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Abstract: Currently, eLoran is the ideal backup and supplement for global navigation satellite
systems. The time synchronization accuracy between stations in the eLoran system has improved,
providing conditions for eLoran pseudorange positioning. The pseudorange positioning of eLoran is
a nonlinear least-squares problem and the location of the eLoran transmitting stations may cause
the above problem to be non-convex. This makes the conventional pseudorange positioning al-
gorithm strongly depend on the initial value when solving the eLoran pseudorange positioning.
We propose a shrink-branch-bound (SBB) algorithm to solve the eLoran pseudorange positioning
initialization problem. The algorithm first uses a shrink method to reduce the search space of the
position estimator. Then, optimization is performed using a branch and bound algorithm within
the shrunk region, where a trust region reflective algorithm is used for the lower bound process.
The algorithm can help the receiver to complete the initial positioning without any initial value
information. Simulation experiments verify that the algorithm has a success rate of more than
99.5% in solving the initialization problem of eLoran pseudorange positioning, and can be used as
an initialization algorithm for pseudorange positioning problems for eLoran or other long-range
terrestrial-based radio navigation system.

Keywords: pseudorange positioning; branch and bound; nonlinear least squares; eLoran; trust region

reflective algorithm; initialization

1. Introduction

Global navigation satellite system (GNSS) provides all-weather, all-day positioning,
navigation, and timing (PNT) services in most outdoor environments. However, in cities
or canyons, GNSS performance can degrade due to multipath or poor visibility [1-3]. In
addition, the high vulnerability of GNSS to interference also seriously affects the security
of PNT services [4-6]. Many algorithms have been developed to mitigate the performance
degradation of GNSS receivers in dynamic multipath environments [7-10]. However,
these algorithms can only improve receiver performance under certain conditions, and
it is still difficult for GNSS receivers to work properly in scenarios with fewer visible
satellites, such as cities or canyons. Geomagnetic, Wifi, Doppler, and pseudolite-based
positioning technologies have been developed for GNSS denial scenarios [11-14], but these
technologies can only provide positioning services in small areas, which cannot meet the
positioning requirements of large cities or canyon scenes. In recent years, the eLoran
system has regained attention due to its unique system performance, which is expected
to solve the existing problems of GNSS [15,16]. The eLoran system is a terrestrial-based
radio navigation system that transmits navigation information through a pulse signal with
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a carrier frequency of 100 kHz. The signal frequency band transmitted by the eLoran
system is low and the transmission power is high. Therefore, the eLoran system has
the advantages of wide coverage and good anti-interference performance, making it a
good backup for GNSS [17-19].The traditional Loran navigation system uses a hyperbolic
positioning method based on the time difference of arrival (TDOA) [20]. The receiver can
only use the stations in a single chain for positioning. Therefore, it has the disadvantage of
poor geometric dilution of precision (GDOP), limiting its positioning accuracy. In addition,
the TDOA observations include delay errors along the two propagation paths, which makes
it difficult to measure and remove abnormal propagation delays. This positioning method
cannot directly solve the clock deviation between the receiver and the transmitting station.
The eLoran positioning method is based on pseudorange measurement and uses a circular
positioning method based on the time of arrival (TOA). This method has the following
advantages. First, the receiver uses the signals of multiple chains and multiple stations for
positioning, which significantly improves the GDOP factor. Second, the receiver can directly
complete the clock error calculation. Third, it can be easily integrated with the wireless
positioning system, which helps build an integrated world-ground PNT system [21,22].
Due to limited conditions, the eLoran positioning failed to attract attention in the past. With
the transformation and upgrading of eLoran stations, the time between stations in different
chains has been synchronized to Universal Time Coordinated (UTC) through technologies
such as optical fiber, and the time synchronization accuracy reaches the nanosecond level,
providing the basis for the use of eLoran positioning technology. In addition, the application
of digital technology in eLoran receivers has improved their sensitivity, which allows them
to receive signals from multiple chains and stations simultaneously. Owing to this technical
background, the Loran positioning method has regained attention in recent years.

Groves briefly introduced the Loran pseudorange positioning method and pointed
out that it was processed by analogy with GNSS-related methods [23]. Yan analyzed the
feasibility of Loran pseudorange positioning and the influence of additional secondary
factor (ASF) errors on various errors in pseudorange positioning [24]. Kim used the eLoran
pseudorange measurements from multiple chains for positioning and performed real-world
testing [25]. Peterson and Fang studied the integrated positioning of eLoran and GNSS and
pointed out that eLoran pseudorange positioning is a necessary condition for integrated
positioning [22,26]. In the above-mentioned literature, eLoran pseudorange positioning
is regarded as a nonlinear least squares problem, and local optimization algorithms such
as Newton-Raphson algorithm (NR) are used to solve it. However, the eLoran system
is not specifically designed for pseudorange positioning, and the location of the eLoran
transmitting station may make the problem non-convex. In addition, the nonlinear term
in the eLoran pseudorange function is a complex nonlinear function with trigonometric
functions, which may cause an ill-condition problem when using the first-order or second-
order derivation information to optimize the objective function. Therefore, for many
existing nonlinear least squares algorithms, when the selected initial values are inaccurate,
convergence problems to local solutions or erroneous convergence results occur. This
initial value dependence affects the ability of the receiver to locate autonomously and
causes the receiver to experience localization errors under cold start. At present, there is
no literature on the problem of eLoran pseudorange positioning under insufficient initial
value information.

