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Abstract: Recently, deep-learning methods have yielded rapid progress for object detection in
synthetic aperture radar (SAR) imagery. It is still a great challenge to detect ships in SAR imagery
due to ships’ small size and confusable detail feature. This article proposes a novel anchor-free
detection method composed of two modules to deal with these problems. First, for the lack of
detailed information on small ships, we suggest an adaptive feature-encoding module (AFE), which
gradually fuses deep semantic features into shallow layers and realizes the adaptive learning of
the spatial fusion weights. Thus, it can effectively enhance the external semantics and improve
the representation ability of small targets. Next, for the foreground–background imbalance, the
Gaussian-guided detection head (GDH) is introduced according to the idea of soft sampling and
exploits Gaussian prior to assigning different weights to the detected bounding boxes at different
locations in the training optimization. Moreover, the proposed Gauss-ness can down-weight the
predicted scores of bounding boxes far from the object center. Finally, the effect of the detector
composed of the two modules is verified on the two SAR ship datasets. The results demonstrate that
our method can effectively improve the detection performance of small ships in datasets.

Keywords: ship object detection; deep learning; remote sensing imagery; feature extraction;
object sampling

1. Introduction

Synthetic aperture radar (SAR) is an active imaging radar that has the advantages of
all-weather operation and a robust anti-jamming ability. It can effectively identify camouflage
and penetrate masking objects, and is an essential means of ground monitoring [1]. Due to
its imaging mechanism and characteristics, SAR has been widely used in marine monitoring,
especially in detecting nearshore and ocean ships. SAR ship detection has high application
value in both military and civil fields. For example, cruise counting and ocean rescue in
the civil field [2] and battlefield detective and intelligence acquisition in the military field
are inseparable from this technology. The traditional SAR ship detection usually adopts
the constant false alarm rate (CFAR) [3] algorithm, which directly calculates the detection
threshold adaptively according to the local clutter statistical characteristics, and judges whether
it is a target according to the threshold. The advantage of the CFAR algorithm lies in its simple
structure, a small amount of computation, and fast detection speed, but it is sensitive to the
selection of clutter distribution. The breakthrough of deep learning makes convolutional
neural network (CNN) shine in the field of computer vision. CNN has achieved outstanding
results in the field of image classification. The object-detection algorithm based on deep
learning usually takes a classification network as the backbone network to extract the features
of the image and then sends it to the detection network for classification and regression after
feature fusion. At present, they are often divided into two-stage networks represented by the
RCNN series [4] and one-stage networks represented by Yolo [5], SSD [6] and retinanet [7].
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The above RCNN series, Yolo, SSD and RetinaNet are anchor-based detectors. Since the
emergence of CornerNet [8] in 2018, a large number of detection algorithms without anchor
design have emerged in the field of object detection, such as FASF [9], CenterNet [10], and
FCOS [11]. These algorithms further promote the transition from object detection to the
end-to-end system.

At the same time, researchers in the field of SAR also try to migrate CNN in natural
images to the field of SAR ship detection. However, due to the significant field differences
between natural images and SAR images, the following characteristics deserve attention in
algorithm design.

SAR image is a top view taken by airborne or space-borne satellites. The direction of
objects is often arbitrary. Therefore, the rotation invariance of feature extraction should
be considered when designing the network. In addition, the image used for SAR ship
object detection is often a single-channel gray image preprocessed by geometric correction.
In contrast, the natural image is often a three-channel color image. Limited by the demand
of SAR long-range imaging, the object being detected occupies a small image area. It can
be regarded as a small target with low resolution and insufficient detailed information.

As shown in Table 1, small objects are generally defined as objects that are less than
32 × 32 pixels in area or less than 1% of the image size. However, the current object
detection algorithms are not ideal for detecting small targets. On general visual data sets
such as Ms coco [12], the detection accuracy of small targets is about half that of large
targets, while in SAR images with more small targets and sparse targets, the problem is
more serious.

Table 1. Definition of large, medium, and small targets in MS COCO.

Pixel Minimum Area Maximum Area

Small target 0 × 0 32 × 32
Medium target 32 × 32 96 × 96

Large target 96 × 96 ∞ × ∞

One of the problems of small ship detector is that small targets occupy fewer pixels and
lack detailed information, resulting in insufficient available feature information. To extract
the deep-seated features of the target, the object-detection algorithm based on deep learning
often needs to improve the semantics through continuous convolution and downsampling.
If only the last layer feature map of the backbone network is used for detection, for small
targets with an area of fewer than 32 × 32 pixels, there may be less than 1 pixel mapped to
the feature map. This will undoubtedly lead to a smaller problem of information.

Unlike the classification task, in the training process of the detection task, the predicted
samples need to be allocated to the actual target by manually designing rules to divide the
positive and negative samples. This division process is called sampling. The quality of the
sampling strategy directly affects the effect of training. If the target cannot be effectively
sampled in the training process, the learning of that category cannot be well, resulting
in the difficulty of detection. Due to the sparsity of small ship targets in SAR images,
the imbalance between positive and negative samples often occurs, resulting in poor
training effects.

Therefore, aiming at the two difficulties of small-target detection in SAR image, this
paper first proposes an adaptive feature encoding method, which can directly learn the
spatial weighting coefficient of deep feature fusion as to filter the deep useless information
and enhance the useful information. Secondly, a target existence measure gauss-ness based
on Gaussian distribution modeling is proposed. The weighted sampling method based on
gauss-ness is used to recalibrate the weights of positive samples at different locations in the
boundary box.
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1.1. Problem Description and Motivations

Although object detection has achieved good results on public data sets such as MS
coco [13] and pascal-VOC [14], the detection accuracy of small targets is still very low.

One problem of small target detection is that the detailed information is not rich, and
the available feature information is too little [15]. Object-detection algorithms based on deep
learning usually use a classification network as the backbone network for feature extraction.
Compared with detection tasks, classification requires higher semantics. Therefore, in
the classification network, multiple downsampling will be carried out in convolution to
improve semantics, which is unfavorable for detecting small targets. Although introducing
a feature pyramid network (FPN) greatly alleviates this problem, for small targets, although
the receptive field of shallow features is small and the detailed features are retained, its
semantic information representation ability is weak. For SAR images, this problem is more
serious. For example, on public SAR datasets such as HRSID [16] and SSDD [17], the
proportion of small targets exceeds 50%. In addition, due to the sparsity of targets in SAR
image, the proportion of pixel area of small targets in SAR image is also smaller than that in
the optical image. These problems have brought great challenges to detecting small targets
in SAR images.

Another problem is that positive and negative samples are uneven in SAR ship detec-
tion, and the sampling quantity and quality of positive samples in a common sampling
strategy are poor [18]. For the anchor-based detection algorithm, the anchor is difficult to
design, and the sampling strategy based on IOU matching is easy to lead the absence of
positive samples, and some targets with small area are ignored. For the anchor-free design
method, the division of positive and negative samples is based on whether the pixels are in
the actual boundary box. There will be pixel confusion at the edge of the boundary box,
resulting in the reduction of the quality of positive samples.

1.2. Contributions and Structure

This paper has carried out a series of research on the SAR ship’s small target problems.
The main contents and innovations are as follows:

(1) Aiming at the problem of insufficient detail information and difficult feature extraction
of small targets, an adaptive feature encoding method (AFE) is proposed. This method
effectively integrates the deep high semantic features into the shallow layer to enhance
the feature representation of small targets, so as to improve the detection performance
of small targets. AFE first calculates the spatial weight of each deep feature map in
the multi-scale feature pyramid by introducing a spatial attention mechanism, then
weights the deep features in the way of pixel-by-pixel multiplication and fuses them
into the shallow feature map. After normalization, the fused feature map with detailed
information and high-level semantics is obtained. Experiments on HRSID and SSDD
data sets show that the AFE method has a significant improvement in the problem of
feature reuse conflict compared with other variants of FPN.

