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Abstract: As a result of the influence of plate movement, the upper reaches of Jinsha River have strong
geological tectonic activities, large topographic fluctuations, and complex climate characteristics,
which result in the frequent occurrence of landslide disasters. Hence, there is the need to carry out
landslide susceptibility mapping in the upper reaches of Jinsha River to ensure the safety of local
people’s property and the safe exploitation of hydraulic resources. In this study, InSAR technology
and a field geological survey were used to map the landslides. Then, the curvature watershed method
was used to divide the slope units. A conditioning factor system was established, which can reflect
the characteristics of the rapid uplift and vertical distribution of rainfall in the special geological
environment of the study area. Finally, logistic regression, random forest, and artificial neural network
models were used to establish the landslide susceptibility model. The results show that the random
forest model is optimal for the landslide susceptibility mapping in this area. Additionally, the area
percentages of the very low, low, moderate, high, and very high susceptibility classes were 40.13%,
20.06%, 13.39%, 12.55%, and 13.87%, respectively. Based on the analysis of the landslide susceptibility
map, we suggest that the landslide geological hazards resulting from the rapid uplift of the Tibetan
Plateau and the significant decrease in sea level during a glacial period in the upper reaches of Jinsha
River are controlled by the double disaster effect of the geodynamic system. Consequently, this study
can guide local prevention and mitigation.

Keywords: landslide susceptibility mapping; Jinsha River; rapidly uplifting; slope unit

1. Introduction

A landslide is a natural phenomenon in which slope materials move downward as a
result of gravity and other external factors (such as rainfall and earthquakes). The formation
process is complex; the sudden outbreak and destructive power are strong [1–6]. It is one of
the main threats to the economic and social development in mountainous areas. According
to the statistical results in the World Bank (2005) [7], there are 3.7 × 106 km2 of land prone
to landslides in the world, and nearly 300 million people live in landslide-prone areas.
The economic loss caused by landslides is about USD 20 billion every year. A typical case
is the Baige landslide, which collapsed on 10 October and 3 November 2018, in Yunnan
Province [8–10], China. More than 3000 houses and more than 3000 hectares of farmland
were destroyed, 54,000 people were affected, and economic losses exceeded USD 1.5 billion.

In China, the upper reaches of Jinsha River, which is in the upper reaches of the
Yangtze River, have been subjected to the collision and compression of the Pacific and
Indian plates for a long time. The terrain has plummeted from northwest to southeast.
The river has deep valleys. The new tectonic active faults are widely developed in the
region [11], which causes the dynamic regional conditions of high in situ stress and solid
seismic activity [12]. Secondly, since the Quaternary, the region has experienced many
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glacial periods, resulting in great sea-level changes [13–15]. In addition, this reach has high
mountains and deep valleys, and the warm and wet air brought by the monsoon is blocked
by the mountains and becomes a dry and hot valley. The precipitation has obvious vertical
distribution characteristics [16]. The joint action of internal and external forces creates
a special and complex geodynamic environment, characterized by high ground stress,
a special internal dynamic environment with strong neo-tectonic and seismic activities,
strong unloading in the deep valley, the intense reform of the surface shallow of geological
environments, a complex structure of rock mass environment [17–22], complex meteo-
rological hydrological environment, and a special environment of deep overburden [23].
In the special geodynamic environment, the construction of large hydropower stations
in the upper reaches of Jinsha River leads to the abnormal development of landslide ge-
ological hazards. This also includes the intensification of human engineering activities,
which causes the scale to be large, thus resulting in a complex formation mechanism that
is, in turn, a significant risk [24,25]. The occurrence of landslides poses a great threat to
the safety of life and the property of residents, and the development and utilization of
hydropower resources in the area [26–31]. Therefore, research of the landslide hazards
and the construction of regional-scale landslide susceptibility mapping method under
special geodynamic conditions are an important basis for disaster prevention and reduction
research in the upper reaches of Jinsha River. However, the terrain of the study area is
steep, and it is difficult to carry out traditional geological disaster monitoring and identifi-
cation methods, such as borehole inclinometer [32], time domain reflectometry (TDR) [33],
optical fiber sensing technology [34], and RGB-D sensors [35], which make it difficult to
obtain information about the landslide. Therefore, the construction of reasonable spatial
survey means of landslides, to obtain effective information concerning landslide geological
disasters, has gradually become a hot issue in geological disaster identification research.
With the development of remote sensing technology [36–39] in recent years, the application
of this method to landslide identification is gradually increasing, which greatly improves
the efficiency of landslide disaster investigations. In addition, there are increasingly more
landslide susceptibility models, such as Naïve Bayes [40], decision trees [41], and artificial
neural networks [42]. However, the landslide susceptibility model suitable for the special
geological environment in the upper reaches of Jinsha River still needs to be explored.

This paper selects the upper reaches of Jinsha River between Xulong village and
Benzilan town as the study area. Firstly, based on 3S technology (geographic information
system (GIS), the global positioning system (GPS), and remote sensing (RS)) and field inves-
tigations, the landslide inventory data are established. Secondly, the curvature watershed
method is used to divide the slope units. Based on the analysis of the special environmental
characteristics, the conditioning factor system of landslide susceptibility mapping is estab-
lished following the special geodynamic action of the upper reach of Jinsha River. Then,
logistic regression (LR), random forest (RF), and artificial neural network (ANN) models are
used to establish the landslide susceptibility model, and statistical parameters and receiver
operating characteristic curves are used to optimize the model. Finally, the mapping results
are analyzed, and a perspective is presented that suggests that the landslide geological
hazards in the upper reaches of Jinsha River are controlled by the double disaster effect of
the geodynamic system. This landslide geological hazard is caused by the rapid uplift of
the Tibetan Plateau and the great decrease in sea level during the glacial period. The results
of this paper can provide guidance for local prevention and mitigation, land planning, and
help towards the construction of hydropower stations in the section.