This study proposes a shrink-brand-bound (SBB) algorithm to solve the eLoran pseu-
dorange positioning problem. The algorithm first obtains the shrunk region of the esti-
mator through the shrink algorithm. The positioning problem is then solved within this
compressed feasible region using a branch-and-bound algorithm, where a trust region
reflective algorithm is used for each bound process [27,28]. The SBB algorithm has a global
optimization capability and can achieve accurate positioning solutions without initial
value information. The algorithm avoids the problem faced by the traditional nonlinear
least-squares method by relying on the initial value when solving the Loran pseudor-
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ange positioning, which further improves the Loran positioning technology based on
pseudorange measurement.

The rest of the paper is organized as follows. In Section 2, first, we describe the eLoran
pseudorange measurement method and the error in the pseudorange. Then, we build a
mathematical model of the eLoran pseudorange positioning and analyze the shortcomings
of the NR algorithm in solving it. The principle of the SBB algorithm and the details of each
part of the algorithm are introduced. In Section 3, we evaluate the performance of the SBB
algorithm and other nonlinear least squares algorithms in solving the eLoran pseudorange
positioning problem without initial value information through simulation experiments.
Finally, we present the main conclusions of this paper.

2. Materials and Methods

In this section, we first introduce the pseudorange measurement technology and
the error in the pseudorange. Secondly, we construct the mathematical model of eLoran
pseudorange positioning and analyze the advantages and disadvantages of the traditional
NR algorithm. Finally, we give the principle of the SBB algorithm and the details of each
part of the algorithm.

2.1. Principle of eLoran’s Pseudorange Measurement and Error Analysis

The eLoran positioning technology based on pseudo-range measurement includes
two parts: pseudorange measurement technology and positioning algorithm. This section
briefly describes the basic principles of pseudorange measurement technology and the
error analysis in pseudorange measurement.

The basic principle of eLoran pseudorange measurement is shown in Figure 1. The
receiver obtains the signal propagation delay or time of flight (TOF) by measuring the
difference between the signal time of arrival (TOA) and the signal time of transmission
(TOT). Usually, a certain characteristic point on the eLoran signal is selected as the TOT, such
as the initial point or the zero-crossing point in the third circle. The TOA is obtained through
the process of a group repetition period, carrier synchronization, and cycle identification.
More details can be found in the references [24,29,30].

TOT
A

0
A t

Transmitter

A\ 4

TOA
TOF A

0
Y g

Reciever Ot b

Figure 1. Schematic of eLoran pseudorange measurement principle.

The eLoran signal is mainly propagated by ground waves and its propagation process
is affected by terrain, weather, and other conditions. Interference and noise also affect
the TOA measurement during the receiver measurement process, so the TOF, which
contains various additional time delay items, is not the true distance [31,32], as shown in
Equation (1):

TOF = TOA — TOT = Tp + AASF(t) + 0t + t, + 71(t), )
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where 6t is the clock deviation between the receiver and the transmitting station, ¢, is
the receiver delay, 7 (t) is the delay deviation caused by interference and noise in the TOF
measurement process, and AASF(t) is the time-related delay due to the ground wave
propagation process time-varying factors such as weather. Tp is the delay term related to
the propagation path as in Equation (2)

Tp = PF + SF + ASF, @)

where PF is the propagation delay of the signal through the atmosphere and is represented
by Equation (3)
pF=" 'C"s, 3)

where c¢ is the speed of light in vacuum, s is the distance between the signal from the
transmitter to the receiver; 7, is the refractive index of the atmosphere, which represents
the ratio of the signal propagation speed in the atmosphere lower than the propagation
speed in a vacuum. SF is the propagation delay of the signal through the entire seawater
path, which is mainly related to the conductivity of the propagation path. ASF represents
the propagation delay of eLoran signal caused by passing through a heterogeneous path
of non-full seawater, which is mainly affected by parameters such as distance, surface
impedance of the propagation path, and topography. ASF is an important factor affecting
the positioning accuracy of eLoran, and it is often calibrated by eLoran differential station
or ASF map [33-36].