(2) Aiming at the sampling problem of small targets, this paper first determines the sam-
pling method without anchor design and analyzes the quality problem of edge positive
samples. Then a Gaussian-guided detection head (GDH) is introduced. It proposes a
target existence measure Gauss-ness which is more suitable for SAR ships, and a Gauss-
ness weighted sampling strategy. Experiments show that the sampling optimization
method can achieve good improvement in small target detection.

(3) A detector suitable for small-target detection is constructed by combining the adaptive
feature method and the sampling optimization method proposed above. The proposed
AFE is embedded in the basic feature extraction module, while GDH plays a role in
the object location. The effect of the detector has also been verified experimentally.

This article is organized as follows: Section 3 briefly introduces some existing methods
that have inspired our work. Next, Section 3.2 describes the principle and significance of
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the two proposed modules. The description of datasets and experimental results are shown
in Section 4, and a final conclusion is stated in Section 5.

2. Related Work
2.1. General Object Detection

In 2014, Grishick et al. proposed regional convolutional neural network (RCNN) [4],
which became the pioneering work of deep learning in the field of target detection.
The subsequently proposed Faster-RCNN [19] is the first end-to-end detection network,
which utilizes Region Proposal Network (RPN) [19] to integrate the extraction of candidate
regions with target detection head. Different from RCNN series, which divides detection
into two tasks of classification and positioning, You Only Look Once (YOLO) [5,20,21] re-
moves the generation process of candidate regions and unify classification and positioning
into regression problems, which greatly improves detection speed and is the pioneering
work of single-stage network.

Both Faster-RCNN and YOLO are based on preset anchor frame for detection. The design
of anchor frame parameters directly affects the effect of target detection and limits the general-
ization of the target-detection algorithm. In 2018, Hei Law et al. proposed CornerNet based
on key-point detection, which transforms the detection box into the description of key points;
that is, two points at the upper-left corner and the lower-right corner are used to determine a
detection box, breaking the limitation of the preset anchor box of the target-detection algorithm.
Since then, target detection has entered the anchor-free era. The CornerNet only provides
information about the edges of the objects. For the objects, the most recognizable information
should be the area inside them. CenterNet has added center-point detection to help screen
candidate boxes. ExtremeNet [22] points out that corner points may not be on the object. It uses
the top, bottom, left, and right poles of the object to describe the boundary of the object, and
introduces the center point to judge the category of the object. The CornerNet, CenterNet, and
ExtremeNet are all based on key-point detection to break through the limitations of anchors,
while another important class of anchor-free detectors are based on segmentation methods.
FCOS directly outputs the probability distribution of each position class and the distance of the
four boundaries of the target on the feature map. ATSS [23] pointed out that FCOS is superior to
RetinaNet because of its excellent positive and negative sample division strategy. Foveabox [24]
directly divided the samples of the edge of the boundary box into irrelevant samples, and the
definition of the boundary box was determined by two different stretching coefficients. FSAF
explored the positive sample allocation problem under multi-scale prediction in FPN (feature
pyramid network) [25]; that is, which layer of feature map should be selected for training for
each positive sample. FSAF proposes a feature selective anchor-free module to enable the
network to adaptively learn how to allocate samples to different layers.

2.2. Ship Detection

SAR ship detection is a popular research direction in the field of remote sensing target
detection. The traditional SAR image detection usually adopts Constant False Alarm
Rate (CFAR) [26] and its improved algorithm. The essence of CFAR lies in the statistical
modeling of clutter in the sea surface background. According to the local clutter statistical
characteristics, the false alarm threshold is adaptively calculated, and then each pixel
value is compared one-by-one regarding whether it exceeds the false alarm threshold
to achieve ship target detection. Traditional ship target detection algorithms are mostly
targeted at specific scenes [27,28], and are highly dependent on predefined distribution or
artificially designed features in the detection process, resulting in low robustness and poor
generalization of the algorithm. Convolutional neural networks based on deep learning
have the ability to learn parameters and extract features automatically, and can get rid of
the dependence on hand-crafted features, making it the mainstream algorithm for current
target detection.

Compared with traditional target detection methods, the current CNN-based methods
have a high improvement in detection accuracy and robustness. Therefore, researchers
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have widely applied deep learning technology to SAR image ship detection. The direction
of improvement mainly focuses on the two key issues of feature extraction and anchor
design. The summary and comparison of SAR ship detection algorithms are shown in
Table 2.

Table 2. Summary of CNN-based SAR ship detection algorithms.

Category Method

Target feature extraction

Characteristic pyramid
Super dense connection

Visual attention
Context fusion

Target anchor design Direction design
Scale design

In the aspect of target feature extraction, since the ship shape in SAR image is variable,
the feature fusion formula is often used to fuse the information of different feature layers.
Yang et al. [29] carried out two cross-layer feature fusion in the network, which could
effectively solve the detection problem of multi-scale ship targets at sea and port, but the
detection efficiency was reduced. The method in [30] integrates the information of adjacent
characteristic layers to fully utilize the semantic meaning and space information, and
improves the detection performance of small targets, step by step. However, the vdetection
of weak targets or low-intensity targets is easy to cause missed detection and false alarm.
Miao et al. [31] generate regional proposals by fusing three layers with different resolutions,
so as to improve the spatial resolution of RPN to the same level as that of the middle layer
and improve the network’s response to small- and medium-sized targets. Chen et al. [32]
deployed forward-connected blocks from shallow feature to deep feature and reverse
connected blocks to generate the enhanced intermediate feature. Gao et al. [33] use Split
Convolution Block (SCB) to divide the input image into smaller pieces to improve the
attention of dense objects and strengthen the target area. However, there was an increase in
the test time. Inside-outside net [34] employed recurrent neural networks and transmitted
spatial information in both horizontal and vertical directions through images. The densely
connected multi-scale neural network (DCMSNN) [35] introduces the dense connections to
deal with the detection of the multi-scale ships in the multi-scene SAR images.

On the other hand, the design of anchor mainly includes direction design and scale
design. MSR2N [36] set six kinds of rotation angles to cover with full directions, but the
calculation efficiency decreased. Zhang et al. [37] added rotation angle into the output
regression parameters to directly predict the ship direction, but the accuracy was greatly
reduced. The above two methods are still limited to the anchor-generating mechanism,
resulting in a higher cost of calculation. Referring to CenterNet, Zhang et al. [38] designed
a network to predict the target center point, and then performed regression on the scale
and direction of the target at the center point. The algorithm in [39] used SSDKmeans
clustering algorithm to generate anchor, improving the detection effect of small targets in
complex background.

3. Methods
3.1. Explanation of Center-Ness in FCOS

This section summarizes the centrality measurement based on the center priori in
FCOS, analyzes its shortcomings in SAR ship object detection.

In the field of object detection, the boundary box is usually used to label the target,
and the shape of most targets is often irregular, so there is a certain gap between the
representation of the target and the true value. Especially in ship detection in SAR imaging,
due to the multi-directionality of the ship target, the marked boundary box of target contains
a large number of background pixels, and these background pixels will be indiscriminately
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marked as positive samples when sampling in anchor-free methods. These low-quality
samples will affect the training optimization of the model.

Approaches such as FCOS, Noisy Anchor [40] and Auto Assign [41] that attempt to
solve this problem are all based on an assumption: the central prior, that is, the sampling
point located near the center of the boundary box, is usually the most effective, and the
validity of the sampling point gradually decreases from the center to the surrounding. In
order to quantitatively analyze the effectiveness of different positions in the bounding box,
FCOS uses the ratio between the sample position and the distance from the boundary as the
centrality of the position and takes it as the measurement of the existence of the target, adds
a center-ness branch in the detection head to learn the centrality of the target position, and
multiplies the predicted centrality with the classification score when testing. Center-ness
suppresses the low-quality samples at the edge of the bounding box, and the suppression
process of Gauss-ness is described in Figure 1.

