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Abstract: Isoprene is one of the most important biogenic volatile organic compounds (BVOCs)
emitted by vegetation. The biogenic isoprene emissions are widely estimated by the Model of
Emission of Gases and Aerosols from Nature (MEGAN) considering different environmental stresses.
The response of isoprene emission to the water stress is usually parameterized using soil moisture
in previous studies. In this study, we designed a new parameterization scheme of water stress in
MEGAN as a function of a novel, satellite, passive microwave-based vegetation index, Emissivity
Difference Vegetation Index (EDVI), which indicates the vegetation inner water content. The isoprene
emission rates in southeastern China were simulated with different water stress indicators including
soil moisture, EDVI, Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index
(EVI). Then the simulated isoprene emission rates were compared to associated satellite top-down
estimations. The results showed that in southeastern China, the spatiotemporal correlations between
those simulations and top-down retrieval are all high with different biases. The simulated isoprene
emission rates with EDVI-based water stress factor are most consistent with top-down estimation
with higher temporal correlation, lower bias and lower RMSE, while soil moisture alters the emission
rates little, and optical vegetation indices (NDVI and EVI) slightly increase the correlation with
top-down. The temporal correlation coefficients are increased after applied with EDVI water stress
factor in most areas; especially in the Yunnan-Guizhou Plateau and Yangtze River Delta (>0.12).
Overall, higher consistency of simulation and top-down estimation is shown when EDVI is applied,
which indicates the possibility of estimating the effect of vegetation water stress on biogenic isoprene
emission using microwave observations.

Keywords: passive microwave remote sensing; biogenic emission; vegetation water stress

1. Introduction

Isoprene (2-methyl-1, 3-butadiene, C5H8) is one of the most important volatile organic
compounds (VOCs) in the atmosphere; playing an important role in the atmospheric
chemistry related to ozone (O3) and secondary organic aerosols (SOAs) [1–3], which are
harmful to human bodies and crucial to the radiative forcing of surface. It is shown that
increased isoprene emission can enhance ozone formation; resulting in about 50% change
of ozone [4], and contribute to over half of the total SOAs production [5]. Generally,
with the presence of nitrogen oxides (NOx), isoprene is initially oxidized by hydroxyl
radical (OH, the principle oxidizing agent in atmosphere), nitrate radical (NO3) and ozone
etc.; thus influencing atmospheric total OH reactivity [6] and total ozone reactivity [7,8].
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The intermediate products, such as methyl vinyl ketone (MVK), methacrolein (MACR),
formaldehyde (HCHO) [6,9], can participate in other atmospheric chemical processes
further [6]. Therefore, the studies of biogenic isoprene emission are necessary in regarding
its regulation of the atmospheric chemistry and the alternation of future climate.

Terrestrial vegetation, especially forest, is the main source of isoprene [10,11]. Iso-
prene is found to be synthesized in tree leaves, and can increase the thermal tolerance of
plants [12,13]; thus helping to survive in heat waves. The emission rate of isoprene depends
on vegetation type and environmental conditions, such as temperature, radiation [14–19],
CO2 concentration and water supply [20–23], but how the emission responds to the daily
environment is still under study throughout the world [24–27]. The annual global emission
of isoprene by plants is estimated to be between 300 and 800 Tg C [14,28–30], which is
much larger than the amount of anthropogenic emission [31]. Until now, isoprene emission
rate at a large-scale is mainly estimated by top-down retrieval and bottom-up models.

The top-down retrieval method takes advantage of satellite observations and model
simulations to estimate surface isoprene fluxes [32,33]. Assuming that there was a linear
relationship between HCHO column density and land surface isoprene fluxes, Palmer et al.
(2003, 2006) used the GEOS-Chem model to inverse satellite observed HCHO to surface
isoprene emission in North America [34,35]. The method was then applied in other re-
gions [36,37]. Currently, there are several satellite sensors which can measure the HCHO
column density, such as the Global Ozone Monitoring Experiment (GOME), Ozone Moni-
toring Instrument (OMI) and Tropospheric Monitoring Instrument (TROPOMI). Among
them, the OMI is commonly used in the reverse studies due to the long-term temporal
coverage [38–41], and in this study, we also used the OMI top-down emissions for analysis.

These things considered, isoprene emission can be estimated by the bottom-up method.
The bottom-up estimation is based on a physical or statistical model describing the relation-
ship between the isoprene emission rate of vegetation and the controlling factors. In plants,
isoprene is synthesized from multi-sources [42,43] through the 2-CMethyl-D-Erythritol
4-Phosphate (MEP) pathway in chloroplasts [43]. Numerous field studies showed that
isoprene emission will increase with the raising of radiation and temperature. When the
temperature is high, the emission will decrease after. In addition, other environmental
factors, such as CO2 concentration and water, can affect the emission [44]. Based on those re-
sults, bottom-up models are developed. The Model of Emission of Gases and Aerosols from
Nature (MEGAN) is one of the most widely used bottom-up models, being coupled into
chemical transport models such as WRF-Chem, Community Land Model (CLM) etc. [28,45].
MEGAN uses the emission factors (EFs) to quantify the potential VOCs emissions of dif-
ferent species, then applies the light-temperature algorithm and environmental stress
algorithm to model the emission rates (ERs).

In the context of global warming induced spatial and temporal changes of the hydro-
logical cycle, the effect of water stress on VOC emissions is raising attention, especially
for tropics and subtropics. Water stress can largely affect the metabolism of vegetation
by modifying the openness of stomata; directly affecting the leaf conductance to water
and carbon exchanging process with the atmosphere [46,47]. The decrements of isoprene
emission due to water stress are thought to be as high as 17–50% [48–50]. However, the
response of isoprene emission to water stress is different from other vegetation activities.
Studies showed that, when the drought starts with the decrease of soil moisture [44],
the stomatal conductance and photosynthesis rate decline immediately, while isoprene
emission remains constant at first because of the use of alternative cellular sources, then
decreases after several days [51–53]. Therefore, although isoprene emission is affected by
water stress, it is not directly sensitive to the change of soil moisture [42].

However, soil moisture is used as the stress factor of water supply in MEGAN
v2.10 [28,30,45]. The algorithm introduces the wilting point of soil as the threshold of
the response of isoprene emission to water stress. If soil moisture is lower than the wilting
point, the plants cannot extract water from soil; thus the emission is completely stopped.
Therefore, the soil moisture factor is highly sensitive to the soil moisture database because
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the soil categories of different databases are varied [48,49]. In order to avoid such uncer-
tainty, some modeling studies ignored the soil moisture factor (set the factor to 1) [29,54].
Some attempts were made by previous studies to improve the simulation using soil mois-
ture. For example, multiple layers of soil were considered by Müller et al. (2008) [30];
Jiang et al. (2018) proposed a new factor using a photosynthesis parameter Vcmax and soil
wetness factor βt estimated by CLM [50]; and leaf temperature was added to revise the
water stress factor by Out-Larbi et al. (2019) [55].