In Equation (1), #(t) and AASF(t) are time-related delay items, which are difficult
to calibrate. Figure 2 shows the statistical graph of the raw TOF value obtained by the
receiver over time. The signal in the picture was transmitted from the Pucheng transmitting
station (109.5438°E, 34.95043°N) and received in Lintong (109.2221°E, 34.3686°N). The
fluctuation of the blue line in Figure 1 represents the TOF, which is affected by noise
interference and its standard deviation is approximately 9 ns. The red line is the fitted curve
of the data shown in blue, representing the fluctuation value with a standard deviation
of approximately 10 ns. In order to present these time delays more clearly, we use the
Fourier transform to analyze the spectrum of Figure 2a [37], and the obtained spectrum
amplitude is shown in Figure 2b. In Figure 2b, we omit the spectrum after 0.001 Hz because
its amplitude is too small. Among them, the amplitude at the lowest frequency is about
12 ns, which represents the deviation of the fitted curve in Figure 2a, that is, the delay
introduced by AASF(t). Other amplitudes due to measurement noise or interference are
around 6 ns. As regards the delay error caused by measurement noise and interference #(t),
it is difficult to correct, so we uniformly regard it as noise. The error caused by AASF(t) is
often as high as more than 10 ns, so in high-precision eLoran positioning applications, the
ASF prediction model is often used for calibration.

The propagation delay error calibration technology is essential for achieving high-
precision positioning. There has been considerable research on this aspect [38—40]. Now
consider the situation after the delay value is calibrated:

TOF, = T+ 6ty +7(1), (4)

where TOF, is the calibrated TOF, 7 is the time delay value of the signal from the trans-
mitting station to the receiver, 6t; is the clock deviation between the receiver and the
transmitting station, #(¢) is the observation error introduced by the receiver due to time-
varying factors such as interference, noise and AASF(t). The t,, SF and ASF in Equation (1)
were calibrated. Multiplying both sides by the speed of light is the following pseudorange
observation equation:

p=Ri+pp+1, &)

where p is the pseudorange observation value of the station received by the receiver, R,
is the distance between the transmitting station and the receiver, pj, is the distance error
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caused by the clock deviation between the receiver and the transmitting station, and 7 is
the distance error representing all other errors that are difficult to calibrate.
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Figure 2. The schematic diagram of measured propagation delay. (a) time delay in time domain
(b) the amplitude spectrum of delays in the frequency domain.

It is worth noting that the eLoran signals mainly propagate through ground waves,
and the transmitter and receiver are usually not within the line-of-sight range, so R; cannot
be calculated directly using the Euclidean distance formula but needs to be calculated using
the great circle distance. The great circle refers to the shortest distance between two points
on the surface of a sphere or ellipsoid. The Andoyer-Lambert formula is commonly used
in the navigation field to calculate the distance between two points on the earth [41,42].
Suppose the position of the i-th station of eLoran is (A, ¢'), and the position of the receiver
is (A, ¢). Andoyer-Lambert’s great circle distance formula is:

R = ap(® 4 A, ©6)
cos PV = sin (¥ sin ¢ 4 cos () cos @ cos(A — A(D)
AS=a . @)

f [sinwmftp(l) 2 B sintp(i)+1p(f>

{Egl (sin g+ sing)” — SMEEE (sing — sing ()]

Among them, Al (pi and A, ¢ are the longitude and latitude of the transmitting station
and the receiver, respectively, and ¢ is the geocentric angle between the i-th eLoran station
and the receiver. f and a are the basic geodetic parameters based on WGS-84; the former is
the flattening of the ellipsoid, and the latter is the major axis radius of the reference ellipsoid.

2.2. eLoran Pseudorange Positioning Model and Conventional Positioning Algorithm

The eLoran pseudorange positioning is solving the estimator x = [ ¢ A 6t ]T.
Since the eLoran positioning is a plane positioning system, we only estimate the longitude A
and latitude ¢. The principle of eLoran pseudorange positioning is shown in Figure 3.
Each circle takes the transmitting station as the center and the calibrated pseudorange
observation between point A and each transmitting station as the radius. The circles
represent all possible solutions to the pseudorange observation of Equation (5). Since x
contains three unknowns, the pseudorange observation equations of at least three stations
are required to determine x.
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Tr = Transmitting Station
A =Test Point

Figure 3. eLoran pseudorange positioning principle.

When we have no less than three pseudorange observation equations, we obtain x by
solving the following equation set:

oM — R?(gfm) —pp(6t) =0
o =R (9,2) = py(31) = 0 ®)
o™ — R (g, 1) - py(5t) = 0

The superscript of Equation (7) represents the eLoran station number. Owing to the
existence of noise in the pseudorange observations, Equation (7) is often transformed into
the following least-squares problem:

N . .
min{F(x)} = mm{z P =R (g, )~ pbwt)]z}. ©)

i=1

Equation (9) is the basic mathematical model of eLoran pseudorange positioning.
The NR algorithm is widely used to solve the above problems. The algorithm linearizes
Equation (9) through Taylor’s formula and transforms it into a linear least-squares problem.
The basic process is as follows:

First, we perform Taylor’s first-order expansion of Equation (9) at x;_1, and obtain:

A-Ax =B, (10)
where : )
aRd,k—l aRd,k—l 1
¢ oA
2 2
IRGk1  ORGx 1
H=| 9% oA (11)
Wiy Riy o

¢ oA
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Pk — Pk—1
Ax= | Ap—Ap1 |, (12)
Ot — Stye_q
Pt = (Rix1 +onk1
2 2
p7 = (Rii—1 + Pk
B=|' ak- . (13)
p" = (R:il,k—l +pb,kfl)
Then, using the linear least-squares algorithm, the result is:
Ax = (HTH) 'HTB. (14)
Finally, the state estimator is:
/;k = Xg_1+ Ax. (15)