Figure 1. An example of the center-ness suppression process.

P refers to the position in the bounding box, l, r, t and b are the distance from P to the
left boundary, right boundary, upper boundary, and lower boundary. The centrality of P
in [11] can be described by:

center− ness =

√
min(l, r)
max(l, r)

× min(t, b)
max(t, b)

(1)

Figure 2 shows the distribution of centrality in the bounding box represented by
Equation (2). Red represents the area with centrality of 1, blue represents the area with
centrality of 0, and other colors represent the change process of centrality from 1 to 0.

Figure 2. Visualization of center-ness.
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We show more center-ness visualization results in the following Section 3.4.1. It is
observed that although the centrality calculation method can meet the aforementioned
central prior, it can not well fit the pixel distribution of ships due to the multi-directional
problem of SAR ships.

3.2. The Overall Framework of the Proposed Method

How to design more efficient networks has been a hot topic in the field of deep learning
research. Our proposed ship object-detection method is considered from feature extraction
and sampling scheme aspects, and then two modules are designed to be combined with
the basic network to improve the overall performance of SAR image ship detection, and
Figure 3 is the overall process description of the proposed method.

First of all, our method eliminates the effect of anchors by adopting a general anchor-
free strategy that directly learns the encoded bounding boxes. Multiple convolutional
layers constitute a backbone to extract image basic features, and then the obtained features
are fed into FPN to form multi-scale features. Subsequently, the AFE proposed in this
paper adaptively fuses these features and obtains several new feature maps with refined
detailed information and semantic information. When it comes to box prediction and
positioning, Gauss-ness designed in GDH can be used to calculate the classification score
of detected targets in the test process. Meanwhile, in the training process, loss function can
be optimized by taking advantage of the characteristics that predicted bounding boxes at
different locations have different Gauss-ness values.

Our method is an end-to-end convolutional neural network, which is the same as
general detection networks, including a backbone for extracting features and a detection
head for target localization. The proposed AFE and GDH have been improved in these two
parts respectively.

Figure 3. The overall framework of the proposed algorithm for ship target in SAR imagery.

3.3. Refined Feature Pyramid with Adaptive Feature Encoding

FPN is a mainstream solution to small target detection. Previously, SSDS detected
targets on multiple scale feature maps. It is based on a rule: a deep feature map has a
larger receptive field and stronger semantics that are suitable for large-target detection;
while a shallow feature map has higher resolution and keeps enough detail, so it is suitable
for small-target detection. Although SSD adopts a shallow feature map to improve the
small-target detection ability to a certain extent, the method of directly extracting the lower
layer of the backbone network as shallow feature map will lead to insufficient shallow
semantic information. FPN combines a deep semantic feature map with a shallow feature
map by top-down method, aiming to retain high-resolution detail/information while
integrating deep semantic information. The appearance of FPN greatly improves the
detection effect of small targets, but it still has some problems. FPN uses heuristic feature
selection, which associates objects at different scales to feature maps at different levels
through hand-designed scale partitioning strategies. After the target is assigned to a certain
level of the feature map, the corresponding areas of the other levels of the feature map
are treated as background and suppressed. When the network trains targets of different
scales, the direct fusion of FPN will cause feature reuse conflicts among different levels and
reduce the effectiveness of feature pyramid. In order to solve this problem, the Guided
Anchoring technique [42] attempted to adopt predicted anchor-guided features, but only
a single deformable convolution could not solve the problem perfectly. TridentNet [43]
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builds multiple specific scale branches with different receptors to avoid conflicts among
feature pyramids. However, it does not make good use of shallow feature maps with
high-resolution, so its detection of small targets is limited. Therefore, this paper proposes
an adaptive feature coding method to further solve this problem.

3.3.1. Initial Feature Pyramid Generation

The input SAR image x is first sent to the backbone network (RESNET, Darknet, etc.),
and a series of feature maps C = {C2, C3, C4, C5} with different scales can be obtained and
after a series of convolution layers. The shallow feature map has high resolution and the
detailed features are intact, making it suitable for detecting small targets. The deep feature
map has low resolution, but has a larger receptive field and higher semantics, meaning
it is suitable for large-object detection. These feature maps are combined as a top-down
connection to form a feature pyramid for multi-scale detection. The specific connection
process is shown in Figure 4. Firstly, the low-resolution feature map was up-sampled, and
then it was added pixel-by-pixel to the shallow feature map with lateral connection. The
initial pyramid feature map are obtained subsequently through a 3 × 3 convolution, and
the 1 × 1 convolution of lateral connection was used to change the number of channels.

Figure 4. Architecture of the initial FPN.

With the increase of i, the resolution of the feature map gradually decreases, which
can be expressed by: {

Wi = W/2i

Hi = H/2i (2)

where W and H are the width and height of the image. In order to reduce the amount
of calculation, C1 is usually not used when constructing the feature pyramid. The initial
feature pyramid constructed in this paper is P = {P2, P3, P4, P5}.

3.3.2. Adaptive Feature Encoding

Adaptive feature encoding is mainly divided into two steps: the first step is to up-
sampling the deep feature map to realize the resolution matching between deep and shallow
feature maps; the second step is to calculate the spatial weight of the matched deep feature
map and encode the spatial features.

For a layer Pl in the initial feature pyramid, P5, P4, . . . Pl+1 scale to Pl size in turn. Specif-
ically, as shown in Figure 5, for Pl+1, bilinear interpolation is used for up-sampling, and
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3 × 3 convolution is used for feature modification. For Pl+2, the operation of convolution
after upsampling is adopted twice, and so on for other feature maps.

The Pn→l ∈ RC×H×W means that Pn is scaled to the feature map with the same
resolution as Pl , and the number of channels is C, Mn→l ∈ RC×H×W represents the weighted
feature map. The process of spatial feature weighting can be described as:

Mn→l = Γ(Pn→l)⊗ Pn→l (3)

where ⊗ represents the pixel-by-pixel multiplication with broadcasting attached, and
Γ(Pn→l) ∈ RH×W represents the two-dimensional weight tensor with the same size as Pn→l
generated by the gating module Γ.

The structure of spatial attention mechanism is used for Γ. As shown in Figure 5, the
maximum pooling and average pooling of Pn→l are performed in the channel dimension
firstly. After the two are spliced together, they are input into the sigmoid function through a
3 × 3 convolution to obtain the normalized weight tensor. Γ is to obtain the spatial weight,
and then conduct pixel-by-pixel multiplication with Pn→l to obtain the weighted Mn→l .

Figure 5. Description of the AFE.

In the specific process, we also normalize the spatial weight of each layer by Softmax.
The reason for using Softmax is to keep the accumulation of multi-layer characteristic
values in a reasonable range and not cause excessive influence on optimization. Compared
with the concatenate operation, the method of per-pixel accumulation is more in line with
the idea of weighting and has less computation. The final generation process of feature
pyramid is shown in Figure 6.

