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Abstract: Satellite retrieval and land surface models have become the mainstream methods for
monitoring soil moisture (SM) over large regions; however, the uncertainty and coarse spatial
resolution of these products limit their applications at the regional and local scales. We proposed
a hybrid approach combining the triple collocation (TC) and the long short-term memory (LSTM)
network, which was designed to generate a high-quality SM dataset from satellite and modeled data.
We applied the proposed approach to merge SM data from Soil Moisture Active Passive (SMAP),
Global Land Data Assimilation System-Noah (GLDAS-Noah), and the land component of the fifth
generation of European Reanalysis (ERA5-Land), and we then downscaled the merged SM data from
0.36◦ to 0.01◦ resolution based on the relationship between the SM data and auxiliary environmental
variables (elevation, land surface temperature, vegetation index, surface albedo, and soil texture).
The merged and downscaled SM results were validated against in situ observations. The results
showed that: (1) the TC-based validation results were consistent with the in situ-based validation,
indicating that the TC method was reasonable for the comparison and evaluation of satellite and
modeled SM data. (2) TC-based merging was superior to simple arithmetic average merging when
the parent products had large differences. (3) Downscaled SM of the TC-based merged product had
better performance than that of the parent products in terms of ubRMSE and bias values, implying
that the fusion of satellite and model-based SM data would result in better downscaling accuracy.
(4) Downscaled SM of TC-based merged data not only improved the representation of the SM spatial
variability but also had satisfactory accuracy with a median of R (0.7244), ubRMSE (0.0459 m3/m3),
and bias (−0.0126 m3/m3). The proposed approach was effective for generating a SM dataset with
fine resolution and reliable accuracy for wide hydrometeorological applications.

Keywords: soil moisture; merging; spatial downscaling; triple collocation; long short-term memory

1. Introduction

Soil moisture (SM) is a critical hydrological variable that links the water, energy,
and carbon cycles between the land and atmosphere and plays a fundamental role in
many hydrological, ecological, and biogeochemical processes [1,2]. Accurate and detailed
information on SM have been increasingly important to a wide range of applications,
such as drought monitoring [3], flood forecasting [4], agricultural production [5], carbon
cycle [6], and water resource management [7]. SM spatial variability is associated with
meteorological, topographic, pedologic, and vegetative factors; the complex interactions
between these factors lead to high spatial heterogeneity in SM [8,9]. Therefore, deriving
accurate SM information at fine spatial scales is challenging.

Remote Sens. 2022, 14, 1744. https://doi.org/10.3390/rs14071744 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14071744
https://doi.org/10.3390/rs14071744
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5186-594X
https://orcid.org/0000-0002-3194-3621
https://doi.org/10.3390/rs14071744
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14071744?type=check_update&version=1


Remote Sens. 2022, 14, 1744 2 of 20

SM data are traditionally acquired from in situ measurements, which can provide
reliable SM information at specific locations, times, and soil layers. However, in situ mea-
surements at a single point make it difficult to represent SM over a large area [10]. In
addition, the observation process is laborious [1]. Microwave (active and passive) remote
sensing has shown promise in SM observations, such as the Advanced Scatterometer (AS-
CAT) [11], Soil Moisture and Ocean Salinity (SMOS) [12], the Soil Moisture Active Passive
(SMAP) mission [13], and Global Navigation Satellite System-Reflectometry (GNSS-R) SM
retrievals [14]. Satellite-based SM products can acquire spatially continuous SM estimates
of the surface soil layers (0–5 cm) on a large scale. However, their performances depend
on the underlying conditions, sensor specifications, and retrieval algorithms [15,16]. Land
surface models (LSMs) may serve as alternative ways to monitor SM with spatial complete-
ness and temporal continuity globally. For example, the Global Land Data Assimilation
System (GLDAS) [17] and the global dataset for the land component of the fifth generation
of European Reanalysis (ERA5-Land) [18] provide SM estimates at various depths and time
scales. Nevertheless, these LSM-based SM products are associated with uncertainties due
to model parameterization and forcing data [19,20].

Given the strengths and weaknesses of each source of SM data, merging ground
measurements, satellite, and modeled SM products would reduce uncertainty and improve
SM estimates [21–24]. Data assimilation is one of the most widely used approaches for com-
bining products from different sources. However, inadequate or incorrect prior knowledge
of the uncertainties associated with SM products has limited the use of data assimilation.
Additionally, data assimilation is complex and computationally expensive [25,26]. Statis-
tical methods are alternative ways to directly merge multi-source SM products. Triple
collocation (TC) is a method used for evaluating the unknown errors of three mutually
independent datasets without the need for an additional reference dataset [27]. TC analysis
has been widely used to evaluate SM data from satellites and LSMs [28–30]. Accordingly,
the TC-based merging method offers a potential solution for multi-source SM data merging
due to its simplicity and transparency [19,21,22,25,31].