The advantage of this method is that it is simple, and if a suitable initial value xp is
selected, the convergence speed is fast and the solution is accurate. However, F(x) is
affected by the geometry of eLoran stations and may have local minima. Consider a special
case, as shown in Figure 4, in which Tr represents the transmitting station, A is the test point,
and the four stations are in linear distribution; a common feature as stations are often built
along the coastline. It can be seen from the contour line of the function F(A, ¢) that there is a
local minimum value W in F(x). This means that when using local optimization algorithms
such as the NR algorithm [43] or the Levenberg-Marquardt (LM) algorithm [44] to solve
the above problem, an inappropriate initial point will cause the algorithm to converge to a
local minimum. We will confirm this with a simulation in Section 3. In addition, since the
great-circle distance function contained in the eLoran pseudorange equation is a nonlinear
term with trigonometric functions, which means that the optimization using the first-order
and second-order derivation information of the objective function may face the problem of
ill-condition, thereby converging to an erroraneous result. In view of this, it is necessary
to design a global optimization algorithm to satisfy the positioning solution in the case of
eLoran receiver cold-start.

x10°
47° T T T T T T T T — 2.5

ucr 2

41°

38°

35° |
1.5
32°

Latitude(N)

29°

26°

23°

20° L L P~ L L L 0.5
105°  108° 111° 114° 117° 120° 123° 126° 129° 132°

Longitude(E)

Figure 4. Contour map of F(¢, A) when the transmitting stations are linearly distributed.
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2.3. The Shrink-Branch-Bound Algorithm

We define the eLoran positioning solution as the following optimization problem:
{x*|F(x*) = Fpin(x),x € D}, (16)

where F : D — R is the objective function, and F is defined in Equation (9). D is the feasible
region of x, or search space. A and ¢ in x have the following constraints

—nm<A<m,
XED_{—n/2§¢§n/2’ 17)

The above boundary constraints represent the range of latitude and longitude coordi-
nates of the earth. Since p;,(0t) and 6t have a linear relationship, the selection of the initial
value of 4t has no effect on the optimization process, so there is no need to consider the
range of t. From now on, we will refer D only to the feasible regions of A and ¢.

The SBB algorithm is a modification of the BB algorithm for the eLoran positioning
problem. Before introducing the SBB algorithm, the BB algorithm needs to be described
first. To solve the problem P, the BB algorithm first obtains a feasible solution as the

optimal solution xeD through a certain algorithm, and then iteratively divides the search
space D into smaller subsets D;j, Dy, ... , Dsy. In each iteration process, when a solution
x1 with a better objective function value can be found in a subset Dy;, the current solution

is updated to x = xj, and the subset is divided into smaller subsets; the above process is
repeated. If no solution in the subset is better than X, the subset is pruned. When no subset

can be pruned, x is the optimal value of P, and the iteration stops. The pseudocode for the
generic BB algorithm is given in Algorithm 1 [28,45].

Algorithm 1 Generic Branch-and-Bound

1. Set L = {D}, initial x* = x
2. While L # @
Select a subproblem D; from L to explore

if a solution xq € {x € Ds|F(x) < F(?) } can be found, then x =x;

3
4
5 if Ds cannot be pruned:

6. Partition D; into Dyq, D, ..., Dsy
7 Insert Dg7, Dgp, ... , Dsy into L
8 Remove D; from L

9.

Return x

The proposed SBB algorithm adds the process of shrinking the feasible region based
on the BB algorithm and designs the corresponding branching strategy, bounding method,
and pruned strategy according to the eLoran positioning problem. The basic flow chart of
the SBB algorithm is shown in Figure 5. We introduce the SBB algorithm from the shrink
method and the BB algorithm.
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Figure 5. A diagram of the shrink-branch-bound algorithm.

2.3.1. The Shrink Method

From the basic principle of the BB algorithm, the search space D affects the amount
of computation of the algorithm. If D can be shrunk, the subsequent BB algorithm can be
significantly simplified. The range of D given by Equation (9) is derived from the range of
latitude and longitude of the earth. Due to the limited coverage of the eLoran station, we
can reduce D according to this feature.

The transmitting power of the eLoran transmitting station is usually fixed, and the
eLoran receiver can receive signals from 800 km to 2500 km away from the transmitting
station owing to the difference in the propagation path. When the receiver receives signals
from multiple stations, it must be within the intersection of the coverage areas of these
transmitters. Setting the range of this intersection as D;, Figure 6 shows the basic schematic
for determining D;. The observable stations are TR1, TR2, TR3, and TR4. The prime
vertical arc length between TR2 and TR4 is W, which can be estimated by Equation (18);
the meridian arc length between TR1 and TR3 is L. It is estimated by Equation (19).

L= Re((Pmax - (Pmin)r (18)

W =R, COS(@) ()\max - Amin)r (19)
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Figure 6. Shrinking diagram, (a) When Q > W, Q > L, the range of D;. (b) WhenQ < W, Q < L,
the range of D;.