2. Study Area

The study area is located upstream of Jinsha River, the junction of the Sichuan and
Yunnan provinces (Figure 1a). Because of the uplift of the Tibetan Plateau, the Jinsha River
basin is rich in hydropower resources. It has always been a hot area for developing water
conservancy and hydropower projects in China. The total length of the studied river stretch
is about 100 km, and the flow direction is approximately SSE. The Xulong hydropower
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station and Benzilan hydropower station (Figure 1b) are planned to be built on this river
reach, with a total hydroelectric generating capacity of 4420 MW.
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Figure 1. The geological and tectonic setting of the study area. (a) The location of the study area,
(b) distribution of large hydropower projects in southwest China [11], and (c) geological map of the
study area [11].

2.1. Topographic Conditions

The study area is located on the southeast margin of the Tibetan Plateau and the
northern foothills of the Hengduan Mountains, which is the topographic abrupt change
zone of transition from the first step to the second step in China, coupled with the rapid
uplift of the Tibetan Plateau and the erosion in Jinsha River [43]. The study area has the
characteristics of a high and steep bank slope and a deep valley. On the whole, the mountain
elevation in the study area shows a gradually decreasing trend from the northwest to
southeast, and the maximum height difference in the area is close to 3000 m. The shape of
the river valley is often a “V”, and the bank slope angle is generally greater than 40◦ [43].

2.2. Geologic and Tectontic Settings

Due to the subduction and collision between the Indian and Eurasian Plates, the
Tethys Ocean is gradually disappeared during the uplift of the Tibetan Plateau, leaving
several plate tectonic sutures, such as the Jinshajiang Suture Zone (JSZ) [11]. The study
area is located only in the JSZ (Figure 1c). A strong tectonic movement leads to intense
compaction and folding in this area, making the JSZ a weak belt of the Earth’s lithosphere
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with extremely endogenic geological activities [11]. The main strata exposed in the study
area are shown in Figure 1c. The representative tectonostratigraphic unit of the JSZ is
the Jinshajiang Ophiolite Melange Belt (DTJ). As a result of the tectonic activities, the
deformation and destruction of rock mass in the DTJ are widespread. In addition, affected
by the neotectonic activity, there are several north–south-trending deep and large faults
in the study area, such as the Jinshajiang Fault, which led to an Ms 5.9 earthquake on
31 August 2013 near the town of Benzilan.

2.3. Climatic Conditions

The study area is located in the subtropical dry-hot valley climate zone. The an-
nual temperature of the study area ranges from 13.8–19.2 ◦C. The mean annual rainfall is
363.3 mm. Influenced by the latitude, topography, and elevation difference, the climatic
characteristics in the study area have significant regional and temporal differences. The re-
gional distribution of the temperature and precipitation in the study area is increasing from
upstream to downstream and from west-east to the southwest. In addition, temperature
and precipitation also have obvious vertical distribution characteristics [44].

2.4. Tectonic Uplift

Due to the subduction and collision between the Indian and Eurasian Plates, the study
area has become one of the fastest uplifting regions in the world. Figure 2a summarizes
several views on the uplift history of the Tibetan Plateau [11,45,46]. It can be observed
that the uplift history of the Tibetan Plateau is controversial. However, scholars of the
subject generally believe that the Tibetan Plateau entered a period of rapid uplift in the
Quaternary. Xiao and Wang (1998) [47] analyzed and summarized the uplift rate results of
the Himalayas and classified the uplift rates belonging to different stages since the Cenozoic
Era (Figure 2b). Figure 2b shows that the Tibetan Plateau has entered a rapid–extremely
rapid uplift period since the late Pliocene Epoch. The Tibetan Plateau has the fastest uplift
rate since the Middle Pleistocene, more than 5 mm/a. Chen and Li (2016) [48] defined the
region, with the local crustal uplifting rate greater than 5 mm/a as the rapidly uplifting
region and the corresponding river reach as the rapidly uplifting river reach. Therefore, the
Jinsha River reach in the study area is a rapidly uplifting river reach.
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3. Data and Methods

Based on the summary of the relevant scientific papers [50–54], the authors divided the
process of landslide susceptibility mapping into the following five parts: (a) landslide inven-
tory data acquisition, (b) mapping unit selection, (c) establishment of conditioning factor
system, (d) optimization of the mapping model, and (d) analysis of the mapping results.

3.1. Landslide Characteristics
3.1.1. Landslide Inventory

Landslide inventory data are the basis of the landslide susceptibility mapping [55].
Their detail degree affect the precision of the mapping result. The acquisition of the land-
slide inventory data was based on a geological field survey. Nowadays, space (e.g., InSAR
technology and optical remote sensing technology), air (e.g., airborne radar technology and
unmanned aerial vehicle technology), and ground (e.g., ground investigation and geophys-
ical prospecting) technologies are integrated. The geological hazard identification system
has been widely used to acquire landslide inventory data [56,57]. To comprehensively and
meticulously obtain the landslide inventory data in the study area, a inventory landslide
map was produced based on a combination of optical remote sensing interpretation tech-
nology, InSAR technology, and field geological surveys (1:100,000). The specific process is
as follows:

(1) According to the characteristics of the landslide and its characteristic marks in op-
tical remote sensing images, the landslides that occurred were interpreted [49]. For
example, based on the topographic (Figure 3a) and vegetation (Figure 3b) features of
the Yingui landslide in the optical remote sensing image, the Yingui landslide was
interpreted.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 28 
 

 

 
Figure 3. Optical remote sensing interpretation mark of the Yingui landslide. (a) topographic fea-
tures of the Yingui landslide, and (b) vegetation features of the Yingui landslide. 

