0.5 m per pixel.

4. Indian Pines dataset was gathered by the AVIRIS sensor in northwestern Indiana
consisting of 145× 145 pixels. The spectral range is from 0.4 to 2.5 µm with 200 wave-
bands after removing the water absorption bands. The spatial resolution is 20 m
per pixel.

5. Urban dataset was obtained by HYDICE airborne sensor, containing 307× 307 pixels.
The wavelength of the hyperspectral image ranges from 0.4 µm to 2.5 µm with
210 wavebands, and the spatial resolution is 2 m per pixel.

6. EO-1 Hyperion dataset covers 166 wavebands after removing the water absorption
bands, consisting of 400× 200 pixels.

(a) (b) (c)

(d) (e) (f)
Figure 4. Shandong Feicheng Denoising (SFD) dataset: (a) farmland; (b) building; (c) dirt; (d) lake;
(e) road; and (f) tree.

3.2. Experimental Setup

By referring to the experimental protocols in [21,22,37,38], to validate the performance
of the proposed network for the HSI denoising task, the simulated noisy HSIs and real noisy
HSIs were employed. The commonly used public HSIs datasets including Washington
DC Mall, Pavia University, Xiongan New Area and the proposed SFD were used for
training and testing on simulated cases. Moreover, we utilized the Indian Pines, Urban and
EO-1 Hyperion datasets to verify the effectiveness of the proposed network and conduct
comparisons against state-of-the-art methods for the real data.

During the simulated HSI denoising process, different types of noise were added to
the noise-free images. Similar to [22,37,38], in this paper, we simulated five mixed-noise
cases of noise as follows:

• Case 1 (Gaussian noise): All wavebands were corrupted by Gaussian noise with a
signal-to-noise rate (SNR) value of 20 dB.

• Case 2 (Gaussian + impulse noise): All wavebands were corrupted by Gaussian noise
as in Case 1, and 10 wavebands were randomly chosen to add the impulse noise. In
our experiments, impulse noise was randomly set to 0 or 1.
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• Case 3 (Gaussian + impulse + stripe noise): All wavebands were corrupted by Gaussian
and impulse noise as in Case 2, and 10 wavebands were randomly chosen to add the
stripe noise. In each band, stripe noise was randomly added to 20–40 lines.

• Case 4 (Gaussian + impulse + deadline noise): All wavebands were corrupted by the
Gaussian and impulse noise as in Case 2, and 10 wavebands were randomly chosen to
add deadlines. In each band, deadlines were randomly added to 0–5 lines.

• Case 5 (All mixed noise): Four kinds of noise were added to the HSIs. Impulse noise,
stripe noise and deadline were added as previously described. All wavebands were
corrupted by Gaussian noise with SNR values of 10, 20, 30, 40 dB in Case 5_1, 5_2, 5_3,
5_4, respectively.

The four datasets we used for training and testing were normalized to 0–1 with the
min–max normalization method. There are 3597 samples in the training and validation
sets, 90% of the data are used for training and 10% for validation and another 1334 samples
are utilized for testing. In detail, we trained the proposed network on four datasets
simultaneously. Since images from different datasets were acquired with different sensors,
the HSIs in four datasets vary with the number of wavebands. During data preprocessing,
we selected 63 bands for each dataset to ensure all that HSIs have a similar spectral range.
The number 63 was selected since the smallest band size is 63 among all used datasets.

3.3. Comparative Experiment with Simulated Data

In comparative experiments, the proposed network was compared with eight HSIs’
denoising methods including nuclear norm minimization (NNM) [39], block-matching and
4-D filtering (BM4D) [12], weighted nuclear norm minimization (WNNM) [8], low-rank
total variation (LRTV) [13], weighted Schatten p-Norm minimization (WSNM) [40], low-
rank tensor decomposition total variation (LRTDTV) [16], 3D total variation (3DTV) [37] and
fast hyperspectral denoising (FastHyDe) [41]. For fair comparisons, the compared works
were implemented by referring to the publicly released code. To measure the performance
of our results, three indicators were used: mean peak signal-to-noise ratio (MPSNR), mean
structural similarity (MSSIM), mean spectral angle distance (MSAD). MPSNR represents
the intensity of the noise in the image. MSSIM indicates the structural similarity of two
images. MSAD denotes the spectral difference of each pixel in two images. It should be
denoted that the higher MPSNR values represent the lower noise intensity, namely the
better performance. Furthermore, the higher MSSIM values indicate that the denoising
HSIs are closer to the noise-free HSIs in structure. Lower MSAD values mean a smaller
spectral distance between the denoising HSIs and noise-free HSIs.