Figure 6. Description of the final feature pyramid generation.
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3.4. Gaussian-Guided Detection Head

Different from the classification task, in the training process of the detection task,
the predicted samples need to be allocated to divide into positive and negative samples
by manually designing rules; this division process is called sampling. The quality of the
sampling strategy directly affects the effect of training. The sampling strategies in current
detection tasks can be roughly divided into IoU matching sampling, based on predefined
anchors, and densely points sampling, without anchors. The IoU matching sampling
strategy needs to calculate the IoU between the anchor and the real boundary box of the
target to divide positive and negative samples. The problem of this strategy is that it is
sensitive to the super-parameter setting of the anchor. The detector without anchor design
can avoid this limitation. It usually adopts the method of densely points sampling that
directly maps the real boundary box of objects to the final feature map. The points inside
the boundary box region are selected as the center point of the positive samples, and the
remaining positions are divided as negative samples. Although this method is not affected
by hyper-parameters, it cannot effectively judge the quality of samples. The positions on the
edge of the boundary box are usually the background center rather than the target, while
the samples of different positions are not distinguished in network training. Although
FCOS introduces the center-ness branch to suppress the low-quality samples at the edge,
there are still some problems in applying it to SAR ship object detection: (1) center-ness
cannot fit ships with changeable direction well; (2) FCOS only uses center-ness to restrict
the classification score of targets in the test stage, and does not distinguish the contribution
of samples from different positions in the bounding box in the training stage.

In view of the above problems in small target detection, we use Gaussian distribution
to model the pixel distribution of targets in the horizontal boundary box, and obtain a new
target existence measure Gauss-ness. A weighted sampling method based on Gauss-ness
is also proposed from the perspective of soft sampling. Compared with the truncated
sampling based on Gauss-ness, our method does not directly discard the prediction re-
sults of the edge of the bounding box, but reduces its weight when calculating the total
classification loss.

3.4.1. Gauss-Ness Branch for Inference Process

It is observed that although the center-ness method can meet the priori of object, it can
not well fit the pixel distribution of ship targets due to the multi-direction of SAR ships.

In order to judge the target existence of the location more accurately, a new measure-
ment method needs to meet the following properties:

(1) The center prior is satisfied. The weight of the position closer to the center is larger,
and the value closer to the edge is smaller. There is a gradual decay process from the center
to the edge. (2) Center symmetry is satisfied. Since the direction of ships in SAR images
are uncertain, this metric should not be simply symmetrical in horizontal and vertical
directions. (3) To meet the normalization, the centrality of the center of the boundary box is
1, and the edge position should be attenuated to 0 as far as possible.

Through analysis, the bivariate Gaussian distribution is suitable for modeling the
horizontal bounding box:

f (p | µ, Σ) =
1

2π|∑|
1
2

exp
(
−1

2
(p− µ)TΣ−1(p− µ)

)
(4)

As shown in Equation (5), the Gauss-ness is obtained by normalizing it, where p
is the vector of position coordinates (x, y), µ is the mean vector of Gaussian distribu-
tion, Σ is the covariance matrix of Gaussian distribution, and |∑| is the determinant of
covariance matrix.

gauss− ness = exp
(
−1

2
(p− µ)TΣ−1(p− µ)

)
(5)
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Due to the obvious contrast between the gray value of the SAR ship and the surround-
ing sea area, the gray value of the pixels in the boundary box can be used as the sample
weight for maximum likelihood estimation of µ and Σ.

The second line in Figure 7 shows the fitting effect of Gauss-ness on the target in the
bounding box. It can be observed that Gauss-ness can better fit the shape of ships, especially
the ship direction, which has great advantages over the center-ness in the first line.

Figure 7. Visualization results of Center-ness and Gauss-ness.

3.4.2. Gauss-Ness Weighted Sampling in Training Process

The anchor-based detector screens positive samples through IoU value. Figure 8a
shows the distribution of positive samples in anchor-based detectors, and the number of
positive samples depends on the setting of IoU threshold. The threshold of RetinaNet in
MS COCO detection task is 0.5 and approximately 25% of the locations in the boundary box
will be classified as positive samples. Figure 8b is the positive sample distribution diagram
of FCOS, which divides all samples with center points in the boundary box into positive
samples without considering the influence of low-quality samples at the edge.

Figure 8. Positive sample distribution for different sampling strategies. (a) RetinaNet; (b) FCOS;
(c) Truncated Sampling; (d) Weighted Sampling.

Since FCOS does not consider the low-quality samples, Gauss-ness is proposed. Specif-
ically, we first calculate the sampling threshold by dividing 25% positions into positive
samples, which is the quartile of the Gaussian distribution. The position where Gaussian
value is greater than the threshold in the boundary box is divided into positive samples.
Figure 8c shows the distribution of the Gaussian truncated sampling.

The low-quality samples generated at the edge of the bounding box are often hard
samples in training. The existence of these samples brings noise to the training of the
target detector. To reduce the influence of low-quality samples on the training process, we
consider weighting the samples based on Gauss-ness, and introduce the adjustment factor
k to regulate the degree of variance:

Gauss-ness = exp
(
− 1

2k
(p− µ)TΣ−1(p− µ)

)
(6)
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k can adjust the variance of Gauss-ness between the center of the bounding box and the
edge, and control the speed of edge attenuation. Figure 9 shows the change curve of Gauss-
ness along the horizontal direction when k takes {1, 2, 3} respectively. The abscissa adopts
the distance after normalization. With the increase of k value, the attenuation velocity
will gradually decrease. The experiment in Section 4.3.2 explores the impact of different k
values on the detection performance. In the benchmark experiment, we take the k value
as 2.

Figure 9. Gauss-ness curves at different K values.

In addition, considering that weighted sampling is a redistribution of the original
samples and should not change the overall weight, normalization factor α is introduced
to normalize the Gauss-ness in the boundary box of a single target so that its mean value
remains to 1. The final sample weight can be described by the formula:

w =

{
α exp

(
− 1

2k (x− µ)T ∑−1(x− µ)
)

s ∈ Spos

0 others
(7)

w is the sample weight, α represents the normalization factor, and is the average weight
of positive samples in the bounding box. s represents the current sample and SPOS repre-
sents the set of positive samples. Figure 8d describes the distribution of positive samples
with weighted sampling strategy. Orange represents positive samples and light to deep
represents different weights. The final weighted loss function is described as follows:

L
(

px,y, tx,y
)
=

1
Npos

∑
x,y

wx,yLcls

(
px,y, c∗x,y

)
+

λ

Npos
∑
x,y

δc∗x,y>0wx,yLreg

(
tx,y, t∗x,y

)
(8)

where Lcls is the focal loss [7] for classification, Lreg is the IoU-loss [44] for regression. Focal
loss is proposed to solve the problem of severe imbalance in the proportion of positive and
negative samples in end-to-end object detection. For regression loss, the commonly used
L2 loss needs to optimize four independent variables of the bounding box at the same time,
and leads to the model optimization focuses more on larger objects and ignores smaller
ones. In order to solve this problem, we use IoU loss function to optimizes the bounding
box as a whole. wx,y, px,y and c∗x,y separately represent the sampling weight, category score
and real category at (x, y). tx,y stands for the predicted coordinates of (x, y), while t∗x,y
is the ground truth value at (x, y). Npos represents the number of positive samples, λ is
set to 1 as the balance weight of Lreg. δc∗x,y>0 is an indication function, when c∗x,y > 0, its
value is 1, otherwise it is 0. Re-weighting the positive samples in the above way not only
weakens the influence of noise samples that cannot be well modeled, but also helps to
re-examine the central samples that are considered to be correctly classified, thus promoting
the classification performance of detection.
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4. Experiments and Analysis
4.1. Introduction to SAR Ship Dataset

To verify the effectiveness of the model in this paper, experiments on large-scale
datasets are required. Due to the limitation of SAR imaging conditions, its related datasets
are not as common as optical datasets. This paper conducts multiple experiments on two
public SAR ship datasets. The statistics of these datasets are listed in Table 3. Detailed
information, including the resolution, image size, number of images in the dataset, labeling
method, is given for comparison. Each dataset is described in detail below.

Table 3. Statistics of two SAR ship detection datasets.