Regional hydrometeorological studies usually require SM data with high spatial reso-
lution. However, satellite or model-based SM products usually have low spatial resolution.
Therefore, various methods have been introduced to downscale SM at fine spatial scales.
These downscaling methods can be broadly classified into three groups: (1) satellite-based
methods including active and passive microwave data fusion and optical/thermal and
microwave dada fusion [32–35]; (2) methods using geoinformation data, such as topogra-
phy, soil attribute, and vegetation characteristics [36–39]; and (3) statistical and physical
model-based methods [40–43]. Although the above-mentioned methods differ in the type
of input data and the characteristics of the scaling model, the essence was to establish
statistical correlations or physics-based models between coarse spatial SM and auxiliary
variables [44]. Therefore, constructing a relationship model to well describe the complex
nonlinear relationship between SM and auxiliary variables was still a major task in most
downscaling methods [10].

Recently, machine learning (ML) techniques, such as support vector machines, classifi-
cation, regression trees, Bayesian, random forest, and artificial neural networks have been
widely applied in the field of SM downscaling because of their superior intelligence capa-
bilities [10,36–39,45]. Compared with some traditional ML algorithms, state-of-the-art deep
learning algorithms have better data fitting and generalization capabilities [46,47]. Powerful
deep learning algorithms, such as convolutional neural networks (CNNs) and long short-term
memory networks (LSTM), have attracted broad attention to SM prediction [48,49].

To summarize, this study aims to present a hybrid merging and downscaling approach
based on the TC analysis and LSTM model, which was designed to generate a high-quality
SM dataset at 0.01◦ resolution and a monthly temporal interval from satellite and modeled
data. The main objectives of this study were: (1) to merge the SMAP, GLDAS-Noah, and
ERA5-Land SM data based on the TC analysis; (2) to downscale the merged SM data
using the LSTM network based on the environmental variables data; and (3) to evaluate



Remote Sens. 2022, 14, 1744 3 of 20

the performance of merging and downscaling methods using in situ observations. Our
work will be beneficial for future research involving estimations of high-resolution SM
datasets with reliable accuracy in much wider hydrometeorological applications at regional
or local scales.

2. Study Area and Data
2.1. Study Area

Yunnan province is located in the southwestern region of China, which has an area
of approximately 394,000 km2 (21◦08′–29◦15′N, 97◦31′–106◦11′E) (shown in Figure 1).
The climate belongs to the subtropical plateau monsoon and is characterized by dis-
tinct dry and wet seasons [50]. Accordingly, precipitation falls during the monsoon sea-
son (May–October), accounting for 85% of the total annual precipitation (approximately
1100 mm) [51]. The elevation varies from 6740 to 76 m and decreases from the northwest to
the southeast. The mean annual temperature ranges from 5.52 to 23.88 ◦C, and the mean
annual precipitation varies from 560 to 2300 mm [52]. There are many large rivers, such
as the Salween, Mekong, Red, Yangtze, and Pearl River, flowing through or originating
from this area, which is also an important ecological defense construction area in China.
However, increasingly frequent droughts have caused huge socioeconomic losses over the
past two decades [52,53]. For example, a record-breaking and persistent drought hit Yunnan
from autumn 2009 to spring 2010, resulting in 7.57 million residents suffered from a lack of
drinking water. Approximately 21,741 km2 of crops planted in autumn and winter were
affected by drought, and the direct agricultural loss exceeded RMB 20 billion [52]. There-
fore, SM data derived from multi-sources with fine resolution are necessary for regional
drought monitoring.

Figure 1. Location of study area and the in situ networks.

2.2. Data
2.2.1. SM Data

The SMAP satellite was launched in 2015, carrying an L-band radiometer and radar
(non-imaging SAR), which is devoted to providing a global surface (0–5 cm) volumetric SM
with a spatial resolution of 36, 9, and 3 km at local overpass times of 06:00 AM (descending
orbit) and 06:00 PM (ascending orbits), respectively. Unfortunately, owing to the failure
of the radar, only SM from the radiometer is available [54]. The SM data used here was,
“SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 7 (L3SMP)”.
The L3SMP SM at ascending and descending modes were averaged to obtain daily SM. The
L3SMP data were collected from January 2016 to December 2020.

ERA5-Land, a reanalysis dataset released by the European Center for Medium-Range
Weather Forecasts (ECMWF), was produced by replaying the land component of the ERA5
data and combining model data with global observations using laws of physics [18]. ERA5-
Land includes four layers of SM estimates including 0–7, 7–28, 28–100, and 100–289 cm,
which have been available from 1950 to present with a spatial resolution of 0.1◦ × 0.1◦ and
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an hourly temporal resolution. The SM estimate of the top layer (0–7 cm) was used in the
current study.

GLDAS generates optimal fields of land surface states by combining satellite data and
ground data and utilizing sophisticated land surface modeling and data assimilation meth-
ods [17]. GLDAS runs multiple surface models, such as Noah, Mosaic, Community land,
and variable infiltration capacity. We obtained the SM estimates from the GLDAS-2.1 Noah
model (hereafter GLDAS) with a 0.25◦ × 0.25◦ and 3-hourly/monthly resolutions. The
GLDAS provides four-layer SM estimates, including 0–10, 10–40, 40–100 and 100–200 cm;
the SM estimate at a depth of 0–10 cm was used in the current study.