(2) Based on the monitoring of the surface deformation by InSAR technology, the poten-
tial landslides in the deformation stage of the study area that have not been damaged 
are identified. The study area belongs to the High Mountain and canyon area. Since 
the SBAS-InSAR technology can improve the coherence of the mountainous area by 
improving the time sampling rate, this study selected this technology to identify the 
potential landslide in the study area [58,59]. A total of 23 Sentinel-1A down orbit data 
with the time period of 12 June 2018–26 May 2019 were used as the InSAR interpre-
tation data. According to the processing process of SBAS-InSAR technology, the con-
nection diagram of the SLC image should be generated first. In this paper, the critical 
baseline percentage was set as 2, the time baseline was set as 180 days, and a total of 
293 pairs were obtained. Then, the Goldstein method and Minimum Cost Flow 
method were used to generate the interferogram, and the relativities with a low co-
herence are removed. Finally, the orbit refining and re-flattening operation, two in-
versions, and geocoding were carried out to generate the average deformation rate 
map (Figure 4a). From the average deformation rate diagram of the study area, it can 
be observed that the deformation rate on both sides of Jinsha River is very high, 
which is consistent with the distribution law of landslides along the river in the study 
area. InSAR was based on the interpretation of the landslide study areas, mainly for 
clustering the deformation rate of the large area, using the Taentong landslide as an 
example. Although the landslide that is based on optical remote sensing is visible, 
there is a high concentration of the deformation zone when the interpretation based 
on InSAR technology is found in the Taentong landslide in zone II (Figure 4b). There-
fore, it is speculated that the Tanentong landslide in this area may present signs sug-
gesting that it might reoccur. 

Figure 3. Optical remote sensing interpretation mark of the Yingui landslide. (a) topographic features
of the Yingui landslide, and (b) vegetation features of the Yingui landslide.

(2) Based on the monitoring of the surface deformation by InSAR technology, the potential
landslides in the deformation stage of the study area that have not been damaged
are identified. The study area belongs to the High Mountain and canyon area. Since
the SBAS-InSAR technology can improve the coherence of the mountainous area by
improving the time sampling rate, this study selected this technology to identify the
potential landslide in the study area [58,59]. A total of 23 Sentinel-1A down orbit
data with the time period of 12 June 2018–26 May 2019 were used as the InSAR
interpretation data. According to the processing process of SBAS-InSAR technology,
the connection diagram of the SLC image should be generated first. In this paper, the
critical baseline percentage was set as 2, the time baseline was set as 180 days, and
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a total of 293 pairs were obtained. Then, the Goldstein method and Minimum Cost
Flow method were used to generate the interferogram, and the relativities with a low
coherence are removed. Finally, the orbit refining and re-flattening operation, two
inversions, and geocoding were carried out to generate the average deformation rate
map (Figure 4a). From the average deformation rate diagram of the study area, it
can be observed that the deformation rate on both sides of Jinsha River is very high,
which is consistent with the distribution law of landslides along the river in the study
area. InSAR was based on the interpretation of the landslide study areas, mainly
for clustering the deformation rate of the large area, using the Taentong landslide
as an example. Although the landslide that is based on optical remote sensing is
visible, there is a high concentration of the deformation zone when the interpretation
based on InSAR technology is found in the Taentong landslide in zone II (Figure 4b).
Therefore, it is speculated that the Tanentong landslide in this area may present signs
suggesting that it might reoccur.
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(3) Based on the field investigation, the interpretation results are checked and the uninter-
preted landslides are supplemented [60]. For example, through the field investigation,
the interpretation results of the Taentong landslide were verified. The developing
tensile crack was found in the inner part of the Taentong landslide, which showed
that the Taentong landslide underwent deformation (Figure 4c,d).

Based on the above methods, a total of 61 landslides were mapped in the study area.
The maximum area of the landslides is 392.0 × 104 m2, the minimum area of the landslides
is 1.6 × 104 m2, and the mean area of the landslides is 63.69 × 104 m2. Additionally, its
distribution characteristics are shown in Figure 5.
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3.1.2. Spatial Distribution of the Landslides

Based on Figure 5, it can be observed that the landslides in the study area have obvious
linear distribution and aggregation distribution characteristics.

(1) Linear distribution characteristics: landslides in the study area are mainly distributed
along the two banks of Jinsha River and its tributary, Dingqu River, in the north–south
direction.

(2) Clustering distribution characteristics: landslides in the study area are mainly con-
centrated in Xulong-Maoding (13), Qulong-Rongxue (15), Guxue-Rancun (14), and
Quzhi-Yahong (14), indicating that the distribution of the landslides is concentrated
and the clustering is strong.