Datasets Resolution
(m)

Image Size
(Pixel)

Images (n) Annotations Categories

SSDD [17] 1–15 190–668 1160 Bounding
box 1

HRSID [16] 0.5, 1, 3 800 × 800 5604 Bounding
box/Polygon 1

HRSID : HRSID is a -detection dataset of SAR images released by the University of
Electronic Science and technology of China [16]. It adopts MS coco annotation format.
The image sources are mainly sentinel-1b, TerraSAR-X and TanDEM-X, and the resolution is
less than 3 m. The imaging area of the whole dataset includes the ocean surface with broad
field of vision and simple background, and the offshore scene with more ships berthing and
complex background. The offshore scenes are mainly ports, in which the ships are greatly
affected by artificial facilities or buildings. In addition, the dense arrangement of ships
is also a challenge. The ocean surface background is relatively simple, but its resolution
is usually low and is greatly affected by wave clutter. The dataset cuts the target area to
800 × 800 size slices with resolutions ranging from 0.5 m to 3 m. Figure 10 shows some
typical scenarios in the HRSID dataset.

Figure 10. Typical legends in HRSID. (a) and (b) represent single-ship and multi-ship scenarios in the
far sea, respectively; (c) and (d) for ships arranged in near shore; (e) and (f) are ships moored in the
port; and (g) and (h) show small ships clustered in river channels.

HRSID contains 5604 high-resolution SAR images, providing detection and instance
segmentation task annotation respectively, 65% of the images are divided into training sets
and the remaining 35% are used as test sets. In Figure 11, the distribution of the area and
width–height ratio of the bounding box in the training set and the test set is summarized,
respectively. According to statistics, the percentages of small targets, medium targets and
large targets in HRSID are 54.5%, 43.5%, and 2%, respectively, and small targets account
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for more than half. Therefore, HRSID has the characteristics of small targets but large
detection scene.

Figure 11. Statistical graph of target aspect ratio and area distribution in HRSID.

SSDD : SSDD is the first public SAR ship detection dataset constructed based on
publicly downloaded SAR images [17]. It adopts PASCAL VOC annotation format. Images
in the SSDD dataset were collected by radarSat-2, TerrasAR-X and Sentinel-1 sensors,
including HH, HV, VV, and VH polarization modes, with resolutions ranging from 1 to
15 m. The image range includes the open sea area with relatively simple background and
the nearshore port with complex background. Figure 12 shows typical scenarios in the
SSDD dataset: (a) multiple ships in a simple background; (b) a multi-objective scenario
against a complex near-shore background; (c) the scene of a dense array of ships close
to shore. SSDD cuts the target area into 500 × 500 pieces, with a total of 1160 images,
including 2456 ship targets. In this paper, the dataset are divided into training sets and
test sets according to the ratio of 9:1, of which 930 are training sets and 230 are test sets.
Compared with the HRSID, the size distribution of ship targets in SSDD is relatively
concentrated and the average size is slightly larger.

(a) (b) (c)

Figure 12. Some samples from SSDD. (a) Simple background (b) complex background
(c) nearshore targets.

4.2. Experimental Parameter Setting

In the adaptive feature encoding experiment, this paper added C2 feature map to
construct a new feature pyramid, and divided it into pyramid {M2, M3, M4, M5, M6, M7}.
The target size range on feature maps are set as (−1, 32), (32, 64), (64, 128), (128, 256),
(256, 512), (512, INF). GN is selected as the normalization method, bilinear interpolation is
selected as the up-sampling method in the adaptive feature encoding module.

In the experiment of optimized sampling method, the threshold of truncated sampling
is set as the quartile of Gaussian distribution of corresponding boundary box, and the value
of regulating factor k is 2.

For the setting of training parameters, the SGD optimizer was used, the initial learning
rate was set to 0.005, and the attenuation rate of 0.1 was performed after the 16th and
22nd epochs, with a total of 24 epochs trained. To improve the stability of the mini-
batch training, a linear Warmup of 500 iterations was used and the pre-training weight
of ImageNet was used to initiate the backbone network. GN was used for regularization



Remote Sens. 2022, 14, 1738 15 of 23

processing, and the batch size was set to 4, training on NVIDIA Titan Xp GPU. During the
test, the IoU threshold of the NMS is set to 0.5.

4.3. Experimental Results and Analysis
4.3.1. Experiment Evaluation of AFE

To evaluate the effect of the proposed adaptive feature encoding module, this section
will analyze the experimental results from both qualitative and quantitative perspectives.

First of all, in order to verify the contribution of different configurations in AFE, this
section uses FCOS as the baseline model to conduct ablation experiments on the HRSID.
The experiments mainly include whether to construct the initial feature pyramid with
high resolution feature map C2 and whether to use GN in AFE. The test results under
different conditions are listed in Table 4. FCOS obtained AP of 62.0% and APS of 63.6%
on HRSID, and AP and APS increased to 64.7% and 66.2%, respectively, after the initial
feature pyramid was reconstructed by C2. After weight calculation by embedding the AFE
module, AP and APS increased to 65.8% and 67.2%, respectively. After GN was added, the
AP and APS of FCOS-AFE were further improved to 66.2% and 67.5%, respectively. Among
them, the use of a high-resolution feature map showed the most obvious improvement in
detection effect, and its AP and APS increased by 2.7% and 2.6%, respectively, while our
AFE could continue to generate 1.5% and 1.3% improvement in AP and APS, respectively.
This indicates that AFE can effectively enhance the semantic meaning of the introduced C2
high-resolution feature map and enhance the detection ability of small objects.

Table 4. Ablation experiments for AFE on HRSID.

Detection Algorithm C2 Spatial Attention GN AP APS

FCOS 62.0 63.6
FCOS X 64.7 66.2
FCOS X X 65.8 67.2
FCOS X X X 66.2 67.5

Then, the AP of AFE on HRSID and SSDD are evaluated. Table 5 shows the evaluation
results on the HRSID dataset. AFE achieved the best performance at all IoU thresholds,
with a 4.2% increase in AP relative to FCOS and a 3.9% increase in APS for small-target
detection results. To compare the fairness, we try to use the parameters in MS COCO data
set, without tuning the anchor parameters.

The AP of two-stage Faster RCNN is lower than that of single-stage RetinaNet, which
is the worst because the advantage of two-stage Faster RCNN is the accuracy of location
detection, while the more dense anchor setting is adopted in RetinaNet that are more
suitable for HRSID with smaller target size on average, so the RetinaNet is 5.2% higher in
AP50 than in Faster RCNN and 0.6% lower in AP75, which is more accurate.

Table 5. Experimental results of the AFE Module on HRSID.

Detection Algorithm Backbone Network AP AP50 AP75 APS

Faster RCNN ResNet-50 60.4 80.6 69.1 61.1
RetinaNet ResNet-50 61.6 85.8 68.5 62.9

FCOS ResNet-50 62.0 87.3 69.7 63.6
FCOS + AFE(ours) ResNet-50 66.2 90.9 75.3 67.5

Evaluation results on SSDD are shown in Table 6. Our AFE still achieved the best
detection effect, and compared with FCOS, AP and APS increased by 1.7%. In contrast to
the HRSID dataset, AP detected by Faster RCNN was only 0.1% lower than AFE, almost
the same as AFE, and 1.6% higher than FCOS. According to the aforementioned analysis
of target sizes in SSDD and HRSID, the average size of small targets in SSDD data sets is
relatively large, which is more suitable for precise detection of Faster RCNN.
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Table 6. Experimental results of the AFE Module on SSDD.