In situ SM data were collected from 36 automatic measurement stations in Yunnan
province (Figure 1), which were obtained from the Yunnan Meteorological Service. These
stations provide hourly SM values at different soil depths. In order to match the satellite
and modeled SM products, in situ SM data at soil depths of 0–10 cm were used and the
time intervals were resampled into monthly average values.

2.2.2. Auxiliary Data

Four Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products were
used here, including the monthly normalized difference vegetation index (NDVI) (MOD13A2)
product, 8-day land surface temperature (LST) product (MOD11A1), 8-day surface re-
flectance product (MOD09A1), and yearly land cover type product (MCD12Q1). For LST,
the daytime and nighttime LSTs were averaged to obtain daily SM. The surface reflectance
product was used to calculate the surface albedo [55]. The outliers of surface reflectance,
LST, and NDVI were first eliminated based on the quality flag. Furthermore, null values
were interpolated using the Savitzky–Golay (S–G) filter [56]. The land cover type product
was utilized here to identify the pixels classified as water bodies and ice/snow. The pixels
classified as water and ice/snow were excluded in the analysis. In addition, elevation data
with a spatial resolution of 90 m was obtained from the Shuttle Radar Topography Mission
(SRTM) [57]. Soil texture is defined as the content of clay, silt, and sand per unit volume of
soil mass, which were acquired from the Harmonized World Soil Database (HWSD) [58].
In addition to the above data, precipitation data were adopted to assist the intercomparison
of downscaled SM data. The Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) is a 40-year (from 1981 to present) rainfall dataset, which covers most regions of
the world (50◦S–50◦N) [59]. Here, the 0.05◦ × 0.05◦ CHIRPS monthly precipitation datasets
were used from 2016 to 2020.

2.2.3. Data Preprocessing

Table 1 lists the SM and auxiliary data used in this study. As the SM and auxiliary data
adopted have different resolutions, we established a unified standard for data preprocessing.
The georeference of all grid data were set as GCS-WGS-1984. SMAP, ERA-land and GLDAS
SM data were resampled to a spatial resolution of 0.36◦ using the nearest neighbor method.
All SM data were averaged to the temporal resolution of a month. The units of all SM data
were volume water content (m3/m3). MODIS products were reprojected to the GCS-WGS-
1984 coordinate system using the MODIS Reprojection Tool. NDVI, LST, surface albedo,
elevation and soil texture were resampled to 0.36◦ and 0.01◦, respectively. In addition, the
monthly LST and surface albedo were generated by using the weighted temporal average
based on the 8-day LST and 8-day surface albedo in a one month window, respectively. To
facilitate comparison, a common period of record from January 2016 to December 2020 was
used for all datasets.



Remote Sens. 2022, 14, 1744 5 of 20

Table 1. List of data used in this study.

Type Datasets Index Resolution

SM data

SMAP Surface SM 36 km (~0.36◦), daily
ERA5-Land Surface SM 0.1◦, hourly

GLDAS v2.1/Noah Surface SM 0.25◦, monthly
In situ Surface SM Point, hourly

Auxiliary data

MOD09A1 Surface albedo 500 m (~0.005◦), 8-day
MOD11A2 LST 1 km (~0.01◦), 8-day
MOD13A3 NDVI 1 km (~0.01◦), monthly
MCD12Q1 Land Cover Type 500 m (~0.005◦), yearly

CHIRPS Precipitation 0.05◦, monthly
SRTM Elevation 90 m (~0.0009◦), –
HWSD Content of clay, sand, and silt 0.0083◦, –

3. Methodology

We proposed a hybrid approach combining the TC and LSTM, which was designed
to generate a high-quality SM dataset from satellite and modeled data. Figure 2 shows
the flowchart of the hybrid approach. This approach includes two steps: (1) SM merging.
SMAP, GLDAS, and ERA5-Land SM products are merged by combining the product
errors obtained from the TC analysis and the least-squares framework in every pixel [22];
(2) spatial downscaling. The idea was to establish a statistical relationship between the low
spatial resolution SM data and environmental variables using LSTM, and then input high
spatial resolution environmental variables into verified LSTM to obtain the downscaled
SM [44]. The specific process of downscaling can be described as follows:

I. The relationship between the environmental variables and the SM data at a low
spatial resolution (0.36◦) was established using the LSTM network.

SMo = fLSTM(LST, NDVI, sur f ace albedo, elevation, soil texture) + ε (1)

where SMo denotes original SM data, fLSTM is a nonlinear function by establishing a
relationship between the variables and SMo, and ε is residual, which represents the
amount of SM that could not be predicted by LSTM.

II. The LSTM network established in step (I) and the variables at 0.36◦ scale were
applied to predict SM (SMLSTML). By subtracting the predictive values from SMo,
the residuals at the 0.36◦ scale were obtained.