3.1.3. Landslide Mechanism

According to the field investigation, the main lithologies exposed in the study area
are lamellar greenschist and lamellar slate. Under the continuous action of the Eurasian
Plate and the Asian Plate, according to history, these rocks suffered from the maximum
principal stress in the near east and west directions. They formed nearly vertical, steeply
dipping lamellar rocks parallel to the north–south rivers. Due to the tectonic stress, joints
and fissures developed in the rock mass. As a result of this, the landslides in the study area
are mainly of the bending-cracking (39) and creep-cracking types (13). Additionally, there
are a small number of slip-bending, slip-tension, and slip-pressure-induced fracture types,
which are 5, 3, and 1, respectively.

3.2. Mapping Units

The mapping unit is the basic unit of landslide susceptibility mapping. It has the
characteristics of homogeneity within units and heterogeneity among units. It is also the
smallest and indivisible basic unit in landslide susceptibility mapping. Common mapping
units mainly include a grid unit, watershed unit, slope unit, regional unit, and uniform
condition unit [49,61]. The slope unit is closely related to the real topography unit. It can
reflect the difference between topography and geology [49], which is extensively used in
landslide susceptibility mapping. The division methods of slope units are becoming more
and more diverse. By summarizing the current division methods, Wang et al. (2020) [62]
determined four commonly used division methods of slope units: the hydrological analysis
method, curvature watershed method, r.slopeunits method [63], and MIA-HUS method.
Among them, the hydrologic analysis and curvature watershed methods are simple and
easy to implement. In this paper, priority is given to using these two methods to divide
the slope units. By comparing the effects of these two methods, Sun et al. [49] found that
the slope units divided by the curvature watershed method were more concentrated in the
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area, more regular in shape, more uniform in the interior, and less work was needed for
manual modification. Therefore, the curvature watershed method is finally used in this
paper to divide the slope units in the study area. The specific process of dividing the slope
units by the curvature watershed method is shown in Figure 6.
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3.3. Conditioning Factors
3.3.1. Establishment of the Conditioning Factor System

Nowadays, the selection of conditioning factors mostly depends on the field investiga-
tion cause analysis, expert experience, and relevant literature. The factors with the highest
correlation to the occurrence of landslides are selected. Pourghasemi and Rossi (2017) [64]
performed a statistical analysis on the frequency of the commonly used conditioning factors
from 220 pieces of relevant literature published from 2005 to 2012 in different ISI journals
(International Scientific Indexing). The results showed the most frequently used slope
angle, lithology, slope aspect, land use, distance from the river, elevation, distance from the
faults, plan curvature, profile curvature, and distance from road (top ten).

Additionally, the authors analyzed the geological environment of the study area. The
study area is located in the southeastern margin of the Tibetan Plateau. Due to the plate
tectonic movement, the geological conditions in the area are complex, which can be reflected
in the following aspects:

(1) The rock mass structure is complex

A variety of lithologies are exposed in the study area, and the contact relationship
between them is complex. As shown in Figure 7a, the irregular contact relationship of
diorite, gneiss, and green schist in the Xulong valley outlet constitutes the characterization
of the complex structural rock mass in the study area. In addition, the deformation
characteristics of the rock mass are also very significant.
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and the deformation characteristics of the rock mass in the study area. (a) Rock mass structure char-
acteristics, (b) topographic characteristics, and (c,d) the deformation characteristics of the rock mass.

(2) The topographic characteristics are complex

The study area is located in the topographic abrupt change zone of transition from
the first to the second step in China. It has been subjected to the uplift of the Tibetan
Plateau and the erosion in Jinsha River over a long period of time, so the study area has the
characteristics of a high and steep bank slope and deep valley [44]. In addition, due to the
historical glaciation, there are many glacial erosion landforms in the study area, followed by
landslide residual landforms, river erosion landforms, and other landforms. For example,
in addition to the rock mass and weathered layer, different sediments or deposits exist in
different parts of the left bank slope in the lower reaches of Xulong Valley (Figure 7b).

(3) The geological structure is complex

Due to the location of the study area, it has been subjected to the continuous action
of two large plates (India Plate and Eurasian Plate) over a long period of time, and the
tectonic activities in the area are powerful. Under the tectonic activities, the deformation
and destruction of rock mass are pervasive (Figure 7c,d). There are several large faults in
the study area, which greatly affect the stability of the slope.

(4) The climatic characteristics are complex

Influenced by the elevation and monsoon of the Tibetan Plateau, the climate charac-
teristics in the region are complex. In addition to the increasing trend from upstream to
downstream, the temperature and rainfall in the region also have obvious vertical distribu-
tion characteristics [65]. In the field investigation, it was found that many loose deposits in
the study area could be stably preserved on both sides of the river, for which it is difficult
to survive under the normal rainfall conditions in mountainous areas. This phenomenon is
the influence of the vertical distribution characteristics of rainfall in the study area.

To summarize, when selecting conditioning factors, the geological factors of the study
area should be fully considered, such as the lithology and faults, followed by the topo-
graphic factors, such as the slope angle and elevation. Thirdly, it is necessary to integrate the
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vertical climate characteristics and crustal uplift rate with the above traditional geological
factors to establish a conditioning factor system that is more in line with the geological
characteristics of the study area. Therefore, this paper establishes the conditioning factor
system as shown in Table 1. The data sources of each conditioning factor extraction and
the mutator methods of each conditioning factor to the slope unit are listed in Table 1. The
conditioning factors are shown in Figure 8.
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3.3.2. Multicollinearity Analysis of the Conditioning Factors

Many landslide susceptibility models, such as the logistic regression model, are suscep-
tible to the multicollinearity of conditioning factors. Therefore, it is necessary to eliminate
the multicollinearity among the conditioning factors before modeling. The Principal Com-
ponent Analysis (PCA) uses a small number of principal components to represent the
original evaluation index system, eliminating the problem of multicollinearity among the
conditioning factors and resulting in a small loss of information from the original con-
ditioning factors [44]. Therefore, in the present paper, PCA is selected to eliminate the
multicollinearity among the evaluation indexes. Before the PCA, the following equation is
used to normalize the conditioning factors to eliminate the dimensional influence:

M = (H − Hmin)/(Hmax − Hmin), (1)
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where M is the normalized conditioning factors; H is the conditioning factors; and Hmin
and Hmax are the minimum and maximum values of the conditioning factors, respectively.