Detection Algorithm Backbone Network AP AP50 AP75 APS

Faster RCNN ResNet-50 53.7 91.3 53.4 46.8
RetinaNet ResNet-50 52.0 91.8 51.6 46.5

FCOS ResNet-50 52.1 93.8 53.2 46.3
FCOS + AFE(ours) ResNet-50 53.8 94.3 57.2 48.0

Figure 13 shows the partial visualization results of our proposed AFE on the HRSID
dataset. The first line of the figure shows the real annotation of the image, and the second
and third lines show the detection results of FCOS and FCOS-AFE respectively. In the
first column, FCOS has missed detection of small targets with extreme scales. However,
our improved algorithm significantly improves the recall rate of small targets because it
adopts a higher-resolution feature graph to construct a feature pyramid. The detection
results of the second column show that the method based on adaptive feature encoding
has high robustness for small-target detection in complex scenes, and has a good ability
to distinguish objects easily confused with ships, such as land-based buildings and docks.
The third section is the detection scenario of dense small and weak targets, which further
proves the ability of our improved algorithm to detect small targets. The comparison of
FCOS-AFE and FCOS detection results proves the effectiveness of our proposed adaptive
feature encoding method for small-target detection.

Figure 13. Comparison diagram of FCOS and AFE detection results.

In addition, we also selected P2 from the feature pyramid and corresponding P2 feature
map after feature encoding for visual analysis. P2 and M2 are both at the bottom of the
feature pyramid and are responsible for detecting small targets with target area less than
32 × 32 pixels. The left side of Figure 14 is the visualization result of P2. On the right is
the visualization result of M2. It can be seen that M2 with adaptive feature encoding has a
more obvious activation effect on small targets, confirming the effectiveness of AFE.
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Figure 14. Feature activation heatmap w/o AFM.

4.3.2. Experiment Evaluation of Gaussian-Guided Detection Head

This section mainly carries on the quantitative experimental analysis to the sampling
optimization method proposed in Section 3. In addition, the value of the regulator k of
weighted sampling is also investigated experimentally.

To achieve a better detection effect, we conducted an experimental study on the value
of the regulating factor k. The detection results of Gauss-FCOS with weighted sampling in
Table 7 are obtained when k is set to 1, 2, 3 respectively. It can be seen that, as the value
of k increases, the detection effect AP50 when IoU threshold is 0.5 gradually improves.
However, AP75 with a more strict IoU threshold of 0.75 gradually decreases, indicating
that with the gradual relaxation of the weight (that is, assuming that the pixel distribution
of the target is more dispersed), the recall rate of the algorithm increases, but the location
accuracy decreases. As AP and APS of all IoU thresholds are mainly used as evaluation
indexes, k is 2 in the preceding experiment.

Table 7. Detection results on SSDD when k takes different values.

k AP AP50 AP75 APS

1 52.8 92.1 55.6 46.0
2 53.2 93.5 53.4 46.7
3 52.8 93.9 53.6 46.8

The evaluation results on the HRSID are shown in Table 8. The network replacing
center-ness in FCOS with Gauss-ness is named Gauss-FCOS, which improved by 0.9%
and 1.1% in AP and APS, respectively. Although the improvement is not much, its ad-
vantage is that it will not cause any burden to the network computation and detection
speed. After soft sampling with Gauss-ness weighted sampling strategy (GWS is short
for Gauss-ness weighted sampling), the AP50 and AP75 achieved improvements of 1.6%
and 1.1%, respectively, and the detected AP and APS reached their best results: 63.4% and
66.1%, respectively.

Table 8. Experimental results of the Gaussian function-based detection head on HRSID and SSDD.

Detection Algorithm Backbone Network HRSID SSDD
AP AP50 AP75 APS AP AP50 AP75 APS

FCOS ResNet-50 62.0 87.3 69.7 63.6 52.1 93.8 53.2 46.3
Gauss-FCOS ResNet-50 62.9 88.2 68.3 64.7 53.5 94.3 52.9 47.4

Gauss-FCOS + GWS ResNet-50 63.4 88.9 70.8 66.1 54.0 95.6 53.6 48.8

As in Table 8, after introducing the Gauss-ness branch, SSDD results of Gauss-FCOS
on AP and APS increased by 1.4% and 1.1%, from 52.1% and 46.3% to 53.5% and 47.4%,
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respectively. The AP in SSDD is improved greatly. Based on the weighted sampling
strategy, AP and APS increased to 54.0% and 48.8%, respectively, and increased by 1.9% and
2.5% compared with FCOS. Experiments on SSDD show that, compared with truncation
sampling (TS), weighted sampling can distinguish samples of different qualities more
effectively, and improve the detection ability of the algorithm.

4.3.3. Ablation Experiment of the Overall Framework

We combined the proposed adaptive feature coding (AFE) with Gaussian-guided
detection head (GDH), and constructed a detector suitable for small target detection based
on the anchor-free idea. Experiments were conducted on HRSID and SSDD data sets,
respectively.

Table 9 shows the ablation analysis of detector on HRSID. After AFE is embedded, AP
and APS are increased from 62.0% and 63.6% to 66.2% and 67.5%, respectively. Finally, AP
and APS are increased by 5.4% and 5.3%, respectively, after adding the proposed Gaussian-
guided detection head, which verifies the effectiveness of the detector in detection accuracy.
By analyzing its detection speed, it can be seen that the decrease of detection speed of our
method is mainly caused by AFE, while GWS has almost no influence on its detection
speed. Analysis of the reasons for the speed decline caused by AFE is as follows: first, by
introducing C2, the computation of feature map and positive sampling will be improved;
second, the process of adaptive feature encoding increases the process of network.

Table 9. Experimental results of the two module on HRSID.

Baseline AFE GDH AP APS FPS

FCOS 62.0 63.6 18.9
FCOS X 66.2 67.5 15.4
FCOS X 63.4 65.7 18.5
FCOS X X 67.4 68.9 15.2

Table 10 shows the ablation analysis of detector on SSDD. After AFE is embedded, the
AP and APS are improved from 52.1% and 46.3% to 53.8% and 48.0%, respectively. And
with the GDH method, AP increased by 1.9% and APS increased by 2.1%, reaching 54.0%
and 48.4%, respectively. Combining the two methods results in up to a 4.1% AP boost and
a 4.5% APS boost. The detector still achieves excellent detection effect on SSDD. Similarly,
the decrease of its FPS was mainly caused by AFE, and GDH had almost no effect on it.

Table 10. Experimental results of the two module on SSDD.

Baseline AFE GDH AP APS FPS

FCOS 52.1 46.3 35.8
FCOS X 53.8 48.0 28.9
FCOS X 54.0 48.4 35.5
FCOS X X 56.2 50.8 28.5

Table 9 shows the overall evaluation of the detector on the two dateset. Compared
with other detector, AP50 of our method on HRSID improved from 87.3% to 92.0% and APS
improved from 63.6% to 68.9%. By comparing the prediction speed of these algorithms, we
can see that FCOS has the highest frame number, reaching 18.9, while the frame number of
our proposed detector drops obviously to only 15.2, which is also the biggest defect of our
proposed algorithm.

As for SSDD dataset, our method achieves the best performance in all indicators, in
which AP50 improves by 2.7%, from 93.8% to 96.5%, and APS improves by 4.5%, from
46.3% to 50.8%. However, the frame number of the detector also produces a drop on SSDD,
which is only 28.5.



Remote Sens. 2022, 14, 1738 19 of 23

4.3.4. Comparison of Performance Between the Proposed Overall Framework and the
State-of-the-Art

In this section, the proposed detection framework is compared to several other detec-
tors. Our method outperforms all other comparison methods on these data sets.

First, we conduct experiments to compare the performance with the commonly
used two-parameter CFAR detector. The quantitative detection results are shown in
Table 11. Traditional CFAR typically does not use AP to measure accuracy, so precision and
recall are used to evaluate performance. Furthermore, CFAR typically runs on the CPU,
while modern CNN-based approaches always run on the GPU. To ensure a reasonable
comparison, we chose CPU time for speed comparison (tCPU). It can be seen from Table 11
that our method is much better than CFAR in detection precision, which is nearly 30%
higher than CFAR. The difference in recall is not so obvious, and the recall of our method is
13.26% higher than CFAR. It can be explained that the traditional CFAR algorithm cannot
adapt to complex scenes and small targets, and many false alarms are detected, resulting in
a significant decrease in precision. In terms of detection speed, our method is also much
better than CFAR. In other words, the running time of our method on CPU is 0.356 s, which
is far less than that of CFAR.