We performed comparative experiments on the SFD, Washington DC Mall, Pavia
University and Xiongan New Area datasets. The detailed experimental results are shown
in Table 1, in which the best performance for each noise case is marked in bold and the
second best performance is underlined. Compared with these denoising methods, the
proposed network achieves the highest MPSNR & MSSIM values, and the lowest MSAD
values in most cases. We selected one HSI band in several noise cases to demonstrate the
visual quality in Figures 5–10, respectively.

In Figure 5, we can observe that Gaussian noise cannot be removed completely by
NNM, WNNM, WSNM, LRTDTV and 3DTV, and that the generated images are blurred by
BM4D. FastHyDe method suppresses the Gaussian noise better but brings the extra noise
to the bottom of the image. The proposed method not only suppresses the Gaussian noise
but also retains detailed image information.

As shown in Figure 6, although the FastHyDe method shows an effective noise
reduction ability in handling the Gaussian noise, we found that the denoising image
still contains the residual impulse noise. Similar results are observed from NNM, WNNM,
WSNM and LRTDTV methods. Though other methods better manage suppress noise
in this noise case, they often result in relatively low-quality indicators compared to the
proposed method.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. Case 1: The comparison of hyperspectral images (HSIs) denoising results with existing
methods on the SFD dataset: (a) ground truth of band 3; (b) noisy image; (c) NNM; (d) BM4D;
(e) WNNM; (f) WSNM; (g) LRTDTV; (h) 3DTV; (i) FastHyDel and (j) the proposed method.

Table 1. Quantitative evaluation of the denoising results of different methods on five noise cases.

Noise Case Index Noisy NNM BM4D WNNM WSNM LRTDTV 3DTV FastHyDe Proposed

Case 1
MPSNR 29.7183 31.8802 35.8393 32.7683 32.9562 36.7202 37.4186 45.3463 44.4981
MSSIM 0.8212 0.9332 0.9610 0.9232 0.9268 0.9593 0.9727 0.9945 0.9947
MSAD 0.1093 0.0588 0.0493 0.0654 0.0627 0.0533 0.0420 0.0161 0.0185

Case 2
MPSNR 26.5610 31.8805 35.8395 32.7643 32.9809 36.7261 37.4402 36.0073 39.7086
MSSIM 0.6947 0.9332 0.9610 0.9232 0.9268 0.9595 0.9728 0.9189 0.9882
MSAD 0.2710 0.0588 0.0479 0.0654 0.0627 0.0534 0.0418 0.1104 0.0321

Case 3
MPSNR 26.2291 31.8796 35.8391 32.7687 32.9859 36.7236 37.4137 35.5128 39.1681
MSSIM 0.6910 0.9333 0.9610 0.9233 0.9269 0.9595 0.9727 0.9182 0.9869
MSAD 0.2732 0.0589 0.0479 0.0654 0.0626 0.0534 0.0419 0.1129 0.0345

Case 4
MPSNR 25.8334 31.8794 35.8382 32.7750 32.9842 36.7268 37.4259 35.0764 39.3436
MSSIM 0.6920 0.9332 0.9610 0.9233 0.9268 0.9595 0.9728 0.9117 0.9874
MSAD 0.2804 0.0589 0.0479 0.0653 0.0627 0.0534 0.0419 0.1161 0.0322

Case 5_1
MPSNR 18.1076 31.8791 35.8382 32.7746 32.9844 36.7246 37.4379 33.0624 37.2248
MSSIM 0.3174 0.9332 0.9610 0.9233 0.9268 0.9595 0.9728 0.9075 0.9756
MSAD 0.4260 0.0589 0.0479 0.0653 0.0627 0.0534 0.0418 0.1224 0.0396