Table 1. Landslide conditioning factors in the present study.

Conditioning Factors Data Source Variable Type Mutator Methods of the
Slope Units

Lithology Department of Geological Survey
(1:200,000 scale)

Categorical Major value
Rock hardness Categorical Major value

Elevation

Digital elevation model
(91 Weitu software, 8.96 m)

Continues Average value
Slope angle Continues Average value
Slope aspect Continues Average value

Topographic relief Continues Average value
Curvature Continues Average value
Land use Landsat 5 TM images

(3 April 2015)
Categorical Major value

NDVI Continues Average value

Distance from faults Department of Geological Survey
(1:200,000 scale) Continues Average value

Strahler’s integral value Sun et al., 2020c Continues Average value

Distance from rivers Department of Geological Survey
(1:200,000 scale) Continues Average value

Rainfall Sun et al., 2019 [65] Continues Average value
Earthquake intensity Lai et al., 2014 [66] Categorical Major value

3.4. Landslide Susceptibility Models
3.4.1. Logistic Regression Model

The logical regression (LR) model has very low requirements for data types, and the
data can either be continuous or discrete. Therefore, it is one of the nonlinear evaluation
methods widely used for landslide susceptibility mapping [67–70]. This model represents
landslide occurrence in a binary form (1 represents “landslide” and 0 represents “non-
landslide”). The conditioning factors are converted into logical variables to determine the
possibility of landslides in the future. The LR model can be expressed as follows [44]:

P = 1/(1 + e−z), (2)

where P is the susceptibility index of landslide occurrence and z is the weighted sum of
each conditioning factor, which can be expressed as follows:

z = β0 + β1Y1 + β2Y2· · · + βGYG, (3)

where β0 is the constant term; β1, β2 . . . βG are the logistic regression coefficients; and Y1,
Y2 . . . YG are the conditioning factors.

3.4.2. Random Forest Model

The random forest (RF) model consists of multiple decision trees [71]. The original
data set is extracted into multiple subsamples by random sampling with put back, and then
the decision tree is used to model each subsample. Finally, all the models are combined
and the best model is selected by voting. This model adopts random sampling, which can
prevent the over-fitting of the model. In addition, it has a high tolerance to outliers and has
become one of the most commonly used and high-precision machine learning methods for
landslide susceptibility mapping [72–75].

3.4.3. Artificial Neural Network Model

A complete artificial neural network (ANN) model usually consists of one input layer,
one or more hidden layers, and one output layer. Each layer is made up of multiple
neurons. The ANN model completes the entire learning process by adjusting the weight
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value between each neuron. The ANN model is simple and has quick solving and learning
abilities, so it is also widely used for landslide susceptibility mapping [76–78].

3.5. Validation and Comparison Methods
3.5.1. K-Fold Cross-Validation

K-fold cross-validation can overcome the problem of insufficient data and over-fitting
in the process of modeling. In this paper, the landslide susceptibility model was validated
by using the method of five-fold cross-validation [43,49]. The basic principles are as follows:

(1) The data were randomly divided into five subsets.
(2) Four subsets were used to build the landslide susceptibility model, and the other

subset was used as the test datum.
(3) Steps 1–2 were repeated until all five subsets were used as the training data and

test data, respectively. In this way, a total of five models were established and five
validations were carried out.

(4) The prediction accuracy of the five-times modeling was incorporated, and the predic-
tion accuracy of the different landslide susceptibility models was evaluated.

3.5.2. Statistical Analysis Method

The accuracy, sensitivity, specificity, positive predictive value, and negative predic-
tive value can be used to evaluate the effectiveness of the landslide susceptibility model
prediction [43], which the following formula can calculate:

AC = Accuracy = (TP + TN)/(TP + TN + FP + FN); (4)

SE = Sensitivity = TP/(TP + FN); (5)

SP = Specificity = TN/(TN + FP); (6)

PPV = Positive predictive value = TP/(TP + FP); (7)

NPV = Negative predictive value = TN/(TN + FN); (8)

where TP is the true positive; TN is the true negative; FP is the false positive; and FN is the
false negative.

3.5.3. Receiver Operating Characteristic Curve

The receiver worker characteristic curve (ROC) is the most commonly used quan-
titative evaluation method for the prediction accuracy of the landslide susceptibility
model [16,43]. The curve of the ROC was drawn with the false positive rate (sensitiv-
ity) as the x-axis, the true positive rate (1-specificity) as the y-axis, and the area under the
curve was the value of the AUC. The AUC value is between 0.5 and 1, and the greater the
value, the higher the model’s prediction accuracy.