Table 11. Quantitative comparison with CFAR on SSDD.

Method Precision (%) Recall (%) tCPU (s)

CFAR 61.23 81.49 1.56

Ours 96.21 94.75 0.356

The comparison CNN-based methods in the experiments can be divided into two
categories, namely anchor-based methods, such as YOLOv3-tiny, YOLOV3, RetinaNet,
Faster R-CNN, Cascade R-CNN, Mask-RCNN, and anchor-free methods such as Corner-
Net and FCOS. Moreover, two SAR ship detection methods, DCMSNN and FBR-Net, are
compared with our proposed detector. Note that some of these methods employ differ-
ent backbones than our method, and the experimental settings on training of them are
taken from the original articles. As shown in Table 12, the anchor-free method FCOS
achieves a leading performance among all the compared methods. Our method used
to improve FCOS achieves the best performance, demonstrating the effectiveness of the
method for ship detection in remote sensing images. Furthermore, thanks to the comple-
mentary effect of the proposed components, the APs of our method is 5.3% higher than
that of the FCOS method. It can be seen from the experiments on SSDD that the method
proposed in this paper achieves an AP value of 96.5% and shows the best performance.
In particular, our method significantly outperforms the baseline methods. Furthermore,
the experimental results on these two datasets further demonstrate the robustness of our
method in adapting to different datasets. Although the method proposed in this paper
has outstanding performance on small targets, it also has the ability to detect medium
and large targets (scale > 64 × 64 & scale > 128 × 128). Table 12 shows that AP50 is also
improved while APS increases, which proves that the network does not lose the ability to
detect larger-scale targets.

To demonstrate the advantages of our method over previous methods, we show some
visual results. Figures 15 and 16 are the detection results of the overall detection framework
on the two datasets, respectively. The numbers above the detected bounding boxes in the
figure represent the confidence of it, the confidence of the detected boxes is high as can be
seen in the figure. For the densely distributed ships in HRSID and the near-shore ships
in SSDD, our method can achieve good results, indicating that our network has strong
robustness to different scenes, and the quality of detected boxes is higher.

It is worth mentioning that our method still has deficiencies in some aspects. Specif-
ically, AFE will lead to a certain decrease in detection speed. The comparison results
of speed and accuracy are shown in Tables 9 and 10. Note that NMS post-processing is
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included at runtime for each image. The results in the table show that after adding the AFM
module, the test speed will drop by about 20%. This drop is mainly due to the increase in
operations caused by feature fusion. This problem is a focus of follow-up work.

Table 12. Experimental results of the overall detection framework on HRSID and SSDD.

Algorithm HRSID SSDD

AP50(%) APS(%) AP50(%) APS(%)

anchor-based

YOLOv3-tiny 70.4% 51.8% 64.0% 36.2%
YOLOV3 74.0% 56.3% 67.0% 41.4%
RetinaNet 74.0% 56.3% 67.0% 42.6%

Faster R-CNN 79.2% 57.3% 85.9% 42.3%
Cascade R-CNN 79.1% 59.9% 87.1% 44.9%

Mask-RCNN 81.1% 57.2% 87.4% 43.1%
DCMSNN [35] 83.4% 61.3% 89.4% 46.5%
FBR-Net [45] 89.7% 65.8% 94.1% 48.6%

anchor-free

CornerNet 73.6% 50.2% 74.3% 36.7%
FCOS 87.3% 63.6% 93.8% 46.3%

FCOS(AFE) 90.9% 67.5% 94.3% 48.0%
FCOS(AFE-GDH) 92.0% 68.9% 96.5% 50.8%

Figure 15. Some of the detection results obtained by the proposed overall framework on HRSID.
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Figure 16. Some of the detection results obtained by the proposed overall framework on SSDD.

5. Conclusions

In this paper, the feature representation and sampling strategy of SAR small-target
detection are studied respectively, and adaptive feature encoding (AFE) and Gauss-guided
detection head (GDH) are proposed. AFE is used to effectively integrate the semantic
information in the deep feature map into the shallow layer, so as to enhance the feature rep-
resentation of small targets. Moreover, aiming at the problem of low-quality samples at the
edge of the boundary box in the sampling of the anchor-free detectors, this paper proposes
a series of sampling optimization methods by using the Gaussian prior distribution of the
target and construct the GDH. Specifically, the proposed Gauss-ness uses two-dimensional
Gaussian function to fit the target distribution in the boundary box during training, and is
more consistent with the target shape. Then, truncation sampling and weighted sampling
based on gauss-ness are proposed to optimize the network training process. Finally, the
AFE proposed in Section 3.2 is combined with the GDH in Section 3.3. In the two-module
fusion experiment, the effects of the two improved methods are confirmed, and the highest
APs improvement is 5.3% on HRSID, and the highest APS improvement is 4.5% on SSDD.

Author Contributions: Conceptualization, B.H.; methodology, B.H.; software, M.T.; validation, B.H.,
Q.Z.; writing—original draft preparation, B.H.; writing—review and editing, Q.Z.; C.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of
China (No. 2016YFC0803000) and the National Natural Science Foundation of China (No. 41371342).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic ship detection in remote sensing images from google earth

of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 2018, 10, 132. [CrossRef]
2. Tian, L.; Cao, Y.; He, B.; Zhang, Y.; He, C.; Li, D. Image enhancement driven by object characteristics and dense feature reuse

network for ship target detection in remote sensing imagery. Remote Sens. 2021, 13, 1327. [CrossRef]
3. Farina, A.; Studer, F.A. A review of CFAR detection techniques in radar systems. Microw. J. 1986, 29, 115.
4. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

5. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

6. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of
the 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

7. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://dx.doi.org/10.3390/rs10010132
http://dx.doi.org/10.3390/rs13071327


Remote Sens. 2022, 14, 1738 22 of 23

8. Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750.

9. Zhu, C.; He, Y.; Savvides, M. Feature selective anchor-free module for single-shot object detection. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 840–849.

10. Duan, K.; Bai, S.; Xie, L.; Qi, H.; Huang, Q.; Tian, Q. Centernet: Keypoint triplets for object detection. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6569–6578.

11. Tian, Z.; Shen, C.; Chen, H.; He, T. Fcos: Fully convolutional one-stage object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 9627–9636.

12. Chen, X.; Fang, H.; Lin, T.Y.; Vedantam, R.; Gupta, S.; Dollár, P.; Zitnick, C.L. Microsoft coco captions: Data collection and
evaluation server. arXiv 2015, arXiv:1504.00325.

13. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in
context. In Proceedings of the Computer Vision–ECCV 2014, Zurich, Switzerland, 6–12 September 2014; pp. 740–755.

14. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]

15. Xu, D.; Wu, Y. FE-YOLO: A feature enhancement network for remote sensing target detection. Remote Sens. 2021, 13, 1311.
[CrossRef]

16. Wei, S.; Zeng, X.; Qu, Q.; Wang, M.; Su, H.; Shi, J. HRSID: A high-resolution SAR images dataset for ship detection and instance
segmentation. IEEE Access 2020, 8, 120234–120254. [CrossRef]

17. Li, J.; Qu, C.; Shao, J. Ship detection in SAR images based on an improved faster R-CNN. In Proceedings of the 2017 SAR in Big
Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 13–14 November 2017; pp. 1–6.