Case 5_2
MPSNR 25.5365 31.8803 35.8387 32.7691 32.9853 36.7245 37.4240 34.5280 39.3337
MSSIM 0.6831 0.9333 0.9610 0.9232 0.9269 0.9595 0.9727 0.9091 0.9872
MSAD 0.2856 0.0589 0.0479 0.0654 0.0627 0.0533 0.0419 0.1196 0.0338

Case 5_3
MPSNR 32.3871 31.8779 35.8391 32.7603 32.9845 36.7217 37.4316 34.5918 40.4928
MSSIM 0.8090 0.9333 0.9610 0.9231 0.9269 0.9595 0.9727 0.9074 0.9902
MSAD 0.2449 0.0589 0.0479 0.0655 0.0627 0.0533 0.0419 0.1208 0.0305

Case 5_4
MPSNR 38.6768 31.8774 35.8389 32.7750 32.9842 36.7240 37.4390 34.4819 41.7679
MSSIM 0.8249 0.9333 0.9610 0.9233 0.9268 0.9595 0.9727 0.9055 0.9925
MSAD 0.2364 0.0589 0.0479 0.0653 0.0627 0.0533 0.0418 0.1215 0.0268
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 6. Case 2: The comparison of HSIs denoising results with existing methods on the Pavia
University dataset: (a) ground truth of band 27; (b) noisy image; (c) NNM; (d) BM4D; (e) WNNM;
(f) WSNM; (g) LRTDTV; (h) 3DTV; (i) FastHyDe; and (j) the proposed method.

In Figure 7, the Gaussian noise cannot be completely removed by the NNM, WNNM,
WSNM and LRTDTV methods and the FastHyDe method cannot remove impulse noise. In
Figure 8, impulse noise and deadlines cannot be completely reduced by FastHyDe method,
and Gaussian noise is still in the images denoised by the NNM, WNNM and WSNM methods.
The proposed method achieves better performance compared with these existing methods.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. Case 3: The comparison of HSIs denoising results with existing methods on the SFD
dataset: (a) ground truth of band 35; (b) noisy image; (c) NNM; (d) BM4D; (e) WNNM; (f) WSNM;
(g) LRTDTV; (h) 3DTV; (i) FastHyDe; and (j) the proposed method.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 8. Case 4: The comparison of HSIs denoising results with existing methods on the SFD
dataset: (a) ground truth of band 21; (b) noisy image; (c) NNM; (d) BM4D; (e) WNNM; (f) WSNM;
(g) LRTDTV; (h) 3DTV; (i) FastHyDe; and (j) the proposed method.

In Figure 9, the noisy image suffered from the mixed noise, especially the high-intensity
Gaussian noise. The NNM, WNNM and WSNM methods are ineffective given the complex
noise distributions. The images denoised by the BM4D and FastHyDe methods still contain
the slight stripe noise. In contrast with these, our proposed method can preserve the
detailed image information, especially on the road part of the images.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 9. Case 5_1: The comparison of HSIs denoising results with existing methods on the Washing-
ton DC Mall dataset: (a) ground truth of band 18; (b) noisy image; (c) NNM; (d) BM4D; (e) WNNM;
(f) WSNM; (g) LRTDTV; (h) 3DTV; (i) FastHyDe; and (j) the proposed method.

The denoising images of Case 5_2 are presented in Figure 10. The existing methods
cannot completely remove the mixed noise. For example, the FastHyDe method performs
less satisfactorily when dealing with the stripe noise and deadlines. Compared with these,
the proposed denoising method achieves a significantly better performance in restoring the
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image details. To more clearly demonstrate the numerical results, Figure 11 shows the bar
charts of the quantitative evaluation of different HSI denoising methods.