3.6. Photoluminescence Dating Analysis of the Occurrence Date of the Landslides

In the present study, photoluminescence dating analysis was conducted to roughly
determine the occurrence date of the landslides. After the material is covered by the upper
material, it is not affected by light and can only receive the cosmic radiation emitted by the
decay of the radioactive material in its environment. After absorbing this radiation, the
crystal electrons inside the slippery material ionize and produce free electrons as a result of
absorbing energy. These electrons are stored as “trapped electrons” in the lattice and, as
time goes by, the number of “trapped electrons” in the lattice increases, which is equivalent
to storing the energy of the cosmic radiation it receives. When this stored radiation energy
is exposed to light or heated, it is released, producing an optical signal. The amount of
luminescent signal that can be released in a substance is proportional to the total amount
of radiation received. Additionally, their radiation exposure increases over time, so that
its age can be measured [79]. To determine the landslides occurrence date, the sliding
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zone soil was selected to determine the age of the landslide occurrence in a completely
shaded environment.

4. Results
4.1. Slope Unit Division Results

It can be observed in Figure 6 that the division accuracy of the curvature watershed
method is affected by the resolution of the digital elevation model (DEM). In this paper, a
DEM with a resolution of 8.96 m was downloaded from the 91 Weitu software (GoogleEarth
DEM) to divide the slope units. To find the most reasonable division results, the resolution
of the DEM data was converted into 5.0 m, 10.0 m, 30.0 m, 50 m, 80.0 m, 100.0 m, and
120.0 m for the slope unit divisions. By comparing the division results under different
resolutions with the Ziyuan-3 satellite image, it was found that when the resolution of the
DEM is 100.0 m, the divided slope units were most consistent with the real terrain in the
study area. The study area is divided into 5421 units, of which the most significant unit is
1.048 km2, and the smallest unit is 0.001 km2 (Figure 9a).
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4.2. Multicollinearity Analysis Results

The Kaiser–Meyer–Olkin (KMO) and Bartlett’s tests are used to test whether the
conditioning factors system is suitable for principal component analysis. From Table 2, it
can be observed that the KMO value of the conditioning factors system is 0.764, greater than
0.750, which indicates that the multicollinearity among the conditioning factors is large and
a principal component analysis should be conducted. By calculating the maximum eigen
roots of the correlation matrix, the eigen roots greater than 0.75 are selected as the main
components. It can be observed from Table 3 that 7 principal components were selected, and
the cumulative sum of the variance of these 7 principal components was greater than 80%,
indicating that more than 80% of the original conditioning factors’ information was retained.
The extraction results of the seven principal components are shown in Figure 9b–h.

Table 2. Results of the KMO and Bartlett’s tests.

KMO test 0.764
Bartlett’s test 48,271.116

p-value 0.000

Table 3. Total variance explained.

Components
Initial Eigenvalues Extraction Sums of Squared Loadings

Total % of
Variance

Cumulative
% Total % of

Variance
Cumulative

%

1 4.517 32.263 32.263 4.517 32.263 32.263
2 1.769 12.634 44.897 1.769 12.634 44.897
3 1.532 10.940 55.837 1.532 10.940 55.837
4 1.231 8.795 64.632 1.231 8.795 64.632
5 1.074 7.670 72.302 1.074 7.670 72.302
6 0.977 6.977 79.279 0.977 6.977 79.279
7 0.759 5.422 84.702 0.759 5.422 84.702
8 0.560 3.999 88.700 - - -
9 0.468 3.346 92.046 - - -

10 0.413 2.953 94.999 - - -
11 0.348 2.484 97.483 - - -
12 0.256 1.831 99.314 - - -
13 0.082 0.585 99.899 - - -
14 0.014 0.101 100.000 - - -

4.3. Model Fitting Results

The seven principal components obtained by the PCA were introduced to establish the
LR, RF, and ANN models. The establishment of the landslide susceptibility model requires
an equal number of landslide and non-landslide units to participate in the modeling [49].
Firstly, based on the division results of the slope units and landslide inventory map, it
was determined that there were 575 landslide units in the study area. Then, to meet the
modeling requirements, the non-landslide units equal to the number of landslide units were
randomly selected in a place that was at least 200 m away from the landslide units. Finally,
the data were divided into five equal parts using five-fold cross-validation. All models
were established in IBM SPSS software. For the LR model, all the principal components
were entered into the model, and the significance level was set at 95% [43]. As for the RF
model, the number of decision trees constructed was 300, the sample size was 1.0, and the
unbalanced data were processed. Set the maximum number of nodes in the tree to 10,000,
the maximum depth to 10, and the minimum child node size to 5 [80]. The ANN model
consists of an input layer, a hidden layer, and an output layer. The activation function was
set as a logistic sigmoid. The momentum, learning rate, and training time were set as 0.3,
0.3, and 500, respectively [81]. The results are shown in Table 4.
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Table 4. The performances for the two slope units’ fitted landslide susceptibility models (%).

Method Index
Training Validating

K = 1 K = 2 K = 3 K = 4 K = 5 Mean Standard
Deviation K = 1 K = 2 K = 3 K = 4 K = 5 Mean Standard

Deviation

LR

AC 0.782 0.775 0.786 0.777 0.778 0.780 0.004 0.765 0.800 0.743 0.778 0.778 0.773 0.021
SE 0.769 0.761 0.773 0.766 0.768 0.767 0.005 0.780 0.785 0.737 0.746 0.781 0.766 0.022
SP 0.795 0.791 0.800 0.789 0.790 0.793 0.004 0.752 0.817 0.750 0.820 0.776 0.783 0.034