Although efforts were made to qualify the water stress effects on isoprene emission,
studies were limited because of the use of soil moisture. In fact, the temporal variation
of soil moisture cannot reflect the leaf water condition which affects biogenic emission.
There are multiple parameters related to leaf water conditions that have been used to study
the emission response to water stress. Plaza et al. (2005) found that in Mediterranean
oak forest, the water xylem potential can serve as an indicator of drought [56]. Some
experiments have found that the leaf water potential of oak shows a slower decrease than
soil moisture over a long term [57], suggesting that the vegetation inner water content
changes slower than soil moisture; thus the emission is not always correlated with soil water
deficit [58]. Guidolotti et al. (2011) found the positive correlation between the isoprene
emission rate of poplar and instantaneous water use efficiency [22]. Moreover, the leaf
water potential, related to the leaf inner water content, showed a strong linear relationship
with isoprene emission [53,58], which is recommended to represent the effects of water
stress to the isoprene emissions in the model. Furthermore, the leaf water potential is
positively correlated with the relative water content (the ratio of current vegetation water
content to the saturated vegetation water content) [59]. Thus, the isoprene emission from
vegetation is actually controlled by vegetation inner water content, instead of soil water
content, and soil moisture is only a substitutional way to estimate the water stress effect.

However, very few, if any, satellite remote sensed vegetation water content index has
been used for estimating isoprene emission. In recent years, a novel microwave-based
vegetation index, Emissivity Difference Vegetation Index (EDVI), was found physically
related to canopy water content in dense forest [60]. Until now, EDVI was utilized to
represent the spatiotemporal variations of vegetation water content (VWC) and to estimate
evapotranspiration [61]. Furthermore, EDVI was found to be positively correlated with the
column density of HCHO; thus, biogenic emission [62]. Therefore, it is very promising that
EDVI can be used as a stress factor to estimate the isoprene emission from vegetation.

In this paper, we developed a method to utilize EDVI as a water stress factor in the
MEGAN model. In addition, soil moisture and two optical vegetation indices (OVIs),
Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI),
were also involved as reference. The results of all of the simulations in southeastern China
during 2008 were compared with OMI top-down retrieval isoprene emission data.

2. Materials and Methods
2.1. Top-Down Retrieval Isoprene Emission

In order to get the long-term record of isoprene emission in a large area, top-down
retrievals of isoprene emission based on OMI observed HCHO were used in this study.
OMI is a sensor on board the Aura satellite launched in 2004, completing a global coverage
almost in one day. The spatial resolution of OMI is 24 km × 13 km, which is suitable
for the inversion. The top-down retrieval surface isoprene flux data are provided by the
Tropospheric Modelling team of the Royal Belgian Institute for Space Aeronomy (BIRA-
IASB), and are available on the website (https://emissions.aeronomie.be/, accessed on
31 December 2021). The inverse model is IMAGESv2 CTM; the driven meteorological
fields are from the ERA-Interim reanalysis dataset from the European Centre for Medium-
range Weather Forecasts (ECMWF); the anthropogenic emission data are from the Emission
Database for Global Atmospheric Research (EDGAR4.2), the REASv2 inventory and RETRO
inventory; pyrogenic data are from the Global Fire Emissions Database (GFED4s); and a
priori biogenic data are from the MEGAN-MOHYCAN model [41,49]. To make the model

https://emissions.aeronomie.be/
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best fit the observed HCHO, the iterative quasi-Newton optimization algorithm is coupled
with the model and used to calculate the biogenic isoprene emissions fit the observation
best [49]. Although the top-down retrieval emissions have not been fully evaluated, in this
paper, we believed the top-down retrieved isoprene fluxes, especially the variation of the
fluxes, are closer to the actual biogenic isoprene emission rates because of the constraint of
satellite observed HCHO. In southeastern China, HCHO is always available, which ensures
the isoprene emission is fully constrained [49].

2.2. MEGAN Models

The Model of Emission of Gases and Aerosols from Nature (MEGAN) was first released
in 2006 [28], and updated to version 2.10 in 2012 [45]. It can be run coupled with chemical
transport models, or run independently when providing the meteorological inputs, land
cover type data (LC), emission factors (EFs), and vegetation leaf area index (LAI). The
isoprene emission rate (ER) is given by:

ER = γ·EF = γ·∑
i

EFi·χi, (1)

EFi is the emission factor of vegetation type i, and χi is the fraction of that vegetation
type in the given grid. γ is the emission activity factor reflecting the response of biogenic
emission to the variations of environmental conditions (light, temperature, leaf age and
soil moisture).

γ = CCE·γP·γT_ld·γLAI·γage·γsm, (2)

CCE, the canopy environment coefficient, was set to a value (0.57) that results in γ = 1
for the standard conditions based on Guenther et al. (2012). γT_ld is the light-dependent
temperature factor, γP is the light factor, γLAI is the LAI factor, γage is the factor considering
leaf age, and γsm is the factor accounting for soil moisture. The detailed algorithms of the
factors, γT_ld, γP, γage and γLAI, are described by Guenther et al. (2006, 2012) [28,45].

The last term, soil moisture factor γsm, is calculated by:

γSM =


1 when SM > θ1
SM−θw
θ1−θw

when SM > θw and SM < θ1

0 when SM < θw

, (3)

The parameter θw
(
m3/m3) is the soil wilting point, and the θ1

(
m3/m3) is the soil

saturating point. θ1 was set as 0.06 + θw in 2006 [28] and was changed to 0.04 + θw in
2012 [45]. In this study, we used the latest one, 0.04 + θw. Based on the algorithm, the soil
wilting point θw can affect the factor greatly and should be different values according to the
soil moisture databases. For example, Müller et al. (2008) used a value of 0.171 when using
ECMWF soil moisture data [30]. In the study, the Weather Research and Forecasting (WRF)
v3.9.1 model simulation was used to provide the soil moisture, so the wilting points should
be taken correspondingly [63]. The default soil type in WRF v3.9.1 is shown in Figure 1a
and the corresponding wilting points in WRF v3.9.1 are listed in Table 1.