To discuss the denoising efficiency among wavebands, we selected Case 5_2 to show
that the line charts of denoising efficiency vary with the waveband compared with existing
methods on the SFD dataset in Figure 12. It can be observed that the denoising efficiency
varies with the wavelength since the quality of each band in the original images is different.
The indicators of the proposed model have the smallest fluctuation range compared with
existing methods. For PSNR, the denoising indicator of the proposed model varies by
approximately 3 dB. Furthermore, for SSIM, the denoising indicator of the proposed model
varies less than 0.01. Moreover, the proposed model can attain higher MPSNR and MSSIM
values for most wavebands.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10. Case 5_2: The comparison of HSIs denoising results with existing methods on the Xiongan
New Area dataset: (a) ground truth of band 15; (b) noisy image; (c) NNM; (d) BM4D; (e) WNNM;
(f) WSNM; (g) LRTDTV; (h) 3DTV; (i) FastHyDe; and (j) the proposed method.
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Figure 11. Cont.
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Figure 11. The bar charts of the quantitative evaluation of different HSI denoising methods on five
noise cases: (a) MPSNR (dB); (b) MSSIM; and (c) MSAD.
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Figure 12. The line charts of the denoising efficiency vary with the waveband compared with existing
methods on the SFD dataset (Case 5_2): (a) PSNR (dB); and (b) SSIM.
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3.4. Ablation Experiments

To validate the effectiveness of the proposed network, our ablation experiments were
constituted of three aspects, including the network architecture, the joint loss functions and
the amount of training data.

For the network architecture, we used the UNet-based architecture and improved the
feature extraction by adding the RSSM residual blocks. Therefore, we compared UNet
with and without the residual blocks as the generator in the first ablation experiment. To
learn the noise distribution of the noisy images, we utilized the residual blocks instead
of the double convolutional layers. We believe that residual learning can focus on the
detailed differences between noisy images and noise-free images. Table 2 shows the first
ablation experimental results, including the mean values and deviations in which the best
performance for each noise case is marked in bold. As shown in Table 2, the quantitative
indicators of the proposed network with residual learning are better in all mixed noise
cases, proving that the residual blocks of UNet-based architecture are effective for the HSI
denoising task.

For the loss function, we combined the reconstruction loss, the structural loss and the
adversarial loss to jointly train the network with the total loss as L = λrLr + λsLs + λaLa
where we empirically set the λr = 100, λs = 1 and λa = 0.001 to keep the magnitude of
different losses to the same level, which is a common practice in the neural network training
with multiple losses. To further investigate the rationality and stability of the weight ratio,
we conducted additional experiments by varying the ratio of the weights to the balanced
and reversed order. Furthermore, we observed that the training process became much less
optimal and even unstable, which demonstrates the importance of keeping the magnitude
of losses at the same level. Moreover, the second ablation experiment was implemented
by using single loss (Re/St/Ad) and two combined losses (Re + St/Re + Ad/St + Ad),
respectively. Table 3 shows the second ablation experimental results, including mean values
and deviations, in which the best performance for each noise case is marked in bold. We
do not include the results of single loss St or Ad, and the combined loss St + Ad. This
is because the reconstruction loss is crucial for obtaining a decent denoising effect as it
minimizes the pixel-wise distance between generated images and noise-free images. The
training without the reconstruction loss easily leads to divergency. It is observed that, in
most mixed noise cases, the experimental results are gradually improved when the losses
are added, proving that each loss plays a necessary role in improving the final performance
of HSI denoising, especially with regard to the reconstruction loss.

For the amount of training data, we utilized 90% of the 3597 samples to train the
proposed network. To further investigate the amount of training data required for the
proposed model to start providing equivalent or even better results than the other methods
compared, we conducted the third ablation experiment on the percentage of training data.
We randomly selected 30%, 50% and 70% training data to train the proposed network with
the same settings as in Case 5_2. The experimental results are shown in Table 4. Three
line charts are plotted to demonstrate the results more clearly in Figure 13. From these
results, we can find that with approximately 30% training data, the performance of our
model already rivals those of compared methods, and more training data lead to results
with higher denoising quality.

3.5. Experiments on Real Data

To further verify the effectiveness of the proposed network, Indian Pines, EO-1 Hyper-
ion and Urban datasets were used in real-data experiments. The performance of the denois-
ing was measured by the visual denoising images and mean digital number (DN) values.
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Table 2. Quantitative evaluation of the ablation experiment on the SFD dataset: architecture.