PPV 0.804 0.802 0.809 0.798 0.798 0.802 0.005 0.739 0.826 0.757 0.843 0.774 0.788 0.045
NPV 0.759 0.748 0.763 0.757 0.759 0.757 0.006 0.791 0.774 0.730 0.713 0.783 0.758 0.034
AUC 0.856 0.856 0.863 0.859 0.853 0.857 0.003 0.861 0.856 0.829 0.843 0.873 0.852 0.015

RF

AC 0.898 0.911 0.903 0.889 0.887 0.898 0.010 0.804 0.804 0.817 0.830 0.817 0.815 0.011
SE 0.880 0.900 0.894 0.907 0.874 0.891 0.014 0.843 0.802 0.823 0.806 0.817 0.818 0.016
SP 0.918 0.922 0.913 0.873 0.901 0.905 0.020 0.773 0.807 0.812 0.858 0.817 0.814 0.030

PPV 0.922 0.924 0.915 0.867 0.904 0.907 0.023 0.748 0.809 0.809 0.870 0.817 0.810 0.043
NPV 0.874 0.898 0.891 0.911 0.870 0.889 0.017 0.861 0.800 0.826 0.791 0.817 0.819 0.027
AUC 0.964 0.968 0.965 0.963 0.962 0.964 0.002 0.849 0.881 0.871 0.878 0.869 0.870 0.011

ANN

AC 0.822 0.853 0.863 0.841 0.832 0.842 0.017 0.804 0.787 0.783 0.796 0.791 0.792 0.008
SE 0.826 0.842 0.846 0.828 0.827 0.834 0.010 0.843 0.770 0.773 0.779 0.786 0.790 0.030
SP 0.818 0.865 0.881 0.855 0.837 0.851 0.025 0.773 0.806 0.793 0.815 0.796 0.797 0.016

PPV 0.815 0.870 0.887 0.861 0.839 0.854 0.028 0.748 0.817 0.800 0.826 0.800 0.798 0.030
NPV 0.828 0.837 0.839 0.822 0.824 0.830 0.008 0.861 0.757 0.765 0.765 0.783 0.786 0.043
AUC 0.891 0.921 0.926 0.908 0.906 0.910 0.012 0.891 0.884 0.883 0.897 0.896 0.890 0.006
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5. Discussion
5.1. Model Comparison

The confusion matrix was obtained through the training and testing of the three
models. The corresponding statistical parameters of each model were calculated to evaluate
the advantages and disadvantages of each model. Table 4 shows that in the training stage,
the mean accuracy of the RF model is 0.898, which is higher than that of the other two
models, followed by the ANN model (0.842) and LR model (0.780). In the test stage, the
mean accuracy of the RF model was also the highest. The accuracy of the ANN model was
very close to the RF model, with a difference of 0.023, indicating that the mean accuracy of
the two models in the test stage was the same. As for the standard deviation of the mean
accuracy, the LR model had the smallest standard deviation in the training stage, indicating
that it was the most stable model, followed by the RF model and the ANN model. In the test
stage, the accuracy standard deviation of both the LR and the RF models increased, but the
ANN model decreased, indicating that the ANN model had good stability in the test stage.
In terms of accuracy, the average accuracy and the standard deviation of all three models
decreased in the test stage, in comparison to the training stage. However, the decrease
was not significant, and the accuracy standard deviation was below 0.02. Therefore, the
RF model is considered as the optimal model, only from the perspective of accuracy. For
the other four statistical parameters, the standard deviations were small, only in the LR
model during the training stage. For the RF and ANN models, the standard deviations
of these four statistical parameters were all large, indicating that the stability of the two
models decreased.

Moreover, the standard deviations of the four statistical parameters in the test stage
significantly increased, compared to the training stage, indicating that the stability of the
three models in the test stage was worse than that in the training stage. According to
the mean value of the four statistical parameters, the RF model was significantly higher
than the other two models in the training stage. According to the average value of the
four statistical parameters, the RF model was superior to the ANN model, and the ANN
model was superior to the LR model. Although there were slight differences in the four
statistical parameters between the ANN and RF models in the test stage, the difference was
insignificant. The maximum difference was below 0.035, indicating that the two models
had the same prediction effect on the landslide and non-landslide units in the test stage.

In summary, among the landslide susceptibility models established by the three
models, the LR model is the most stable in the training stage, which means that the
standard deviations of its five statistical parameters are all small. In the test stage, the
stability of the three models decreases to varying degrees. The most stable model is the LR
model, in terms of the standard deviation ranking, while the stability difference between the
RF and ANN models is not significant. For the mean value of the five statistical parameters,
the RF model is higher than the ANN model in the training stage, and the LR model is
the lowest. The LR model is also the lowest in the test stage, but there is little difference
between the RF and ANN models. Therefore, by comparing the five statistical parameters,
out of the above-mentioned three models, the RF model can be regarded as the most
reasonable model.