We used the WRF v3.9.1 model driven by the National Center for Environmental
Prediction FiNaL (NCEP FNL) data to provide the hourly input meteorological fields. The
simulated area was from latitude 0 to 60 N, and longitude 70 E to 140 E with a spatial
resolution of 0.25 degree over the year 2008, and a small part (southeastern China, latitude
from 15 to 40, longitude from 100 to 125) was selected out after the simulation. The
WRF simulation used the Morrison 2-moment microphysics scheme, Grell–Freitas cumulus
parameterization scheme, RRTMG longwave and shortwave radiation physics scheme, YSU
boundary layer scheme, and Noah land surface scheme [64]. Then the 2-m temperature (T2),
downwelling shortwave flux (SWDNB), 10-m wind speed (U10 and V10), rain (RAINNC
and RAINC), pressure (P), 2-m vapor mixing ratio (Q2), soil temperature (TSLB), and
moisture (SMOIS) of the first layer of soil (5 cm in WRF) were extracted from the WRF
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simulation outputs. These hourly data were then used to drive MEGAN to estimate the
daily emission.

Remote Sens. 2022, 14, x FOR PEER REVIEW 5 of 22 
 

 

 
Figure 1. The spatial distribution of: (a) the soil types; (b) the dominant plant functional type (PFT); 
(c) the emission factor (EF) of isoprene (mg m−2 h−1); (d) the annual mean LAI. The soil types are 
listed in Table 1 and the PFTs are listed in Table 2. 

Table 1. The classification of soil types and the corresponding wilting points in WRF. 

Class Name Wilting Point 𝜽𝒘 (m3/m3) 
1 Sand 0.01 
2 Loamy Sand 0.028 
3 Sandy Loam 0.047 
4 Silt Loam 0.084 
5 Silt 0.061 
6 Loam 0.066 
7 Sandy Clay Loam 0.069 
8 Silt Clay Loam 0.120 
9 Clay Loam 0.103 

10 Sandy Clay 0.100 
11 Silty Clay 0.126 
12 Clay 0.138 
13 Organic Matter 0.066 
14 Water - 
15 Bedrock 0.006 
16 Other 0.028 

We used the WRF v3.9.1 model driven by the National Center for Environmental 
Prediction FiNaL (NCEP FNL) data to provide the hourly input meteorological fields. The 
simulated area was from latitude 0 to 60 N, and longitude 70 E to 140 E with a spatial 
resolution of 0.25 degree over the year 2008, and a small part (southeastern China, latitude 

Figure 1. The spatial distribution of: (a) the soil types; (b) the dominant plant functional type (PFT);
(c) the emission factor (EF) of isoprene (mg m−2 h−1); (d) the annual mean LAI. The soil types are
listed in Table 1 and the PFTs are listed in Table 2.

Table 1. The classification of soil types and the corresponding wilting points in WRF.

Class Name Wilting Point θw (m3/m3)

1 Sand 0.01
2 Loamy Sand 0.028
3 Sandy Loam 0.047
4 Silt Loam 0.084
5 Silt 0.061
6 Loam 0.066
7 Sandy Clay Loam 0.069
8 Silt Clay Loam 0.120
9 Clay Loam 0.103
10 Sandy Clay 0.100
11 Silty Clay 0.126
12 Clay 0.138
13 Organic Matter 0.066
14 Water -
15 Bedrock 0.006
16 Other 0.028
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The data of EFs (0.0083 degree resolution) and Plant Functional Types (PFTs) (0.05 de-
gree resolution) are available at https://bai.ess.uci.edu/megan/data-and-code/megan21
(accessed on 31 December 2021). LAI data (0.05 degree resolution) are derived from
the Global Land Surface Satellite Leaf Area Index (GLASS LAI 8-day) product (http:
//glass-product.bnu.edu.cn/, accessed on 31 December 2021). All the data were col-
lected and regridded to 0.25 degree to match the WRF simulations. The spatial distribution
of PFTs, soil type, EFs and averaged LAI are presented in Figure 1; the description of soil
types and PFTs are listed in Tables 1 and 2. In southeastern China, the dominant soil types
(Figure 1a) are loam, clay and clay loam. In the south, there is mainly clay loam, while
in the north, there is mainly loam. Trees are mainly located in the south, such as Fujian,
Zhejiang and Jiangxi (Figure 1b). In the North China Plain (NCP) and Sichuan Basin (SB),
the dominant PFT is crop. The EF map of isoprene (Figure 1c) shows consistent spatial
patterns with PFTs because trees are greater emitters than crops or grass. In the areas
covered by trees, such as Yunnan, Guangdong, Fujian and the north of Sichuan Basin,
the EFs are much higher, around 4 mg m−2 h−1, reaching 6 mg m−2 h−1 in the north of
Sichuan. While in those areas mainly covered by sparse vegetation (grass or crop), the EFs
are relatively lower, about 1–2 mg m−2 h−1. In addition, the averaged LAI in the NCP
and SB where crops are dominant is lower, and in the forest, LAI is higher than 3 m2/m2

(Figure 1d), which demonstrates the higher biomass in the forest.
Figure 2a presents the annual mean soil moisture simulated by WRF. Soil moisture is

high in the south, such as Fujian, Yunnan and Guizhou. And in the cropland, such as SB
and NCP, soil moisture is relatively lower.
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Table 2. The classification of plant functional types.

Class Plant Functional Type

1 Needleleaf Evergreen Temperate Tree
2 Needleleaf Deciduous Boreal Tree
3 Needleleaf Evergreen Boreal Tree
4 Broadleaf Evergreen Tropical Tree
5 Broadleaf Evergreen Temperate Tree
6 Broadleaf Deciduous Tropical Tree
7 Broadleaf Deciduous Temperate Tree
8 Broadleaf Deciduous Boreal Tree
9 Broadleaf Evergreen Temperate Shrub
10 Broadleaf Deciduous Temperate Shrub
11 Broadleaf Deciduous Boreal Shrub
12 Arctic C3 Grass
13 Cool C3 Grass
14 Warm C3 Grass
15 Crop
16 Corn

2.3. EDVI, EDVI Factor and Optical VI Factors

EDVI is defined as the difference of microwave land surface emissivity (MLSE) be-
tween 18.7 GHz and 36.5 GHz [60]:

EDVIp =
MLSE36.5

p − MLSE18.7
p

0.5
(

MLSE36.5
p + MLSE18.7

p

) , (4)

The MLSE data are retrieved from the Advanced Microwave Scanning Radiometer for
EOS (AMSR-E), with ~20 km spatial resolution and daily temporal resolution [65], which is
much higher than optical VIs (16 day for MODIS NDVI, for example). ‘p’ is the polarization
of the MLSE, and here, vertical polarized EDVI was used for study because the vertical
component was higher correlated with moisture content of vegetation [66]. Please refer to
Li et al. (2020) for the details of EDVI retrieval in China [67].