Noise Case Index Origin U-Net Proposed

Case 1
MPSNR 29.8067 30.9705 ± 0.0164 44.9872 ± 0.0697
MSSIM 0.8284 0.8602 ± 0.0003 0.9957 ± 0.0002
MSAD 0.1121 0.0987 ± 0.0001 0.0176 ± 0.0001

Case 2
MPSNR 26.6115 37.2653 ± 0.0712 39.9983 ± 0.0625
MSSIM 0.6967 0.9788 ± 0.0003 0.9895 ± 0.0002
MSAD 0.2823 0.0431 ± 0.0004 0.0313 ± 0.0004

Case 3
MPSNR 26.2764 36.4807 ± 0.0646 39.1705 ± 0.0562
MSSIM 0.6967 0.9772 ± 0.0007 0.9877 ± 0.0003
MSAD 0.2823 0.0446 ± 0.0006 0.0356 ± 0.0004

Case 4
MPSNR 25.8886 36.2525 ± 0.0928 39.3835 ± 0.0762
MSSIM 0.6983 0.9766 ± 0.0004 0.9881 ± 0.0003
MSAD 0.2900 0.0457 ± 0.0008 0.0318 ± 0.0003

Case 5_1
MPSNR 18.2700 34.8893 ± 0.0877 37.6784 ± 0.0163
MSSIM 0.3281 0.9678 ± 0.0007 0.9793 ± 0.0003
MSAD 0.4330 0.0486 ± 0.0008 0.0387 ± 0.0004

Case 5_2
MPSNR 25.5904 36.3373 ± 0.0412 39.5645 ± 0.0421
MSSIM 0.6892 0.9725 ± 0.0002 0.9883 ± 0.0001
MSAD 0.2945 0.0459 ± 0.0003 0.0333 ± 0.0005

Case 5_3
MPSNR 32.4063 37.0978 ± 0.0979 40.6836 ± 0.0794
MSSIM 0.8100 0.9832 ± 0.0006 0.9908 ± 0.0003
MSAD 0.2537 0.0401 ± 0.0011 0.0301 ± 0.0006

Case 5_4
MPSNR 38.6909 38.7968 ± 0.0669 41.9246 ± 0.0590
MSSIM 0.8248 0.9862 ± 0.0008 0.9930 ± 0.0002
MSAD 0.2438 0.0383 ± 0.0006 0.0263 ± 0.0002

Table 3. Quantitative evaluation of the ablation experiment on the SFD dataset: loss functions. Re
means the reconstruction loss; St means the structural loss; and Ad means the adversarial loss.

Noise Case Index Origin Re Re + St Re+Ad Re + St + Ad

Case 1
MPSNR 29.8067 43.4532 ± 0.0896 44.5108 ± 0.0903 44.691 ± 0.0649 44.9872 ± 0.0697
MSSIM 0.8284 0.9950 ± 0.0002 0.9956 ± 0.0000 0.9957 ± 0.0000 0.9957 ± 0.0002
MSAD 0.1121 0.0228 ± 0.0002 0.0193 ± 0.0002 0.0185 ± 0.0001 0.0176 ± 0.0001

Case 2
MPSNR 26.6115 37.0614 ± 0.0768 39.7972 ± 0.0752 39.9942 ± 0.0575 39.9983 ± 0.0625
MSSIM 0.6967 0.9834 ± 0.0036 0.9892 ± 0.0002 0.9885 ± 0.0002 0.9895 ± 0.0002
MSAD 0.2823 0.0514 ± 0.0012 0.0327 ± 0.0003 0.0311 ± 0.0004 0.0313 ± 0.0004

Case 3
MPSNR 26.2764 36.6589 ± 0.0641 38.9176 ± 0.0542 38.9326 ± 0.0547 39.1705 ± 0.0562
MSSIM 0.6967 0.9805 ± 0.0011 0.9882 ± 0.0002 0.9872 ± 0.0005 0.9877 ± 0.0003
MSAD 0.2823 0.0530 ± 0.0006 0.0359 ± 0.0003 0.0360 ± 0.0005 0.0356 ± 0.0004