ε = SMo − SMLSTML (2)

III. The residuals (ε) were spatially interpolated to form residual maps at a 0.01◦ resolu-
tion (εk) using the simple Kriging technique.

εk = ∑n
i=1 λiεi (3)

where λi are Kriging weights, and εi is the residual at location i.
IV. High spatial resolution variables were entered into the LSTM network established in

step (I), and a predicted SM of 0.01◦ resolution (SMLSTMH) was achieved.
V. The final downscaled SM (SMFinal) were obtained by adding the residual term to the

predicted SM.
SMFinal = SMLSTMH + εk (4)
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Figure 2. SM merging and downscaling based on the TC-LSTM model.

3.1. TC Analysis

TC [27] is a statistical method used for estimating the random error variance of three
datasets required with independent errors [60]. A commonly used error model in the TC
approach has the following form:

SMi = SM′i + εi = αi + βiT + εi, (5)

where SMi(iε{1, 2, 3}) is the value from the three collocated SM datasets linearly related
to T, which represents the actual SM value, with random errors εi, βi, and αi as the bias and
scale factors.

We assumed that the errors from independent datasets had zero mean (E(εi) = 0),
and they were uncorrelated with each other

(
Cov

(
εi, ε j

)
= 0, i 6= j

)
and t(Cov(εi, T) = 0).

Therefore, the covariances between the different SM datasets are expressed as follows:

Cij = Cov
(
SMi, SMj

)
=

{
βiβ jσ

2
T , i 6= j

β2
i σ2

T + σ2
εi

, i = j
(6)
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where σ2
εi
= Var(εi). Because the number of unknowns (seven) is greater than that of C

(six), there is no unique solution to the equations mentioned above. To solve this problem,
a new variable is defined as θi = βiσT . Therefore, Equation (6) can be represented by

Cij =

{
θiθj, i 6= j

θ2
i + σ2

εi
, i = j

(7)

The problem can be solved by using six equations and six variables. The RMSE (σεi )
was obtained as follows:

σε =


√

C11 − C12C13
C23√

C22 − C12C23
C13√

C33 − C13C23
C12

. (8)

Another extended TC approach was introduced to investigate the correlation with an
unknown true SM [61]. βi can be written as:

βi = RT,SMi

Cii
σT

, (9)

where RT,SMi is the correlation coefficient between and T and SMi. From Equations (6) and (8),
the correlations of the SM data are obtained:

RT,SM = ±


√

C12C13
C11C23

sign(C13C23)
√

C12C23
C22C13

sign(C12C23)
√

C13C23
C33C12

, (10)

which provides important information about the collocation datasets.

3.2. Merging Scheme

It is advantageous to merge different SM products to combine the merits of multi-
source SM data and minimize random errors. The least squares method is an evaluation
theory and has been used in many studies since it was originally published in 1809 by
Gauss [62]. The desired SM value of the merged data can be expressed as [22]:

SMAver = w1SM1 + w2SM2 + w3SM3, (11)

where w1, w2, and w3 represent the weights of three SM products: SM1, SM2, and SM3,
respectively. To obtain unbiased fusion data, the following is required:

w1 + w2 + w3 = 1. (12)

Based on the above constraints, our goal was to express the weights as a function
of the mean square error of the three datasets. Therefore, the mean square errors of the
merged data can be expressed as:

σ2
m = w2

1σ2
1 + w2

2σ2
2 + w2

3σ2
3 , (13)

which is:
σ2

m = w2
1σ2

1 + (1− w1 − w3)
2σ2

2 + w2
3σ2

3 . (14)

Setting ∂σ2
m

∂w1
= 0 and ∂σ2

m
∂w3

= 0 in Equation (15) and solving for w1, w2, and w3, we
obtain the following:

W1 =
σ2

2 σ2
3

σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3
, (15)
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W2 =
σ2

1 σ2
3

σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3
, (16)

W3 =
σ2

1 σ2
2

σ2
1 σ2

2 + σ2
1 σ2

3 + σ2
2 σ2

3
. (17)

The solution is intuitive because the weights are proportional to the errors of the other
two estimates.

3.3. LSTM

LSTM was proposed to solve the problem of exploding and vanishing gradients [63].
A common LSTM unit consists of several memory cells, each of which contains three
gates (input, output, and forget). These gates control the information that is discarded
and retained from the previous moment; therefore, LSTM has an inherent advantage in
extracting contextual information, such as temporal characteristics [64]. A memory cell of
the LSTM framework can be expressed as

it = σ(Wi · [ht−1, xt] + bi), (18)

ft = σ
(

W f · [ht−1, xt] + b f

)
, (19)

ot = σ(Wo · [ht−1, xt] + bo), (20)

C̃t = tanh(Wc · [ht−1, xt] + bc), (21)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (22)

ht = ot ∗ tanh(Ct), (23)

where it, ft, ot, and C̃t represent the three gates and an intermediate state that are input,
forget, output gates, and candidate state, respectively, which are the output vectors of
the sigmoid layer with a range of 0 to 1. Ct and Ct−1 indicate the cell states delivering
information in the current and last moments, respectively, while xt indicates the input
information at the current moment. ht and ht−1 carry the output information of the cells at
the current and last moments, respectively. Wi, W f , Wo, and Wc are the parameter matrices
to be trained, and bi, b f , bo, and bc are bias items to be trained. In addition, tanh is defined
as a hyperbolic tangent function in mathematics. First, Equations (19)–(21) are used to
determine whether the information from the last moment (ht−1) and that from this moment
(xt) is to be retained or not. Then, Equation (23) is used to calculate the result of this
moment and pass it to the next moment. More details about LSTM can be found in previous
studies [65–67].