18. Hou, J.B.; Zhu, X.; Yin, X.C. Self-adaptive aspect ratio anchor for oriented object detection in remote sensing images. Remote Sens.
2021, 13, 1318. [CrossRef]

19. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef]

20. Redmon, J.; Farhadi, A. YOLO9000: better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

21. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
22. Zhou, X.; Zhuo, J.; Krahenbuhl, P. Bottom-up object detection by grouping extreme and center points. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 850–859.
23. Zhang, S.; Chi, C.; Yao, Y.; Lei, Z.; Li, S.Z. Bridging the gap between anchor-based and anchor-free detection via adaptive training

sample selection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
14–19 June 2020; pp. 9759–9768.

24. Kong, T.; Sun, F.; Liu, H.; Jiang, Y.; Li, L.; Shi, J. Foveabox: Beyound anchor-based object detection. IEEE Trans. Image Process.
2020, 29, 7389–7398. [CrossRef]

25. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

26. Gao, G.; Liu, L.; Zhao, L.; Shi, G.; Kuang, G. An Adaptive and Fast CFAR Algorithm Based on Automatic Censoring for Target
Detection in High-Resolution SAR Images. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1685–1697. [CrossRef]

27. Huo, W.; Huang, Y.; Pei, J.; Zhang, Q.; Gu, Q.; Yang, J. Ship Detection from Ocean SAR Image Based on Local Contrast Variance
Weighted Information Entropy. Sensors 2018, 18, 1196. [CrossRef]

28. Gao, G.; Gao, S.; He, J.; Li, G. Ship Detection Using Compact Polarimetric SAR Based on the Notch Filter. IEEE Trans. Geosci.
Remote Sens. 2018, 56, 5380–5393. [CrossRef]

29. Yue, B.; Zhao, W.; Han, S. SAR Ship detection method based on convolutional neural network and multi-layer feature fusion. In
Advances in Natural Computation, Fuzzy Systems and Knowledge Discovery; Springer: Cham, Switzerland, 2019; pp. 41–53. [CrossRef]

30. Dai, W.; Mao, Y.; Yuan, R.; Liu, Y.; Pu, X.; Li, C. A Novel Detector Based on Convolution Neural Networks for Multiscale SAR
Ship Detection in Complex Background. Sensors 2020, 20, 2547. [CrossRef]

31. Kang, M.; Ji, K.; Leng, X.; Lin, Z. Contextual Region-Based Convolutional Neural Network with Multilayer Fusion for SAR Ship
Detection. Remote Sens. 2017, 9, 860. [CrossRef]

32. Shiqi, C.; Ronghui, Z.; Jun, Z. Regional attention-based single shot detector for SAR ship detection. J. Eng. 2019, 2019, 7381–7384.
[CrossRef]

33. Gao, F.; Shi, W.; Wang, J.; Yang, E.; Zhou, H. Enhanced Feature Extraction for Ship Detection from Multi-Resolution and
Multi-Scene Synthetic Aperture Radar (SAR) Images. Remote Sens. 2019, 11, 2694. [CrossRef]

34. Bell, S.; Zitnick, C.L.; Bala, K.; Girshick, R. Inside-Outside Net: Detecting objects in context with skip pooling and recur-
rent neural networks. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 26 June–1 July 2016. [CrossRef]

35. Jiao, J.; Zhang, Y.; Sun, H.; Yang, X.; Gao, X.; Hong, W.; Fu, K.; Sun, X. A Densely Connected End-to-End Neural Network for
Multiscale and Multiscene SAR Ship Detection. IEEE Access 2018, 6, 20881–20892. [CrossRef]

36. Pan, Z.; Yang, R.; Zhang, Z. MSR2N: Multi-Stage Rotational Region Based Network for Arbitrary-Oriented Ship Detection in SAR
Images. Sensors 2020, 20, 2340. [CrossRef]

http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.3390/rs13071311
http://dx.doi.org/10.1109/ACCESS.2020.3005861
http://dx.doi.org/10.3390/rs13071318
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TIP.2020.3002345
http://dx.doi.org/10.1109/TGRS.2008.2006504
http://dx.doi.org/10.3390/s18041196
http://dx.doi.org/10.1109/TGRS.2018.2815582
http://dx.doi.org/10.1007/978-3-030-32456-8_5
http://dx.doi.org/10.3390/s20092547
http://dx.doi.org/10.3390/rs9080860
http://dx.doi.org/10.1049/joe.2019.0555
http://dx.doi.org/10.3390/rs11222694
http://dx.doi.org/10.1109/cvpr.2016.314
http://dx.doi.org/10.1109/ACCESS.2018.2825376
http://dx.doi.org/10.3390/s20082340


Remote Sens. 2022, 14, 1738 23 of 23

37. Tian, T.; Pan, Z.; Tan, X.; Chu, Z. Arbitrary-Oriented Inshore Ship Detection based on Multi-Scale Feature Fusion and Contextual
Pooling on Rotation Region Proposals. Remote Sens. 2020, 12, 339. [CrossRef]

38. Zhang, F.; Wang, X.; Zhou, S.; Wang, Y.; Hou, Y. Arbitrary-Oriented Ship Detection Through Center-Head Point Extraction. IEEE
Trans. Geosci. Remote. Sens. 2022, 60, 1–14. [CrossRef]

39. Chen, P.; Li, Y.; Zhou, H.; Liu, B.; Liu, P. Detection of Small Ship Objects Using Anchor Boxes Cluster and Feature Pyramid
Network Model for SAR Imagery. J. Mar. Sci. Eng. 2020, 8, 112. [CrossRef]

40. Li, H.; Wu, Z.; Zhu, C.; Xiong, C.; Socher, R.; Davis, L.S. Learning from noisy anchors for one-stage object detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020;
pp. 10588–10597.

41. Zhu, B.; Wang, J.; Jiang, Z.; Zong, F.; Liu, S.; Li, Z.; Sun, J. Autoassign: Differentiable label assignment for dense object detection.
arXiv 2020, arXiv:2007.03496.

42. Wang, J.; Chen, K.; Yang, S.; Loy, C.C.; Lin, D. Region proposal by guided anchoring. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2965–2974.

43. Li, Y.; Chen, Y.; Wang, N.; Zhang, Z. Scale-aware trident networks for object detection. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 6054–6063.

44. Yu, J.; Jiang, Y.; Wang, Z.; Cao, Z.; Huang, T. UnitBox. In Proceedings of the 24th ACM International Conference on Multimedia,
Amsterdam, The Netherlands, 15–19 October 2016. [CrossRef]

45. Fu, J.; Sun, X.; Wang, Z.; Fu, K. An anchor-free method based on feature balancing and refinement network for multiscale ship
detection in SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1331–1344. [CrossRef]

http://dx.doi.org/10.3390/rs12020339
http://dx.doi.org/10.1109/TGRS.2021.3120411
http://dx.doi.org/10.3390/jmse8020112
http://dx.doi.org/10.1145/2964284.2967274
http://dx.doi.org/10.1109/TGRS.2020.3005151

	Introduction
	Problem Description and Motivations
	Contributions and Structure

	Related Work
	General Object Detection
	Ship Detection

	Methods
	Explanation of Center-Ness in FCOS
	The Overall Framework of the Proposed Method
	Refined Feature Pyramid with Adaptive Feature Encoding
	Initial Feature Pyramid Generation
	Adaptive Feature Encoding

	Gaussian-Guided Detection Head
	Gauss-Ness Branch for Inference Process
	Gauss-Ness Weighted Sampling in Training Process


	Experiments and Analysis
	Introduction to SAR Ship Dataset
	Experimental Parameter Setting
	Experimental Results and Analysis
	Experiment Evaluation of AFE
	Experiment Evaluation of Gaussian-Guided Detection Head
	Ablation Experiment of the Overall Framework
	Comparison of Performance Between the Proposed Overall Framework and the State-of-the-Art


	Conclusions
	References