In southeastern China, EDVI is a good indicator of the vegetation water content, and
is positively correlated with NDVI, but their seasonal variation phases are different [67]. A
characteristic of microwave-based EDVI differing from optical VIs is that it can be obtained
from satellite in both clear sky and in non-raining cloudy sky; thus EDVI can be retrieved
daily. In this paper, we compared the effects of EDVI and two optical VIs (NDVI and EVI
from MOD13C1) to the MEGAN simulated isoprene emission. The optical VIs (NDVI and
EVI) were interpolated to daily temporal resolution linearly to suit the simulation.

The annual mean of EDVI, NDVI and EVI in 2008 in southeastern China are shown in
Figure 2b–d. Around the Yangtze River, EDVI is relatively lower because of the low value
of open water and wet soil. This is consistent with Li et al. (2020) [67]. NDVI and EVI show
lower values only around the lakes. In other places, the patterns of EDVI, NDVI and EVI
are similar. In the south, such as Fujian, Guangxi and Yunnan, EDVI is high, about 0.008;
NDVI is about 0.8; and EVI is larger than 0.4, showing higher VWC and greenness there.
While in the North China Plain (NCP), EDVI is about 0.004; NDVI is about 0.4; and EVI is
around 0.3, which indicates lower VWC and greenness in the cropland. In the northwest,
NDVI and EVI are quite low, but EDVI is high, this is because EDVI is highly affected by
the snow in winter [67]. According to the spatial distributions of PFTs (Figure 1a), soil
type (Figure 1b) and the latitudes, five typical regions (Table 3) were selected, as shown in
Figures 1 and 2. The time series of soil moisture, EDVI, NDVI and EVI in the regions are
presented in Figure 3.
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Table 3. The center locations, dominant PFT, soil types and emission factor (EF) in the selected five
regions. The numbers of PFTs and soil types refer to the classes listed in Tables 1 and 2 and the values
in the bracket are the percentage of the class in the region.

Region Latitude Longitude PFT Soil EF (mg m−2 h−1)

1 27 118 1 (58.3%)
7 (27.4%) 9 (100%) 3.7

2 27 106 13 (42.4%)
15 (36.2%) 9 (100%) 1.4

3 36 106 15 (46.0%)
13 (10.3%)

6 (87.5%)
9 (12.5%) 1.7

4 32 118 15 (47.9%)
13 (23.8%)

9 (92.2%)
8 (3.1%) 1.0

5 36 118 15 (47.9%)
13 (22.2%)

6 (82.8%)
9 (14.1%) 0.8
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Figure 3. The time series of soil moisture (SM, black line), EDVI (blue line), NDVI (red line) and EVI
(red dash line) in the selected five regions. The blue dash line denotes the daily EDVI, and the blue
line denotes the 30-day smoothed EDVI.

As shown in Figure 3a, in region 1, mainly covered by forest, the soil moisture is higher
than 0.25 m3/m3 all year round, and EDVI is higher than 0. The mean soil moisture there
is about 0.32 m3/m3; being stable in spring, but fluctuating in other seasons. In February,
EDVI starts to increase, and reaches the highest value, about 0.01, around August. NDVI



Remote Sens. 2022, 14, 1740 9 of 22

and EVI show similar temporal patterns, but the two start to increase in March [67]. The
annual mean NDVI is 0.68 and EVI is 0.4, showing the dense vegetation in the region.

The dominant PFT in region 2 is grass with significant seasonality. Soil moisture is
highest in late spring and summer, and decreases in autumn. EDVI, NDVI and EVI show
similar seasonal variations with soil moisture, which increase around March and start to
decrease around August. The mean EDVI is about 0.001, lower than that in region 1 (mean
EDVI is 0.006). The mean NDVI and EVI are low too, about 0.57 and 0.33, demonstrating
the sparse vegetation.

Region 3 is located in the northwest, dominated by cropland (Figure 1b). Soil moisture
is lower than 0.2 m3/m3 in January and February, and starts to increase after. NDVI and EVI
are higher around July, indicating the growth of crops. In late January and early February,
EDVI increases quickly to over 0.01, while NDVI and EVI decline to about 0. By combining
the snow data (MYD10C1), it is believed that the vegetation indices are heavily influenced
by winter snow (see Appendix A for details).

The dominant PFTs in region 4 and region 5 are both crops, with relatively lower EDVI,
NDVI and EVI. In the two regions, the values of NDVI and EVI are similar (0.45 and 0.27
in region 4; 0.40 and 0.25 in region 5), showing that the vegetation densities in the two
regions are close. All of the three vegetation indices show strong seasonal variations. NDVI
and EVI start to increase in March, and reach the first peak around early May, and then
increase to another peak around August. The first peak of EDVI is around mid-May, later
than NDVI or EVI. EDVI in region 4 is about −0.012, while in region 5 is 0.002, indicating
the larger fraction of open water and bare soil in region 4.

From Figure 3, it is shown that in the northwest (region 3), vegetation indices are
affected by the winter snow heavily (Figure A1 in Appendix A), leading to the increase
of EDVI and decrease of optical VIs. In other places, the indices are well consistent to
present vegetation conditions. Although the value of EDVI varies in different places
(regions 4 and 5), EDVI can capture the temporal variations of VWC [67].

Studies showed that isoprene emission is linearly correlated with leaf water poten-
tial [58]. So, to study the effects of the change of VWC to the biogenic emission, we
employed EDVI to present the VWC, i.e., large EDVI means no water stress, and low
EDVI means high water stress. Furthermore, based on the framework of MEGAN, stress
factor should be a value between 0 and 1 [45]. Thus, the EDVI-based water stress factor is
described as a function of EDVI in the following formula:

γEDVI =
EDVI − EDVImin

EDVImax − EDVImin
, (5)

where EDVImin and EDVImax denote the minimum and maximum of EDVI through the
year, respectively. So, the value of γEDVI is between 0 and 1, and is linearly changed with
increasing EDVI.