Assuming that the maximum working distance between the receiver and the transmit-
ting station is Q, the range in the blue box of Figure 6 is D;. Figure 6a,b show D; under
different conditions. The value of Ds can be calculated by Equation (20).

Ve A = [ min(h) - {250, max(y) - 2 ]
9 € lon o = [ min(p) — G2, max(gy) ~ 2

e

(20)

where R, is the equivalent radius of the earth under the WGS-84 model. ¢ is the average
latitude of the four stations. In practical applications, the setting of Q does not need to
be precise but can be set as the maximum propagation distance according to the receiver
performance and actual environment. In addition, Equation (20) is a general equation not
limited to the two cases shown in Figure 6a,b. Therefore, once the receiver has identified
the station information, Equation (20) can be used to calculate Ds.

2.3.2. The Branch and Bound Method in SBB Algorithm

The proposed branch-and-bound algorithm is as follows: First, a feasible solution X of

F on D; is obtained through a shrink algorithm, and X is assumed to be the global optimal
solution. Then, we divide D; into Dgjand Dy, and calculate the lower bounds F; (x;) and
F(x) of function F on feasible domains Dy; and Dg;. We compare F; and F, and retain the
subset Dy; that has a lower bound F;, where i = 1,2. Thereafter, we compare the order of

F; and F;. If the order of F; is smaller than F;, we update the solution X = x1, and divide
D;; again and repeat the above steps. If F; and F; are of the same order, or the order of F; is

less than F;, then x is the global optimal solution. The pseudocode of the SBB algorithm is
shown in Algorithm 2.

Line 3 of the pseudocode is the branch strategy and we adopt the binary branch
scheme as shown in Figure 7. The basic division principle is to make a vertical line at the
midpoint of the broadest side of D; to bisect Ds. Because the number of local minima on
the F function is small, there is no need to divide D; too much, and this binary branch
strategy can effectively reduce the amount of calculation without losing the accuracy of
the algorithm.
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Algorithm 2 SBB Algorithm

1. Shrinking D to D;, using Equation (20)
2. Take the initial value xy € D, use TRR algorithm to calculate Fs(x) = {min(F)|x € Ds,xo}
3. Branch Ds into Dy and Dygp.
4. Calculate F; = {min(F)|x € Dg1,Xp} and F, = {min(F)|x € Dg, %o} and their corresponding
solutions x; and xp.
5. Fr, = min{F;, F} and F;, where k € {1,2},
6.1f £ < p,
Then x* = Q, the iteration ends;
70 E >,
Then Fs = F, Ds = Dy, x = Xk, and repeat steps 3-5.

s2

Figure 7. Diagram of the binary branching strategy.

In lines 2 and 4 of the pseudocode, it is necessary to calculate the lower bound of
the objective function F in the specified feasible region, that is, to solve the following
mathematical equation:

{XS|F(XS) = Fyin, X € Ds} (21)

D; is determined by Equation (20). Equation (21) is a nonlinear least-squares problem
with box constraints, which can be solved by the trust region reflective (TRR) algorithm.
Based on the trust region algorithm, the trust region reflective method transforms the
boundary-constrained optimization problem into an unconstrained optimization problem
through reflection transformation so that each iteration result satisfies the boundary con-
straints [27]. The TRR algorithm uses the function g(s) to fully approximate the behavior
of the function F(x) in the neighborhood N of x;, and find the tentative step s in this
neighborhood. The pseudocode of the TRR algorithm is shown in Algorithm 3. In lines 3
and 4 of the pseudocode of Algorithm 3, the trust region model to be solved is as follows:

min{ q(s) = 1sTHs +sTg, |s|| <N }, (22)

where ¢ is the gradient of the current F(xy), H is the Hessian matrix or the approximation of
the Hessian matrix of F(x), N is the trust region, and || || is the 2-norm. For the solution of
Equation (22), please refer to the literature [46,47]. Details of the reflection transformation
method in line 5 can be found in the literature [27]. The approximation factor p; of q(si) to
F(sk) in line 6 can be given by Equation (23):

_ FO4) = F(x + %)
o= T F ) —q(sk)

When py, is greater than the set value y, it means that the current approximation effect
of q(si) to F(xi) is good and the update step is x¢ 1 = x; + Nj. Otherwise, the trust region
radius Ny needs to be adjusted, the trust region sub-problem solved again, and the above
process repeated.

(23)
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Algorithm 3 TRR Algorithm

1. Initial xg, Np and u

2. While g(x;) > u

3. Build a trust region model 4(s)

4. Solve the trust region subproblem, and get sj

5.1f s ¢ Ds

6 Perform a reflection transform on s

7. Calculate the approximation py of 4(si) to F(sx) and update sy or x;
8. Return x

The TRR algorithm can make full use of the feature that the BB algorithm divides the
feasible region. When the feasible region is divided, the box constraints will continue to
shrink, and the probability of the trust region algorithm converging to the global optimal
value will continue to increase. Using the TRR algorithm to obtain the lower bound of F
under different feasible regions, the following inequalities must be satisfied.