Connecting such multiple cells to form more complex structures can solve practical
sequence problems. In this study, a two-layer LSTM structure with 80 and 100 cells was
used to fit the relationship between the SM data and explanatory variables (LST, NDVI,
surface albedo, elevation, and soil texture), which was accomplished using the TensorFlow
package of Python. In addition, modeling processes often have the problem of overfitting,
which depends on the model structure when the samples are the same. Generally, it can be
solved by utilizing the dropout function and the early stopping method [65]. Therefore, in
this study, a dropout layer with a parameter of 0.2 was added after each layer of LSTM to
discard 20% of the data, in order to avoid overfitting. Additionally, some other parameters
also needed to be set. For example, the maximum number of iterations was 200, and the
optimizer used was Adam, whose initial learning rate and loss function were set as 0.001
and mean squared error, respectively.

3.4. Evaluation Metrics

The accuracy of satellite, modeled, merged, and downscaled SM data were evaluated
using in situ data as the reference. In this study, four metrics consisting of the correlation
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coefficient (R), root mean square error (RMSE), unbiased root mean square error (ubRMSE),
and bias were used [68]. Detailed information on the four metrics is presented in Table 2.

Table 2. The evaluation metrics in this study.

Metric Equation Range Best
Value

R R =

√
[Σn

i=1(SMobsi−SMobs)(SMprei−SMpre)]
2

Σn
i=1(SMobsi−SMobs)

2
Σn

i=1(SMprei−SMpre)
2

[0,1] 1

RMSE RMSE =

√
1
n

n
∑

i=1
(SMobsi

− SMprei )
2 [0,+∞ ] 0

ubRMSE ubRMSE =

√
Σn

i=1[(SMobsi−SMobs)−(SMprei−SMpre)]
2

n
[0,+∞ ] 0

Bias Bias =
Σn

i=1(SMobsi−SMprei )
n

[−∞,+∞ ] 0

SMobsi and SMprei represent the ith observed values of the site and predicted values, respectively. SMobs represents
the average of the observed values of the site, whereas SMpre represents the average of the predicted value.

4. Results
4.1. TC-Based Assessment

In this study, a satellite product (SMAP) and two modeled products (ERA5-Land and
GLDAS) were used in one TC triplet. The TC-based error estimates required three collocated
SM datasets that were significantly correlated [21,22]. We evaluated the cross correlation
of ERA5-Land, GLDAS, and SMAP using Pearson correlation coefficients (Figure S1). The
results showed significant correlations among ERA5-Land, GLDAS, and SMAP over most
areas (p < 0.05), suggesting a strong mutual linear relationship among the three SM products.
Figure 3 displays the spatial distribution of the random error variance and correlation for
ERA5-Land, GLDAS, and SMAP products based on TC analysis. The unresolved pixels,
due to violation of assumptions in the TC analysis were excluded, which accounted for
approximately 14% of the total pixels in the study area. The spatial pattern of the random
error variance varied among the different SM products. For example, ERA5-Land had
relatively high errors in the northwest region, where the topography is complex. In
the central region, the error of the GLDAS was generally relatively low and spatially
homogeneous. In addition, SMAP performed better in the northwest and southeast regions.
In terms of the correlation, all products showed a high correlation (above 0.8) with the
unknown truth in most areas, except in the northwest and southeast regions.

Figure 3. Spatial distribution of random error variance and correlation obtained from TC analysis.
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Figure 4 shows a summary of the correlation and random error variance for ERA5-
Land, GLDAS, and SMAP products based on TC analysis. At the regional scale, GLDAS
showed the highest average correlation with the unknown truth (0.92), followed by ERA-
land (0.91) and SMAP (0.88). The error variance was slightly different from the correlation,
with the lowest averaged RMSE for GLDAS (0.018 m3/m3), and slightly larger RMSE for
SMAP (0.019 m3/m3) and ERA-land (0.021 m3/m3). It can be seen that the GLDAS has the
best performance with high correlation and relatively low errors among the three products.
This is consistent with previous work reporting that GLDAS outperformed SMAP and
ERA5 in root zone SM estimates on a global scale [30].

Figure 4. The box plots of RMSE and R for the three SM products based on TC analysis.