For the purpose of evaluation and comparison, we also designed the other three water
stress factors using smoothed EDVI, NDVI and EVI:

γSEDVI =
SEDVI − EDVImin

EDVImax − EDVImin
, (6)

γNDVI =
NDVI − NDVImin

NDVImax − NDVImin
, (7)

γEVI =
EVI − EVImin

EVImax − EVImin
(8)

SEDVI means smoothed EDVI (such as blue dash lines in Figure 3). To retain the
seasonal variation of EDVI, but exclude the daily variation, we smoothed EDVI in 30 days.
γSEDVI here is used to present the effect of the daily variation of EDVI to the simulated
emission. NDVI and EVI were first interpolated linearly to daily, and then applied to the
calculation of γNDVI and γEVI.
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2.4. MEGAN Simulations

To compare and evaluate the impacts of soil moisture, and those vegetation indices
on isoprene emission, we conducted six simulations in 2008 using MEGAN. S0 is the base
simulation without any water stress. S1 is the simulation with the soil moisture factor
(S1 = S0 ∗ γSM). S2 is the simulation with the EDVI stress factor (S2 = S0 ∗ γEDVI) as the
water stress factor. S3 is the simulation with the smoothed EDVI factor (S3 = S0 ∗ γSEDVI).
S4 is the simulation with the NDVI factor (S4 = S0 ∗ γNDVI). S5 is the simulation with
the EVI factor (S5 = S0 ∗ γEVI). All six simulations were compared with OMI top-down
retrieval isoprene emission data.

3. Results

The averaged isoprene emissions in 2008 from satellite top-down retrieval and the
six simulations are shown in Figure 4. It can be seen that the top-down annual mean
isoprene emission rate is relatively low with maximum emission less than 0.6 mg m−2 h−1

(Figure 4a). The emission is higher in the south of Shaanxi, the north of Jiangxi and Hainan,
about 0.4 mg m−2 h−1, and is quite low in the areas covered by short vegetation, such as
the North China Plain (NCP), lower than 0.1 mg m−2 h−1. From a spatial view, all of the
six simulations show a generally consistent spatial pattern with high spatial correlation
coefficients (R > 0.8), with different bias due to different water stress factors. Among them,
S0 (without water stress) and S1 (soil moisture as water stress factor) show the largest area
mean bias of 0.09 mg m−2 h−1 (relative bias = 65%) because of no water stress applied.
S2 and S3 (EDVI and smoothed EDVI as water stress factors) show the smallest mean
bias of 0.02 mg m−2 h−1, i.e., the relative bias decreases from 65% to 12% after applying
EDVI factor, which means the EDVI water stress factors alters the emission rates close to
top-down. S4 and S5 (optical vegetation indices as water stress factors) show medium
bias of 0.05 mg m−2 h−1 and 0.03 mg m−2 h−1. The root mean squared errors (RMSEs) of
top-down and simulations show the same patterns. The RMSEs of S0 and S1 are largest
(0.11 mg m−2 h−1), and the RMSEs of S2 and S3 show the lowest (about 0.07 mg m−2 h−1),
while the RMSEs of S4 and S5 are moderate (about 0.0.9 mg m−2 h−1), indicating the
uncertainty is decreased when EDVI factor is applied. Generally, from Figure 4, it is
presented that the simulated isoprene emissions are all spatially consistent with top-down
emission with different levels of overestimation, and the simulations with EDVI water
stress factors show the lowest bias and RMSE.

To investigate the effects of the different water stress factors on isoprene emission,
the time series of those factors in the five regions selected are shown in Figure 5. The
relationships between simulated daily emissions and top-down emission are presented in
Figure 6, and the monthly averaged results are presented in Figure 7.

It is obvious that, due to the linear algorithm, the temporal variations of the vegetation
factors (Figure 5) are quite similar with the variations of the indices (Figure 3). First of
all, in regions 1, 2, 3 and 4, soil moisture is always high, leading to the constant SM factor
(constant 1) throughout the whole year; while in region 5, the soil moisture decreases in
September and is lower than the wilting point, leading to the decrease of SM factor. It is
noticed that, in region 5, the decrease of soil moisture in September is small, but leads to
the large decrease of SM factor. The abrupt decline may induce high uncertainty during the
period [49]. The other factors (EDVI, NDVI and EVI) follow the seasonality of vegetation
growth; thus show similar temporal variations in each region. Generally, the factors are
higher in the summer and lower in the winter. The values of EDVI factors and SEDVI
factors in the five regions are all larger than 0.4; NDVI factors and EVI factors vary from
0 to 1. In region 1, the EDVI factor and SEDVI factor are lowest in early February, and
increase until August, while the NDVI factor and EVI factor start to increase in March. In
region 2, the NDVI factor and EVI factor start to increase during February, while the EDVI
factor and SEDVI factor start to increase in March. In region 3, due to the influence of the
snow in winter, the EDVI factor and SEDVI factor show a peak in early February, while
the NDVI factor and EVI factor show a valley in late January. In region 4, NDVI and EVI
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factors show two peaks through the year, one in April and another in July, while the EDVI
factor shows one in May and another in July, and another in January because of the snow.
In region 5, the EDVI factor and SEDVI factor are relatively stable, while the NDVI factor
and EVI factor are higher in July and August. In September, the SM factor decreases, but
other factors don’t show a significant decrease, indicating that, although the soil moisture
is decreasing, vegetation doesn’t lose water as fast.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 4. The spatial distribution of the averaged isoprene emission of (a) top-down; (b) S0 (without 
water stress); (c) S1 (with soil moisture factor); (d) S2 (with EDVI factor); (e) S3 (with SEDVI factor); 
(f) S4 (with NDVI factor); (g) S5 (with EVI factor). The table on the upper-right shows the spatial 
correlation coefficients (R), mean bias (mg m−2 h−1) and root mean squared error (RMSE, mg m−2 h−1) 
between the six simulations (S0 to S5) and top-down. 

 

 

Figure 4. The spatial distribution of the averaged isoprene emission of (a) top-down; (b) S0 (without
water stress); (c) S1 (with soil moisture factor); (d) S2 (with EDVI factor); (e) S3 (with SEDVI factor);
(f) S4 (with NDVI factor); (g) S5 (with EVI factor). The table on the upper-right shows the spatial cor-
relation coefficients (R), mean bias (mg m−2 h−1) and root mean squared error (RMSE, mg m−2 h−1)
between the six simulations (S0 to S5) and top-down.



Remote Sens. 2022, 14, 1740 12 of 22

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 4. The spatial distribution of the averaged isoprene emission of (a) top-down; (b) S0 (without 
water stress); (c) S1 (with soil moisture factor); (d) S2 (with EDVI factor); (e) S3 (with SEDVI factor); 
(f) S4 (with NDVI factor); (g) S5 (with EVI factor). The table on the upper-right shows the spatial 
correlation coefficients (R), mean bias (mg m−2 h−1) and root mean squared error (RMSE, mg m−2 h−1) 
between the six simulations (S0 to S5) and top-down. 