{Rsh @
where
Fs = {Epin|x € Ds, %o}, (25)
Fy = {Fuin|x € Ds1,%0}, (26)
Fy = {Fuin|x € Ds2, %0}, (27)

Lines 5 and 6 of Algorithm 2 are the verification phase. We use u to verify the
convergence process, and y can be a constant less than 5. When F;/F;, < y, it means that
F; and Fj, are of the same order, and the current iteration value is close to converging to
the global optimal value, and the iteration ends. Otherwise, the above branch and bound
process needs to be repeated.

2.3.3. Complexity Analysis

The main computational complexity of the proposed SBB algorithm is related to the
number of branch iterations N and the convergence accuracy ¢. In each iteration, the main
computational complexity is related to the update of the bounding process of F(x). More
specifically, when we set the norm of the gradient of the solution to be | VF| < ¢, the
upper bounds of the complexity required to solve steps (2) and (4) are O(¢~2) and O(2¢2),
respectively [48]. Considering the number of branch iterations N, the upper bound of the
complexity of the SBB algorithm is O((2N + 1)e~2). The upper bounds of the complexity
of the following algorithms are shown in the Table 1.

Table 1. Algorithms Computational Complexity Comparison.

Algorithms Computional Complexity
NR [49] O (kn*m)
LM [50] O(e2)
Dogleg/TTR [48] O(e7?)
SBB O((2N +1)e7?)

The above table shows the upper bound of the computational complexity of different
algorithms. Among them, the LM algorithm, the Dogleg algorithm, and the TTR algorithm
are all Cauchy-related algorithms or Newton-like algorithms, and the upper bound of their
complexity is O(e2). The complexity of the NR algorithm is related to the number of
iterations and the matrix calculation, where k is the number of iterations required, and m
and n represent the dimensions of the estimator and the number of equations, respectively.
It can be found that the complexity of the SBB algorithm compared with other algorithms
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mainly lies in N. Since we have shrunk D to Ds, this makes the number of branches N
usually small, and we will confirm this in simulation experiments.

3. Results

The SBB algorithm is used to solve the initialization problem of eLoran pseudorange
positioning. Therefore, the evaluation of the algorithm is mainly from two aspects. First,
the algorithm should still be able to solve the position correctly when no initial value is
available, which means that given a random initial value, the algorithm should be able
to solve the position accurately. Secondly, the computational complexity of the algorithm
should be at a reasonable level so that it can be implemented in the receiver. Based on the
above evaluation criteria, this section is organized as follows: we first set the simulation
parameters according to the actual station distribution. Then, the performance of various
algorithms in solving the eLoran pseudorange positioning problem is compared. Finally,
the reliability of the SBB algorithm was verified through simulation.

3.1. Simulation Parameter Settings

Assuming that the receiver at point A receives the signals from the four eLoran
transmitting stations shown in Table 2, the calibrated pseudorange observations and
geodesic distance values between point A and eLoran stations are shown in Table 3,
and the atmospheric refractive index n, is 1.000315. Where the calibrated pseudorange
observations p are as described by Equation (5), they only include the clock deviation 6t
and the observation error 1 caused by time-varying delay factor. We set the clock error dt
to be 5 ps and 7 follows a normal distribution, that is, 7 ~ N(0, 50).

Table 2. Transmitting station location and coordinates.

Transmitting Station Mark Position Longitude (E) Latitude (N)
M Rongcheng 122.3228 37.0644
T Helong 129.1075 42.7199
Y Xuancheng 118.886 31.0689
Z Raoping 116.8958 23.7239

Table 3. Distance information from point A to each station.

Test Point Transmitting Distance PF Pseudorange
(@*,A*) (N,E) Station (Ry/m) (ps) Observations (p/m)
M 1,128,758 3766.316 1,130,278
A T 1,806,302 6027.074 1,807,799
(27,124) Y 672,027 2242.348 673,547
z 801,620 2674.758 803,112

3.2. Analysis and Comparison of Simulation Results

Figure 8 shows the location of the transmitter station and receiver on the map. To
clearly show the influence of (¢, A) on F(x), the contour of F(¢, A) is shown in Figure 9,
where 6t is set to a known value. The four black contours in Figure 9 are, respectively,
surrounded by the solution sets of the four observation equations. The contour shape shows
the non-convexity of F(¢, A), which is mainly related to the topology of the transmitting
station. Take A as the test point and select the four positions shown in Table 3 as the initial
value points. Since dty has no effect on the optimization process, it will always be set to 0 in
subsequent simulations.
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Figure 9. Contour plot of F(¢, 7).