4.2. SM Merging Based on TC

Figure 5 shows the merging weights of ERA5-Land, GLDAS, and SMAP. The spa-
tial distribution of the merging weights was consistent with the random error variance
(Figure 3), specifically, the pixels with high RMSE had low weights, while the pixels with
low RMSE were assigned high weights. Model-based SM is strongly dependent on ex-
ternally supplied meteorological forcing data, which can significantly influence SM sim-
ulation [69]. In the northwest region with the complex terrain, input precipitation is less
reliable, which may explain the less accuracy and low weight of ERA5-Land and GLDAS.
In addition, SMAP SM is sensitive to vegetation, higher vegetation intensity will reduce
the quality of SM [70]. For instance, the SMAP was assigned low weights in the western
and southern regions, which attributed to dense vegetation. Overall, GLDAS had the
highest space-averaged weight (0.36), followed by SMAP (0.33) and ERA5-Land (0.31). It
can be seen that the merging weights varied among the parent products and showed spatial
variability. It is worth noting that the blank areas in the maps, due to violation assumptions
in TC analysis, were merged using a simple arithmetic average to increase the coverage of
the merged product.

Figure 5. The spatial distributions of merging weights for the parent products.

Figure 6 shows the spatial distributions of the SM for the three parent products and
the merged product using TC analysis; the SM levels in January and June 2019 were used
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as examples. Generally, the three parent datasets showed distinct spatial differences. For
example, ERA5-Land showed much wetter conditions in the southern and eastern regions
than GLDAS and SMAP. In theory, the merged data should integrate the characteristics
of the three parent products and minimize the errors of the parent products. Although
distinct spatial variation was observed in parent products, the merged SM dataset had
similar patterns of wet and dry distributions to these parent products, which presented
lower SM in the northwestern region, and a general increase in the eastern and southern
parts of Yunnan province.

Figure 6. The spatial distributions of three original and merged SM products in January (a) and June
2019 (b).

To evaluate the accuracy of these parent products and the merged products, we
compared the SM estimates with the in situ observations. Figure 7 shows box plots of the
validation results of different SM datasets at the in situ stations. The median R-values
for ERA5-Land, GLDAS, SMAP, and the merged datasets were 0.77, 0.80, 0.79, and 0.84,
respectively. The medians of ubRMSE were 0.055, 0.039, 0.040, and 0.039 m3/m3, and the
medians of bias were −0.086, −0.014, 0.038, and −0.017 m3/m3 for ERA5-Land, GLDAS,
SMAP, and merged datasets, respectively. Among the three parent products, GLDAS had
the best performance with the lowest median of ubRMSE and bias and the highest median
of correlation, followed by SMAP and ERA5-Land. These results were consistent with those
of the TC-based assessment (Figure 4). The highest median R-value and lowest median
of ubRMSE from the merged datasets compared with the in situ observations were very
encouraging. We found that the median bias of the merged datasets was lower than that of
ERA5-Land and SMAP, but the median bias for GLDAS was slightly better than that for
the merged datasets. This may be attributed to the parent products having large biases (a
median bias of −0.086 for ERA5-Land) compared to in situ observations; thus, there may
be limited improvements in the merged product. Overall, the merged dataset showed its
advantages integrated from satellite and modeled products, indicating that the TC-based
merging method can be used to generate high-quality, spatiotemporal continuous SM data
from satellite and modeled SM data.
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Figure 7. The evaluation of SM datasets using in situ observations for validation: (a) R; (b) ubRMSE;
(c) Bias.

4.3. SM Downscaling Based on LSTM

The downscaling method assumed that the regression relationship between the SM
data and auxiliary environmental variables (elevation, LST, NDVI, surface albedo, and soil
texture) at a coarse spatial scale (0.36◦) was equally effective at a fine scale (0.01◦). The
first step was to train and verify the LSTM network using the environmental variables
sampled from locations where merged SM data (0.36◦) were available. In the training
process, 70% of the total data were selected randomly as the training set and the other 30%
as the verification set [71]. Figure 8 illustrates the scatter plot showing the merged SM
and predicted test dataset by fitting the merged SM and environmental variables based
on the LSTM network. The LSTM revealed a significant relationship between the merged
SM data and environmental variables. There is very good agreement between the original
and predicted SM values (R = 0.8877, RMSE = 0.0325 m3/m3, and bias = 0.0015 m3/m3).
Additionally, the slope and intercept of the regression linear equation were 0.82 and 0.05,
respectively, indicating that the predicted SM values were close to the merged SM, and
the overestimation and underestimation values were not significant. In the next step,
the verified LSTM network was applied to the auxiliary environmental variables at 0.01◦

resolution to obtain high-resolution SM data over the period from January 2016 to December
2020. The spatial patterns of the downscaled SM in January and June 2019, are shown in
Figure 9. The downscaled SM not only had a similar distribution as the original merged SM
data but also captured detailed information on the spatial heterogeneity of SM compared
to the original merged SM data (Figure 6).