 

 
Figure 5. The time series of daily water stress factors during 2008 (blue: SM factor, red: EDVI factor,
yellow: SEDVI factor, purple: NDVI factor, green: EVI factor.).

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

Figure 5. The time series of daily water stress factors during 2008 (blue: SM factor, red: EDVI factor, 
yellow: SEDVI factor, purple: NDVI factor, green: EVI factor.). 

It is obvious that, due to the linear algorithm, the temporal variations of the vegeta-
tion factors (Figure 5) are quite similar with the variations of the indices (Figure 3). First 
of all, in region 1, 2, 3 and 4, soil moisture is always high, leading to the constant SM factor 
(constant 1) throughout the whole year; while in region 5, the soil moisture decreases in 
September and is lower than the wilting point, leading to the decrease of SM factor. It is 
noticed that, in region 5, the decrease of soil moisture in September is small, but leads to 
the large decrease of SM factor. The abrupt decline may induce high uncertainty during 
the period [49]. The other factors (EDVI, NDVI and EVI) follow the seasonality of vegeta-
tion growth; thus show similar temporal variations in each region. Generally, the factors 
are higher in the summer and lower in the winter. The values of EDVI factors and SEDVI 
factors in the five regions are all larger than 0.4; NDVI factors and EVI factors vary from 
0 to 1. In region 1, the EDVI factor and SEDVI factor are lowest in early February, and 
increase until August, while the NDVI factor and EVI factor start to increase in March. In 
region 2, the NDVI factor and EVI factor start to increase during February, while the EDVI 
factor and SEDVI factor start to increase in March. In region 3, due to the influence of the 
snow in winter, the EDVI factor and SEDVI factor show a peak in early February, while 
the NDVI factor and EVI factor show a valley in late January. In region 4, NDVI and EVI 
factors show two peaks through the year, one in April and another in July, while the EDVI 
factor shows one in May and another in July, and another in January because of the snow. 
In region 5, the EDVI factor and SEDVI factor are relatively stable, while the NDVI factor 
and EVI factor are higher in July and August. In September, the SM factor decreases, but 
other factors don’t show a significant decrease, indicating that, although the soil moisture 
is decreasing, vegetation doesn’t lose water as fast. 

 

 
Figure 6. The scatter plots of the daily top-down emission versus the daily simulated emissions in 
the five regions, the dash line denotes 1:1 line. (black circle: S0 versus top-down, green square: S1 
versus top-down, red square: S2 versus top-down, orange diamond: S3 versus top-down, light green 
upward-pointing triangle: S4 versus top-down, green downward-pointing triangle: S5 versus top-
down). 

We compared the simulated daily emissions and top-down emission (Figure 6); the 
statistics are presented in Table 4, and the monthly results are shown in Figure 7 and Table 

Figure 6. The scatter plots of the daily top-down emission versus the daily simulated emissions
in the five regions, the dash line denotes 1:1 line. (black circle: S0 versus top-down, green square:
S1 versus top-down, red square: S2 versus top-down, orange diamond: S3 versus top-down, light
green upward-pointing triangle: S4 versus top-down, green downward-pointing triangle: S5 versus
top-down).
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We compared the simulated daily emissions and top-down emission (Figure 6); the
statistics are presented in Table 4, and the monthly results are shown in Figure 7 and
Table 5. Generally, in all of the five regions, the simulated emissions are also consistent
with the top-down emission, with higher values in some regions, which may be resulted
from the overestimated emission factors. Especially in region 3, the top-down emission is
nearly zero, suggesting the low emission intensity, while the simulated emission is about
0.1 mg m−2 h−1, about 10 times higher than the top-down emission.

Table 4. The daily statistics between the six simulations and top-down emissions. The statistics
include CORR (daily temporal correlation coefficient), bias (mg m−2 h−1), and RMSE (root mean
squared error, mg m−2 h−1).

Region Statistics S0 S1 S2 S3 S4 S5

1
CORR 0.62 0.62 0.66 0.65 0.66 0.64

Bias 0.255 0.255 0.085 0.101 0.142 0.126
RMSE 0.477 0.477 0.350 0.363 0.420 0.415

2
CORR 0.55 0.55 0.63 0.59 0.60 0.59

Bias 0.031 0.031 −0.013 −0.010 0.000 −0.004
RMSE 0.133 0.133 0.101 0.106 0.115 0.116

3
CORR 0.67 0.67 0.61 0.67 0.66 0.67

Bias 0.034 0.034 0.017 0.018 0.028 0.029
RMSE 0.061 0.061 0.039 0.035 0.054 0.054

4
CORR 0.71 0.71 0.81 0.74 0.74 0.74

Bias 0.045 0.045 −0.019 −0.018 0.013 0.006
RMSE 0.162 0.162 0.101 0.114 0.138 0.134

5
CORR 0.72 0.70 0.74 0.72 0.69 0.69

Bias 0.021 0.015 −0.008 −0.008 −0.005 −0.010
RMSE 0.122 0.124 0.094 0.097 0.113 0.108
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Table 5. The monthly statistics between the six simulations and top-down emissions. The statistics
include CORR (monthly temporal correlation coefficient), bias (mg m−2 h−1), and RMSE (root mean
squared error, mg m−2 h−1).

Region Statistics S0 S1 S2 S3 S4 S5

1
CORR 0.91 0.91 0.93 0.93 0.94 0.90

Bias 0.255 0.255 0.087 0.101 0.141 0.126
RMSE 0.306 0.306 0.171 0.184 0.254 0.260

2
CORR 0.86 0.86 0.93 0.91 0.91 0.90

Bias 0.031 0.031 −0.012 −0.010 0.001 −0.004
RMSE 0.062 0.062 0.041 0.045 0.045 0.048

3
CORR 0.99 0.99 0.99 0.98 0.99 0.99

Bias 0.034 0.034 0.017 0.018 0.028 0.029
RMSE 0.047 0.047 0.025 0.025 0.041 0.041

4
CORR 0.90 0.90 0.97 0.95 0.93 0.93

Bias 0.045 0.045 −0.019 −0.018 0.014 0.006
RMSE 0.103 0.013 0.038 0.049 0.074 0.068

5
CORR 0.94 0.92 0.94 0.94 0.89 0.89

Bias 0.021 0.015 −0.007 −0.008 −0.005 −0.010
RMSE 0.065 0.070 0.039 0.041 0.065 0.062

In terms of the difference among vegetation types, forest (region 1, Figure 6) shows the
largest isoprene emission rate by top-down and simulation among the five regions, which
confirms that the capacity of releasing VOCs from trees is much stronger than crop, grass
and other short vegetation. The maximum emission rate in forest is about 2 mg m−2 h−1,
significantly higher than that in other regions. The simulated emission rates are all highly
temporally correlated with top-down emission, with correlation coefficients of 0.65. The
correlation coefficients of S2 (using EDVI factor) and S4 (using NDVI factor) are a little
higher (0.66). In addition, S2 and S3 show the minimum bias (0.085 and 0.101 mg m−2 h−1)
with top-down, which means EDVI decreased the relative bias from 86% to about 30%.
The RMSEs of S2 and S3 also decrease to 0.350 and 0.363 mg m−2 h−1, indicating a higher
consistency with top-down emission.