Since the initialization problem of eLoran has not been studied in the literature, there
is a lack of competing algorithms for performance comparison. To this end, we select four
commonly used nonlinear least squares methods, namely, the NR algorithm, the Levenberg-
Marquardt (LM) algorithm, and the trust region Dogleg algorithm to compare with the SBB
algorithm. The NR algorithm is a commonly used algorithm in positioning and is widely
used in various pseudorange positioning scenarios. Its advantage is that the calculation is
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simple, and if the initial is suitable, it will converge quickly. Currently, only this algorithm
is mentioned in the existing papers to solve the eLoran localization problem. The LM
algorithm is an algorithm that combines the steepest descent method and Newton’s method,
and is currently widely used in nonlinear least squares. It is characterized by considering the
stability of the steepest descent method and the fast convergence characteristics of Newton’s
method. This algorithm is a benchmark algorithm for solving nonlinear least squares
problems based on the derivation algorithm, and is widely used in various scenarios.
The LM algorithm can represent a series of scenarios based on the derivation algorithm to
demonstrate the problem of solving the eLoran localization problem based on the first-order
derivation and the second-order derivation algorithm.

The trust region Dogleg algorithm is representative of another large class of algorithms
for solving nonlinear least squares algorithms. It is different from the line search algo-
rithm; the algorithm first sets the step size, and then determines the search direction. The
advantage of this algorithm is that it does not require a line search process when solving
complex nonlinear least squares problems. Furthermore, even if the condition number
of the objective function is poor, it is easy to introduce second-order information of the
function. The above three algorithms represent the three most commonly used ideas for
solving nonlinear least squares problems. The results are shown in Table 4.

Table 4. Convergence results of conventional algorithms under different initial points.

Point

Initial Points

NR Results

LM Results

Dogleg Results

SBB Results

(97, A7) (N, E)

(f/’o/ )‘0) (N/ E)

(¢,A) (N, E)

(¢,A) (N, E)

(¢,A) (N, E)

(¢,A) (N, E)

A (27,124)

0,0
28,125
40.1,97.4
32,148.8
28,100
15,128

23.7162, 148.7832
27.0001, 124.0001
31.7164, 103.2167
30.2167,10.7162
31.2167,103.7164
31.2195,16.7159

31.2167,103.7164
27.0001, 124.0001
31.21671, 03.7164
27.0001, 124.0001
31.2167,103.7164
26.9991, 124.0011

31.2167,103.7164
27.0001, 124.0001
31.2167,103.7164
27.0001, 124.0001
31.2167,103.7164
26.9991, 124.0011

27.0001, 124.0001
27.0001, 124.0001
27.0001, 124.0001
27.0001, 124.0001
27.0000, 123.9998
26.9991, 124.0011

The data in red are the incorrect results, and the data in black are the correct results.

In Table 4, the data in red are the incorrect results, and the data in black are the correct
results. The results of all algorithms may be incorrect due to the selection of initial values,
except for the SBB algorithm. Among them, both the LM and Dogleg algorithms converge
to (31.2167, 103.7164), which is the local minimum L shown in Figure 9. In addition, when
the initial value point is close to Point A, both the LM and Dogleg algorithms converge
correctly; when the initial value point is close to the local minimum point L, all the results
of the above two are incorrect. The erroneous results of the NR algorithm may go beyond
the feasible region D, mainly because the convergence of the NR algorithm may be out of
control due to the lack of line search. Results from the above table verify that we need a
global optimization algorithm to solve the eLoran pseudorange positioning problem when
the initial value is not available.

We analyze how the SBB algorithm can always converge to the correct result, regardless
of the change in the initial value.

Consider the shrink method of the SBB algorithm. Without loss of generality, we set
Q in Equation (20) to 3000, and the reduced feasible region D; is shown as the red box in
Figure 10. It can be seen that D; has been significantly reduced compared to D, which
reduces the subsequent computation of the SBB algorithm.

To observe the global optimization performance of the SBB algorithm more clearly,
Tables 5 and 6 show the iterative process of branch and bound under some initial value points.
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Table 5. Iterative process with initial value (0, 0, 0).
) . . x* (@, A, )
Feasible Region Fopin (deg, deg, s)
D 3.5 x 10° 31.2174,103.7183, —2480
Ds 63.7 27.0001, 124.0001, 5.091
Dy 3.5 x 10° 31.2174, 103.7183, —2480
Dy 63.7 27.0001, 124.0001, 5.091
Table 6. Iterative process with initial value (97.4, 40.1, 0).
. . x* (@, A, 1)
Feasible Region Fouin (deg, deg, is)
D 3.5 x 107 31.2147,103.7225, —2480
D; 3.5 x 10° 31.2147,103.7225, —2480
Ds; 3.5 x 107 31.2147,103.7225, —2480
Dg 99.8 26.9998, 124.0009, 4.933
Ds; 99.8 31.2147,103.7225, —2480
Dy 1.5 x 10° 26.9998, 124.0009, 4.933

It can be seen from Tables 5 and 6 that, as the feasible region is continuously shrunk
and divided, the SBB algorithm gradually converges to close to the global minimum.