Case 4
MPSNR 25.8886 36.5323 ± 0.0942 39.1839 ± 0.0738 39.2645 ± 0.0996 39.3835 ± 0.0762
MSSIM 0.6983 0.9746 ± 0.0018 0.9887 ± 0.0004 0.9877 ± 0.0005 0.9881 ± 0.0003
MSAD 0.2900 0.0539 ± 0.0023 0.0362 ± 0.0009 0.0338 ± 0.0008 0.0318 ± 0.0003

Case 5_1
MPSNR 18.2700 34.669 ± 0.0780 37.6474 ± 0.0333 36.2212 ± 0.0609 37.6784 ± 0.0163
MSSIM 0.3281 0.9724 ± 0.0016 0.9796 ± 0.0003 0.9735 ± 0.0003 0.9793 ± 0.0003
MSAD 0.4330 0.0651 ± 0.0028 0.0394 ± 0.0001 0.0459 ± 0.0009 0.0387 ± 0.0004

Case 5_2
MPSNR 25.5904 36.417 ± 0.0999 38.951 ± 0.0534 38.247 ± 0.0831 39.5645 ± 0.0421
MSSIM 0.6892 0.9803 ± 0.0014 0.9872 ± 0.0002 0.9848 ± 0.0001 0.9883 ± 0.0001
MSAD 0.2945 0.0495 ± 0.0023 0.0379 ± 0.0005 0.0365 ± 0.0009 0.0333 ± 0.0005



Remote Sens. 2022, 14, 1790 18 of 23

Table 3. Cont.

Noise Case Index Origin Re Re + St Re+Ad Re + St + Ad

Case 5_3
MPSNR 32.4063 36.9874 ± 0.0815 40.1688 ± 0.0897 39.2202 ± 0.0622 40.6836 ± 0.0794
MSSIM 0.8100 0.9816 ± 0.0032 0.9903 ± 0.0001 0.9885 ± 0.0003 0.9908 ± 0.0003
MSAD 0.2537 0.0522 ± 0.0022 0.0320 ± 0.0006 0.0329 ± 0.0009 0.0301 ± 0.0006

Case 5_4
MPSNR 38.6909 36.8787 ± 0.0854 41.0764 ± 0.0969 40.8984 ± 0.0826 41.9246 ± 0.0590
MSSIM 0.8248 0.9844 ± 0.0026 0.9925 ± 0.0001 0.9913 ± 0.0002 0.9930 ± 0.0002
MSAD 0.2438 0.0564 ± 0.0015 0.0307 ± 0.0001 0.0294 ± 0.0003 0.0263 ± 0.0002

Table 4. Quantitative evaluation of the ablation experiment: training percent, where 30%, 50% and
70% and 90% denote the percent of training samples (Case 5_2).

Train Percent Origin 30% 50% 70% 90%

MPSNR 25.5904 36.7354 38.0446 39.0519 39.5645
MSSIM 0.6892 0.9778 0.9847 0.9875 0.9883
MSAD 0.2945 0.0408 0.0382 0.0347 0.0333
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Figure 13. The line charts of the percentage of training samples and indicators (Case 5_2): (a) MPSNR
(dB); (b) MSSIM; and (c) MSAD.

In the Indian Pines dataset, the first few bands and several of the middle bands
suffered from Gaussian noise and impulse noise. We chose band 1 to show the denoising
results of existing methods and the proposed method. Figure 14 shows the visual results of
the denoising image on the Indian Pines dataset. It can be observed that Gaussian noise
and impulse noise remain in the denoising image with the NNM, WNNM, WSNM and
FastHyDe methods, and the BM4D method cannot remove the impulse noise in the original
image. LRTDTV and 3DTV generate blurry images and lose some detailed information.
The proposed method not only achieves the best performance on Gaussian and impulse
noise removal but also maintains detailed information of the whole image.