The downscaled SM data were validated using the observation records of 36 in situ
sites (Figure 10). The results indicated that the downscaled SM data had a high correlation
with in situ data almost everywhere across Yunnan province, except for a few individual
sites with slightly low correlation in the central and southern regions. There were similar
patterns in ubRMSE and bias, which have relatively small values in most sites of Yunnan
province and slightly larger values at some sporadic points. Generally, the downscaled SM
data agreed well with the in situ observations. The mean and median values of R, ubRMSE,
and bias were 0.6858 and 0.7244; 0.0469 m3/m3 and 0.0459 m3/m3; and−0.0136 m3/m3 and
−0.0126 m3/m3, respectively. It is worthy to note that the validation results are inevitably
affected by the limited number of in situ stations, the spatial scale differences between the
in situ networks and downscaled data, and the differences in the surface soil depths of SM
products [72]. Figures 11 and S2 show that the temporal variation of the downscaled SM
agreed well with the precipitation data, both at regional and station scales. The variations
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between dry and wet seasons and the effect of precipitation can be well reflected by the
downscaled SM data. In addition, the downscaled SM data reflected the severe drought
conditions of Yunnan province in 2019. The results demonstrated that the downscaled SM
could reflect actual SM dynamics.

Figure 8. The scatter plot and performance metrics for the LSTM network.

Figure 9. The downscaled SM data in January (a) and June (b) 2019.

Figure 10. Results of validation for downscaled SM data with in situ observations: (a) R; (b) ubRMSE;
(c) Bias.
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Figure 11. Temporal variations of area mean downscaled SM and CHIRPS precipitation.

The downscaled SM of the merged product was also compared with those down-
scaled SM levels from ERA5-Land, GLDAS, and SMAP (Figure 12). It was shown that the
performances of all downscaled products varied over different stations. At most stations,
the downscaled SM of the merged product outperformed other downscaled SM products
with lower ubRMSE and bias. At the regional scale, the downscaled SM of the merged
product showed a higher median R (0.7244) than that of SMAP (0.6814), but a lower median
R than that of ERA5-Land (0.7647) and GLDAS (0.7332). The median ubRMSE of the
downscaled SM of the merged product was 0.0459 m3/m3, which was slightly better than
that of ERA5-Land (0.0556 m3/m3), GLDAS (0.0473 m3/m3), and SMAP (0.0467 m3/m3).
In terms of median bias, the lowest absolute value was found for the merged product
(−0.0126 m3/m3), followed by SMAP (−0.0159 m3/m3), ERA5-Land (0.0267 m3/m3), and
GLDAS (0.0483 m3/m3). The comparison results indicated the downscaled SM of the
merged product had better performance, including the acceptable R, lowest ubRMSE,
and bias values among all the evaluated products. It is worth noting that the proposed
downscaling method contained several assumptions and possible uncertainties from the
auxiliary data; however, the validation results implied that the fusion of satellite- and
model-based SM data would result in better downscaling accuracy.

Figure 12. Validation results of downscaled SM of ERA5-Land, GLDAS, SMAP, and merged products
using 36 in situ observations. (a): R, ubRMSE and Bias for each station; (b): Boxplots of R, ubRMSE
and Bias.

5. Discussion

The uncertainties of ERA5-Land, GLDAS, and SMAP were first evaluated by a TC
analysis. The results showed that GLDAS outperformed SMAP and ERA5-Land (Figure 4).
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Similar results were obtained from direct comparisons with in situ observations (Figure 7),
indicating that the TC analysis was reasonable for the comparison and evaluation of satellite
or modeled SM datasets in data-scarce areas. As shown in Figure 7, the TC-based merged
dataset showed its advantages integrated from satellite and modeled products. In the TC
analysis, the errors of SM datasets are assumed to be mutually independent and orthogonal
to the truth [73]. The simultaneous use of both model-based products (ERA5-Land and
GLDAS) may imperil the mutual error independence results underlying the application
of TC analysis [74]. Therefore, a triple combination of an active-based product (active SM
product of the European Space Agency Climate Change Initiative (v06.1), CCI-active) [75], a
passive-based product (SMAP), and a model-based product (ERA5-Land) was also applied
here to calculate TC-based metrics. Figure S3 shows box plots of the validation results of
different SM datasets at the in situ stations. The results also confirmed the merged SM data
based on TC was superior to their parent products, which proves that TC-based merging
was a reliable way to blend satellite and model-based SM products [19,21,22,25,31].

In theory, the TC-based merged data should outperform simple averaging data. How-
ever, this was not the case in some studies [19,22,25]. Figure S4 shows a comparison between
the two SM datasets obtained by TC and simple arithmetic mean merging methods. For
triplet A (SMAP, ERA5-Land, and GLDAS), it was found that the TC-based merged data
were only slightly better than the simple averaging data in terms of R and bias. The reason
could be that the differences among the three parent products were small or the weights of
the three parent products were approximately equal [19]. However, for triplet B (CCI-active,
SMAP, and ERA5-Land), the TC-based merged data were preferred over simple averaging
data, because it can provide optimal weights and generate a better merged product in areas
where the parent products have large differences (Figure S3) [19]. In addition, it should be
noted that only 36 in situ stations were used for comparison and validation. The validated
results were affected by the representativeness errors of the limited stations.