In the southeastern grassland (region 2), the emissions are moderate, with the largest
emission rates over 0.5 mg m−2 h−1. The temporal correlations of S2 to S5 and top-down
are all higher than S0, while that of S1 is the same as S0 due to the constant value of the
SM factor. The increases of temporal correlations of S2 to S5 indicate that the emission
is affected by vegetation conditions. The correlation of S2 and top-down is the highest
among all of the simulations, reaching 0.63, which is 0.08 larger than S0, with small bias
(−0.013 mg m−2 h−1) and the lowest RMSE (0.101 mg m−2 h−1). The corresponding
relative bias decreased from 32% to −13%, which suggests the more coincident results
with top-down.

In regions 3, 4 and 5, EDVI is affected by winter snow in January and February
(Figures 3, 5 and A1), so we compared the results including and excluding the first 2 months
(January and February), but the results show the same because the emission rates in the
2 months are nearly zero; thus the influence of water stress is negligible. Therefore, we will
not distinguish the snow season, even though snow will affect vegetation indices.

In region 3, located in the northwest, the emission is low. The top-down estimated
maximum emission rate is less than 0.05 mg m−2 h−1, while the model simulations show
less than 0.4 mg m−2 h−1, indicating the large uncertainties here. The correlations of S0, S1,
S3, S5 and top-down are highest among the simulations, reaching 0.67, while the simulation
applying daily EDVI factor (S2) shows a lower correlation coefficient, about 0.61. For bias
and RMSE, it is shown that S2 and S3 with EDVI are closer to the top-down estimation.
Generally, in northwestern China, the vegetation is sparse, the isoprene emission is low,
and the estimation is highly uncertain.
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In region 4, mainly covered by crop, the maximum of the emission rate is about
1 mg m−2 h−1 estimated both by simulation and top-down. The correlation coefficient of
S0 and top-down is high, about 0.71, showing the simulation is highly temporally consistent
with top-down. After applying EDVI factor (S2), the correlation coefficient is significantly
increased to 0.81, while other simulations (S3 to S5) show only moderate increase (0.74
and 0.76). In addition, the bias of S2 (−0.019 mg m−2 h−1) drops to less than half of
S0 (0.045 mg m−2 h−1), and the RMSE (0.101 mg m−2 h−1) is lowest among all of the
simulations, indicating the highest consistency of S2 and top-down in this region.

Different from other regions, in region 5, soil moisture factor is not constant. However,
S1 shows even lower correlation than S0, indicating the soil moisture factor cannot present
the real change of vegetation water condition; thus leading to the decrease of temporal cor-
relation. The other two factors (NDVI and EVI factors) show similar results. The correlation
coefficients of S4 or S5 are all decreased, suggesting the inaccurate estimation of vegetation
water stress using optical VIs, i.e., NDVI and EVI. Compared with other simulations, by
using EDVI factor, S2 shows the highest correlation among those simulations, reaching 0.74,
and both the bias and RMSE are decreased. The corresponding relative bias decreases from
23% to −9%, and RMSE is also reduced to 76%, showing the better estimation of water
stress by EDVI factor.

From the monthly results (Figure 7 and Table 5), the temporal coefficients of simula-
tions and top-down are much higher than daily results with values over 0.9. Generally,
among all of the simulations, S2 shows the highest temporal correlation coefficients and
lowest RMSE in most regions, especially in regions 2 and 4 where the correlation coefficients
increased about 0.07 compared with S0, and RMSE decreased 34% and 63% separately.
The relative biases of S2 are relatively low too, especially in region 1, decreasing from
87% to 30%. Overall, the monthly results are similar with the daily results with higher
temporal correlations.

The temporal correlation coefficients of the simulations and top-down estimations are
then calculated in each grid. The spatial distributions of the daily correlation coefficients are
shown in Figure 8 and the monthly results are shown in Figure 9. To present the differences
among the six simulations, we also conducted the differences in pairs: S1-S0, effect of SM
factor; S2-S0, effect of EDVI factor; S3-S0, effect of SEDVI factor; S4-S0, effect of NDVI factor;
S5-S0, effect of EVI factor; S2-S3, effect of daily EDVI factor than smoothed EDVI factor
(SEDVI factor).
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It is shown that all of the simulations can capture the main temporal variations of
emission presented by top-down retrieval (first row in Figure 8); the correlation coefficients
are larger than 0.6 in most places. In the south of Yunnan, R is relatively low, about 0.2. In
the Yangtze Basin (especially around Hubei), R is high, reaching 0.8. Comparing S1 to S5
with S0, it is found that S2 shows the largest improvement on the correlation (S2–S0), such
as in Yunnan, Yangtze River Delta, Fujian etc. There is almost no improvement of S1 in
southeastern China, due to the constant SM factor. In NCP, S1 even shows lower correlation
than S0, indicating that soil moisture fails to present water stress there. Compared with S3,
the correlation coefficients of S2 are much larger (>0.16) than S0 in the Yangtze River Delta
(YRD) and Yunnan-Guizhou Plateau, indicating the simulation using EDVI, especially daily
EDVI, is more consistent with top-down. S4 and S5 show different patterns in different
places. In Yunnan and NCP, the correlation coefficients of S4 and S5 are lower than S0, and
in YRD are larger, about 0.08. The moderate improvement of NDVI and EVI suggest that
optical vegetation indices are quite limited in presenting vegetation water content.

Monthly results (Figure 9) show the similar patterns. The correlations are all high,
over 0.8 in most areas (first row in Figure 9). The differences (second row in Figure 9) also
demonstrate that the simulation using daily EDVI as water stress factor shows the most
consistent temporal variation with top-down emission in the Yangtze River Delta (YRD)
and Yunnan-Guizhou Plateau.

Generally, it can be seen that compared with soil moisture and other vegetation indices,
using EDVI, especially daily EDVI, to indicate the water stress for plants can better improve
the temporal correlation of MEGAN simulated isoprene emission with top-down retrievals
in southeastern China.