In the Urban dataset, some middle bands strictly suffered from Gaussian noise, im-
pulse noise, stripe noise and deadlines. We chose band 108 of the Urban dataset to demon-
strate the visualized results against the compared methods. As shown in Figure 15, we
observe that the original image of band 108 is severely degraded by the noise. The NNM,
BM4D, WSNM, LRTDTV and FastHyDe methods cannot handle such mixed noise well, and
there are still kinds of noise that remain in the processed images. Although the WNNM and
3DTV methods remove the mixed noise relatively well in the Urban dataset, the detailed
information of the original image is simultaneously lost. Compared with these methods,
the proposed model not only reduces the severe mixed noise but also maintains detailed
image information.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 14. Real-data experiments of HSI denoising results against existing methods on the Indian
Pines dataset: (a) original image of band 1; (b) NNM; (c) BM4D; (d) WNNM; (e) WSNM; (f) LRTDTV;
(g) 3DTV; (h) FastHyDe; and (i) the proposed method.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 15. Real-data experiments of HSI denoising results against existing methods on the Urban
dataset: (a) original image of band 108; (b) NNM; (c) BM4D; (d) WNNM; (e) WSNM; (f) LRTDTV;
(g) 3DTV; (h) FastHyDe; and (i) the proposed method.

In the EO-1 Hyperion dataset, some of the bands are seriously affected by the Gaussian
noise, stripe noise and deadlines. We chose band 36 to show the denoising results of the
compared methods and proposed method. Figure 16 shows the visual results of the
denoising image on the EO-1 Hyperion dataset, including partially enlarged details marked
with red rectangles. As shown in Figure 16a, band 36 is corrupted by Gaussian noise,
stripe noise and deadlines. In a remote sensing image, the DN values of pixels on the same
column are often derived from the same detector pixel. Therefore, the smoothness of the
vertical mean DN value curves represent the noise intensity of the images, especially for
the stripe noise and deadlines. To evaluate the denoising performance and the detailed
information reservation of HSIs, the vertical mean DN value curves are given in Figure 17.
Although the BM4D, LRTDTV and FastHyDe methods can reduce certain noise, the mixed
noise remains in the denoising images. The NNM, WNNM, WSNM and 3DTV methods
can reduce most noise in the image yet lose the detailed information. Compared with the
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above methods, the proposed method achieves the best performance in reducing mixed
noise while maintaining the local details.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 16. Real-data experiment of HSI denoising results compared with existing methods on the
EO-1 Hyperion dataset: (a) original image of band 36; (b) NNM; (c) BM4D; (d) WNNM; (e) WSNM;
(f) LRTDTV; (g) 3DTV; (h) FastHyDe; and (i) the proposed method.



Remote Sens. 2022, 14, 1790 21 of 23

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(a)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(b)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(c)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(d)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5
M
e
a
n
 
D
N
 
V
a
l
u
e
s

(e)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(f)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(g)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(h)

0 50 100 150 200

Column

0.2

0.3

0.4

0.5

M
e
a
n
 
D
N
 
V
a
l
u
e
s

(i)

Figure 17. Vertical mean DN value on the EO-1 Hyperion dataset: (a) original image of band 36;
(b) NNM; (c) BM4D; (d) WNNM; (e) WSNM; (f) LRTDTV; (g) 3DTV; (h) FastHyDe; and (i) the
proposed method.

4. Conclusions

In this paper, we propose an adversarial learning-based model for HSI denoising
tasks, especially the mixed noise cases. The proposed network consists of a generator and
a discriminator. For the generator, we improved the basic UNet structure by adding the
RSSM to capture the noise distribution in the original HSIs instead of learning the direct
mapping from noisy HSIs to noise-free HSIs. For the discriminator, a network with the
MFFM was employed to extract the multiscale feature information to distinguish whether
the generated HSIs were real or not. To focus on the structural similarity and reality of the
generated images, joint loss functions are utilized during training including reconstruction
loss, structural loss and adversarial loss.

We test five types of simulated noise cases including Gaussian noise, impulse noise,
stripe noise, deadlines and their mixture. To evaluate the performance of the proposed
network, we experiment on both public HSI datasets and the proposed SFD dataset. Com-
prehensive experiments including comparative experiments and ablation experiments
verified the advantages of the proposed network against existing HSI denoising methods
and the effectiveness of the proposed network. As for future work, we will further in-
vestigate the design of a light-weighted version of the proposed network architecture to
maintain the model performance under constrained computation scenarios.
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