The merging method based on TC analysis could be further improved in the following
aspects. It only allowed the input of three parent products, which resulted in the merged
result of TC varying with a change in choice of the three inputs. Theoretically, the more
input of SM products, the better the merged SM data that may be obtained. To overcome
this limitation, Pan et al. (2015) proposed an improved TC method that allowed the input
of more than three products when evaluating them [76]. In addition, a three-cornered hat is
an alternative used for estimating the error variance of more than three products [15,77].
Moreover, the TC-based merging method assumed that the errors of the data in the time di-
mension were constant. In fact, the errors in SM data exhibit significant temporal variations
with time changes [78]. A constant weight for the entire period may not reflect the error
characteristics. Therefore, spatial and temporal non-stationary errors should be considered
to improve the TC merging skill [26,79].

Analysis of the importance of different environmental variables in the SM downscaling
process can help understand the mechanism of the impact of surface variables on SM [10,38].
In order to analyze the importance of input variables (LST, NDVI, surface albedo, elevation,
and soil texture) in the downscaling process, we conducted a leave-one-out approach
in which one of the input environmental variables was removed and downscaling was
accomplished [36]. Figure S5 shows the validation results for the different input schemes.
It was found that elevation, NDVI, and surface albedo were the three most important
variables in SM downscaling. The local topography is important in determining SM over
regions with sharp elevation fluctuations [8,37]. NDVI and surface albedo also exhibited
high importance in SM downscaling due to their ability to reflect vegetation status and
surface energy exchange [80]. LST was identified as the most important variable in some
previous studies [10,38]; however, our results indicated LST showed relatively less influence
on the downscaling results. This may be attributed to poor quality of MODIS LST due to
cloud contamination in the study area.

ML was widely used to downscale SM data in case studies [10,36–39,45]. The per-
formance of ML in SM spatial downscaling varies with the algorithms and regions [37].
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However, traditional ML algorithms cannot consider the feature abstraction of sequence
data and contextual correlation on the time axis. As a class of recurrent neural networks
(RNNs), the LSTM network can consider contextual information of the original data and
would theoretically be more suitable for modeling time-series data [49,81]. For example,
it was used in rainfall–runoff modeling [82], terrestrial water storage reconstructing [83],
drought forecasting [84], and rice yield predicting [71]. The SM downscaling based on
LSTM had a satisfactory performance in this study (Figures 8 and 10), although the ac-
curacy of downscaled results was associated with the uncertainties from input remotely
sensed products, the effect of the scale, and the accuracy and representativeness of in situ
observations [44]. Our results showed that LSTM had broad application prospects in SM
downscaling and prediction [85]. However, LSTM is designed to process sequence data, it
can only obtain a temporal relationship. We also recommended CNNs in subsequent re-
search because they can capture the spatial features from three-dimensional images [86,87].
Furthermore, the convolutional LSTM (ConvLSTM) combines the capabilities of CNN and
LSTM, which not only account for the temporal relationship, but also extract spatial fea-
tures through the convolution layer and are expected to further improve the SM predictive
performance [48,88,89].

6. Conclusions

This study presented a hybrid TC-LSTM approach to generate a high-quality SM
dataset with a 0.01 resolution and a monthly temporal resolution based on satellite- and
model-based data. For the evaluation of the SMAP, GLDAS, and ERA5-Land SM products,
similar results were obtained from direct comparisons with in situ observations and TC
error estimation, indicating that the TC analysis was reasonable for the comparison and
evaluation of satellite and model-based SM products. In addition, TC-based merging
was superior to simple arithmetic average merging when the parent products had large
differences. The downscaled SM of TC-based merged product had better performance,
including the acceptable R, lowest ubRMSE, and bias values among all of the evaluated
products, implying that the fusion of satellite and model-based SM data would result
in better downscaling accuracy. The downscaled merged SM data obtained using the
LSTM not only improved the spatial resolution of the SM data and captured the spatial
heterogeneity and dynamics of SM but also yielded satisfactory results with a median value
of R (0.7244), ubRMSE (0.0459 m3/m3), and bias (−0.0126 m3/m3) when validated with
in situ observations. Overall, the proposed approach in this study had no strict boundary
conditions and, thus, had better universality in various climate conditions. It could generate
a SM dataset with a fine resolution and reliable accuracy for wide hydrometeorological
applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14071744/s1, Figure S1: The spatial distribution of the cross-
correlation of three SM products, Figure S2: Temporal variations of downscaled SM and CHIRPS
precipitation at representative site, Figure S3: The evaluation of SM datasets using in situ observations
for validation, Figure S4: The evaluation of SM datasets merged by TC and simple arithmetic
averaging (SAA) for two triplets using in situ observations for validation, Figure S5: Performance
evaluation of the downscaling algorithms under different input schemes using in situ observations.
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