In conclusion, we applied EDVI, NDVI and EVI to MEGAN to simulate isoprene emis-
sion rates, and compared these with satellite top-down retrieved emissions in southeastern
China. Because top-down isoprene fluxes are constrained using monthly OMI HCHO
observations [49], we presented both the daily and monthly regional averaged results, as
shown in Figures 6 and 7 and Tables 4 and 5. The daily results and monthly results are
consistent and robust, and reveal that the simulated emission using EDVI is closer to the
top-down retrieval in the southeast, especially in the places covered by dense vegetation. It
is shown that the use of the EDVI factor will result in a better estimation of water stress on
biogenic emission.

4. Discussion

Most research is still limited to the soil moisture, but numerous field studies have
shown that the emission is weakly sensitive to soil moisture or photosynthesis [22,53,58]. It
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is shown that short-term drought will not inhibit, but stimulate the biogenic VOCs emission
because of the low water stress and higher temperature during the drought. However,
long-term drought will decrease the emission because of the limited water [68]. Those
results highly called attention to the parameterization of water stress using vegetation
water indicators, instead of soil moisture only.

Vegetation indices are direct indicators of vegetation properties; thus are widely used
in studies. In this research, we tried to use different vegetation indices to simulate the
effect of water stress on the biogenic VOCs emission. It is found that the simulated results
in southeastern China using the EDVI factor, especially daily EDVI factor, show better
consistency with top-down retrieved emission than the simulation using soil moisture,
NDVI or EVI. Soil moisture in southeastern China is always larger than the wilting point;
thus affects the emission little. Optical vegetation indices, i.e., NDVI and EVI in this study,
mainly reflect the properties of the top of the canopy, such as greenness. The microwave-
based vegetation index, EDVI, presents the vegetation water content of the canopy crown
due to the penetration of the microwaves. In additions, EDVI can be retrieved under clear
sky and cloudy sky; thus reflecting the daily variation of vegetation water content.

It should be admitted that there are some limits to our study.
Firstly, there are a lack of proper observations that can be used as ground truth to

directly evaluate the performance of simulated isoprene emission. Although there are
some in situ measurement studies investigating the isoprene emission over China [69,70],
the temporal ranges of those studies are relatively short. Until now, satellite observation
is still the main way to constrain VOCs emissions in China. Therefore, there is an ur-
gent need for more VOCs observation studies including in situ measurement and flight
measurement in China.

Secondly, there is a lack of deep understanding of the physiological mechanisms to
link isoprene emissions with EDVI. EDVI is a VWC indicator theoretically, but there are
still no certain mathematical descriptions of EDVI to VWC and VWC to emissions also. The
biogenic isoprene emission in water stress is linearly related to leaf water potential [58],
but how to get the leaf water potential from the microwave-based vegetation index is
unknown. Studies have shown that the relationships between water content and water
potential are different among plant species [59,71]. However, there are already some studies
that have connected leaf water potential and microwave-based vegetation index using a
linear relationship [72]. So, in our study, using EDVI directly as the proxy of leaf water
potential in a model is a reasonable trial of a way to estimate the water stress effects. To
better understand the response of biogenic emission to water stress, studies related to EDVI
and botanical process need to be carried out in future.

Thirdly, the temporal range of the study is limited. We conducted MEGAN simulations
using different water stress factors only in 2008, while the performance of the EDVI factor
in other years is unknown. It is shown that vegetation growth is affected by ENSO-induced
precipitation change [73]. 2008 is La Niña year; thus the water stress may be affected and
different to other years. So, whether the EDVI factor can present the water stress in other
years, especially El Niño years, needs more investigation.

Despite the limitations, the comparison in this study mainly focuses on the temporal
variations of the biogenic emissions in a large spatial scale, so satellite top-down retrieval
emissions are the most proper data for the purpose. Satellite sensors can capture the
temporal variations of atmospheric formaldehyde and provide the possibility to estimate
the daily isoprene emissions in a large scale [40,74]. By comparing with the temporal
variations of satellite top-down retrieval emissions, EDVI shows better controls on the
isoprene emission rates than SM or VIs (NDVI and EVI) in southeastern China (Figure 7),
which is an evidence of VWC effects on emissions.

The average top-down emission is lower than the modeled emission in this study,
which is also found in some studies [38]. The EFs used in MEGAN are estimated using a
closure measurement to measure the emission from branch or leaves, but the top-down
retrieved emissions are related to the fluxes at the top of the canopy, thus the residue
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within the canopy is one important reason [38]. So, it is noticed that the amount of isoprene
residual within the canopy should be estimated in the coupled models.

5. Conclusions

Soil moisture cannot directly reflect the water stress on biogenic emissions because
vegetation water content changes much slower than soil moisture. Aiming to study the
vegetation water stress on biogenic emission, we applied soil moisture, EDVI, NDVI
and EVI to the MEGAN model, and simulated isoprene emission in southeastern China
during 2008. Compared with top-down retrieved emission, all of the simulations are found
systematically larger, but spatially consistent, with correlation coefficients over 0.8. The
simulated emission with EDVI is closest to top-down. From the temporal view, EDVI can
significantly improve the simulation than soil moisture, NDVI and EVI. In those areas with
dense vegetation, the simulations with EDVI applied are more consistent with top-down
emissions with lower biases. Around Yunnan and the Yangtze River Delta, the temporal
correlation coefficients increased by over 0.12 after using EDVI as the water stress factor,
while others show little differences.

In conclusion, the simulated isoprene emission using the EDVI factor shows more
consistent temporal variations compared with satellite top-down retrieval than using
soil moisture or optical VIs in southeastern China, suggesting that the microwave-based
vegetation index, i.e., EDVI, can be used in MEGAN to indicate the daily vegetation water
stress on biogenic emission in southeastern China. More studies of EDVI and biogenic
emissions are needed to improve our understanding of how the vegetation conditions
influence the biogenic emissions.
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Appendix A. Effects of Winter Snow on Vegetation Indices

Winter snow will cover the vegetation; thus affecting the satellite observed vegetation
indices. We used MODIS MOD10C1 product to show snow cover, and analyzed the snow
effects on microwave-based vegetation index (EDVI) and optical vegetation indices (NDVI
and EVI) in the five regions selected. In regions 1 and 2, the winter snow is rare; thus the
vegetation indices are affected little. While in region 3 and 4, winter snow largely affects
the VIs. In the two regions, when the snow starts, EDVI increases, while NDVI and EVI
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decrease to near 0. In region 5, although there are frequent snow events, the snow cover is
relatively low; thus the effects on vegetation indices are also small.
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