To further verify the performance of the SBB algorithm, we designed the following
simulation experiments: we randomly selected 1000 locations within D; as test points and
used the above mentioned algorithms to solve for these locations. Note that these locations
were chosen to keep the GDOP as consistent as possible to avoid the impact of GDOP on
location accuracy. For each algorithm, the initial value was randomly selected in D and Ds;.
When the positioning error was lower than the set threshold, the solution was successful.
The statistical results of the success rate of these algorithms in solving these 1000 positions
are shown in Figure 11.
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Figure 11. Statistical chart of success rate of different algorithms. (a) xg € D; (b) x¢ € Ds.

As shown in Figure 11, the LM and Dogleg algorithms have a success rate of 55%
in Figure 11b, while in Figure 11a, the success rates of the two are only 25% and 30%,
respectively. This shows that the two algorithms depend strongly on the selection of initial
values. The NL algorithm has the lowest success rate, and its solution probabilities are 5%
and 35%, respectively, under the two initial value selection schemes. The main reason for
the poor performance of the NL algorithm is that it lacks a line search process compared
to the LM and Dogleg. The solution success rates of the SBB algorithm under the two
initial value selection schemes are 99.9% and 99.5%, respectively, showing good global
optimization performance. The possible reason for the failure of the SBB algorithm is that
the algorithm will converge to the local minimum value when x is selected very close to
the local minimum value. Thus, when x is selected in D, there is a smaller probability of
selecting points close to the local minimum. Therefore, the success rate of the algorithm
will be improved under xy € D compared to under xy € Ds. To avoid choosing a point
near the local minimum as the initial value when using the SBB algorithm, we can choose a
point far away from all possible solutions as the initial value point, such as (0, 0).

Computational complexity affects the performance of an algorithm. The previous
analysis of the complexity of the SBB algorithm showed that the number of branches, N,
has an important impact on the complexity of the SBB algorithm. The figure shows the
statistical graph of the number of branch iterations, N, required by the SBB algorithm to
complete the positioning solution each time in 1000 positioning simulation experiments.
Figure 12 shows that the SBB algorithm needs at most two branch iterations to complete
the solution, and even only one branch is required in most cases. Comparing Figure 12a,b,
it can be found that the probability that the latter requires two branches to solve is 46%,
which is much higher than the 24% of the former. This is because when the initial value is
randomly selected in Dj, there will be a higher probability of selecting the point close to the
local minimum, which makes it converge to the global optimal value after two branches.
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Figure 12. Pie chart of number of branch iterations N. (a) xg € D; (b) xg € D;s.

4. Discussion

Using pseudorange measurements for positioning in the eLoran system can make full
use of the available eLoran stations, thereby expanding the coverage of the eLoran system
and improving the positioning accuracy of the system. An important problem with eLoran
pseudorange positioning, however, is that the geometric distribution of available eLoran
transmitting stations may cause the positioning problem to be non-convex. This makes the
existing pseudorange positioning algorithms such as NR algorithms extremely dependent
on the selection of initial value. In practical positioning applications, it is difficult for the
receiver to obtain reliable initial values in many cases. Therefore, conventional positioning
algorithms may converge to wrong solutions due to lack of reliable initial values. At present,
there is no literature to study the eLoran pseudorange localization initialization problem.

We transformed the eLoran pseudorange positioning into a nonlinear least squares
problem with box constraints and proposed the shrink-branch-bound algorithm (SBB), a
global optimization algorithm that can achieve accurate positioning without any initial
value. The SBB algorithm first obtains the shrunk region of the estimator through the
shrink method. The positioning problem is then solved within this shrunk feasible region
using a branch-and-bound algorithm, where a trust region reflective algorithm is used
for each bound process. We verified the performance of this method through simulation
experiments. The results show that the success rate of the SBB algorithm to solve the
position is more than 99.5%, when no initial value is available. However, the success rate
of other conventional nonlinear least squares algorithms (such as LM algorithm, Dogleg
algorithm) in this case is only around 50%. These results confirm that our proposed SBB
algorithm can help the receiver to obtain correct positioning results when no initial value
is available.

For the eLoran receiver, both the accuracy of the positioning algorithm and the com-
putational complexity need to be considered. The computational complexity of the SBB
algorithm is comparable to traditional Newton-based methods or Cauchy-related methods,
which means that it can be implemented in the receiver.

5. Conclusions

eLoran is the ideal backup and supplement to GNSS systems. The improved accuracy
of time synchronization between eLoran stations provides conditions for eLoran pseu-
dorange positioning. We proposed a shrink-branch-bound (SBB) algorithm to solve the
eLoran pseudorange positioning problem when the receiver has no initial value available.
We verified the performance of the SBB algorithm through simulation experiments. The
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results show that the success rate of SBB algorithm in converging to the correct result
without initial value is over 99.5%, which is more than 40% higher than that of conventional
nonlinear least squares algorithms such as LM algorithm and Dogleg algorithm.

The proposed SBB algorithm is expected to make up for the defect that the existing
eLoran pseudorange localization algorithm may converge to wrong results when no initial
value is available, so it can be used as a cold-start algorithm for eLoran receivers. Therefore,
the focus of follow-up research is to combine the SBB algorithm with the existing high-
precision positioning algorithms, which is expected to further improve the positioning
accuracy and reliability of the eLoran system under high dynamic conditions
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