Through the training and testing of the three models, the ROC curve was obtained,
and the AUC value was calculated. Table 4 reveals that the mean AUC value of the LR
model is 0.857 in the training stage and 0.852 in the test stage; the mean AUC value of
the RF model is 0.960 in the training stage and 0.870 in the test stage; and the mean AUC
value of the ANN model is 0.910 in the training stage and 0.890 in the test stage. As for
the standard deviation of the AUC value, the ANN and LR models are larger than the RF
model, smaller, and have better stability. From the perspective of the AUC value, the RF
model is also the most reasonable model out of the above-mentioned three models.
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5.2. Model Comparison with Other Studies

Some studies were conducted in a similar area. Cao et al. (2016) [23] analyzed the
landslide susceptibility of the Xulong Reservoir, by using a combination of the information
content method and the analytic hierarchy process, and using the grid units as the mapping
units. In the present study, the authors innovatively quantified the vertical rainfall char-
acteristics in the study area. It is indicated that the vertical rainfall characteristics are one
of the geological environment factors that should be specially considered in the landslide
susceptibility of the study area. Based on the research of Cao et al., Sun et al. (2018) [44]
used the frequency ratio (FR), analytic hierarchy process (AHP), logistic regression (LR),
and principal component analysis (PCA) to study the landslide susceptibility in Derong
County and Deqin County in the upper reaches of Jinsha River. This study also considered
the vertical rainfall characteristics in the study area, and the represented river incision and
bedrock uplift by slope angle. Their study verified the main reasons for the occurrence
of landslides along the river in the study area. Sun et al. (2020) [43] used slope units
divided by the hydrologic method to study the susceptibility of landslides in the upper
Jinsha River and innovatively used the Strallet integral value to characterize the bedrock
uplift in the study area. It can be observed from Table 5 that the prediction accuracy of this
study is much higher than that of Cao et al. (2016) [23] and Sun et al. (2018) [44], and the
main difference between them is the difference of the mapping units. This is because the
slope unit is more closely related to the geological and geomorphological characteristics.
Sun et al. (2020) [49] found that the slope unit divided by the curvature watershed method
has a uniform size, shape between the circle and equilateral triangle, and small internal
terrain. Based on the above research, this study hopes to establish a landslide susceptibility
mapping method more suitable for the special geological environment characteristics of the
upper Jinsha River. Based on the analysis of the geological environment in the study area,
the present paper establishes a landslide susceptibility conditioning factor system that is
more suitable for the special geological environment characteristics in the upper reaches
of Jinsha River. Additionally, the quantization of the vertical rainfall characteristics was
optimized. Based on the research results obtained by Sun and al. (2019) [65], the Fubaopu
mountain rainfall formula was used to fit the mountain rainfall in the study area. According
to the prediction accuracy and landslide susceptibility map, the landslide susceptibility
model established in the present study is very reasonable and can guide disaster prevention
and mitigation in the upper reaches of Jinsha River.

5.3. Landslide Susceptibility Map Analysis

By comparing the five statistical parameters and AUC values of the three models,
the RF model was determined to be the optimal model for the landslide susceptibility
mapping in the study area. Therefore, the model with the highest accuracy in the five-fold
cross-validation of the RF model was finally adopted in this paper to map and analyze the
landslide susceptibility mapping in the study area. Furthermore, using the natural breaks
method, the landslide susceptibility in the study area was divided into five grades: very
low, low, moderate, high, and very high (Figure 10). The data statistics of the landslide
susceptibility map (Table 6) show that the areas with very low, low, moderate, high, and
very high landslide susceptibility grades are 376.08, 188.00, 125.53, 117.60, and 130.01 km2,
respectively. They represented, respectively 40.13%, 20.06%, 13.39%, 12.55%, and 13.87%
of the total area. The landslide areas included in the above-mentioned five susceptibility
grades were 0.22, 2.20, 4.39, 15.23, and 32.94 km2, respectively. They accounted for 0.40%,
4.00%, 7.99%, 27.70%, and 59.91% of the total landslide area, respectively. According to the
statistical results, the area with very high and high susceptibility accounts for 26.42% of the
total area. However, it contains 87.61% of the known landslide area, indicating that this
paper’s landslide susceptibility maps are reasonable.
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Table 5. Prediction accuracy of the landslide susceptibility models from different studies (ROC).

Source Method Conditioning Factor Prediction Accuracy Mapping Units

Cao et al. (2016) [23] ICM-AHP
Slope angle, slope aspect, curvature, geology,
distance to fault, distance to river, vegetation,

and annual precipitation
85.74% Grid units

Sun et al. (2018) [44]

FR Lithology, slope angle, slope aspect, TWI,
curvature, SPI, STI, topographic relief, rainfall,

vegetation, NDVI, distance to river, and
distance to fault

79.90%

Grid unitsAHP 76.90%

PCA-LR 83.40%

Sun et al. (2020) [43]

LR

Slope angle, slope aspect, curvature, land use,
NDVI, rainfall, lithology, distance to river,

distance to fault, and Strahler’s integral value

Training 88.16%

Slope unit (hydrological
method)

Validating 87.68%

ANN
Training 93.96%

Validating 92.60%

SVM
Training 89.68%

Validating 89.88%

Sun et al. (2021) [49] SVM
Lithology, slope angle, slope aspect, NDVI, land
cover, rainfall, curvature, distance to river, and

distance to fault

Training 89.72% Slope unit (hydrological
method)Validating 88.08%

Training 90.72% Slope unit (curvature
watershed method)Validating 88.96%

This study

LR
Lithology, rock hardness, elevation, slope angle,
slope aspect, topographic relief, curvature, land

use, NDVI, distance from faults, Strahler’s
integral value, distance from rivers, rainfall, and

earthquake intensity

Training 85.7%

Slope unit (curvature
watershed method)

Validating 85.2%

RF
Training 96.4%

Validating 87.0%

ANN
Training 91.0%

Validating 89.0%



Remote Sens. 2022, 14, 1730 20 of 26
Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 28 
 

 

 
Figure 10. Landslide susceptibility map using the RF model. 

Table 6. Statistical results of the landslide susceptibility map. 

Susceptibility 
Landslide Occurred Total Study Area 

Area(km2) Ratio Area(km2) Ratio 
Very Low 0.22 0.40% 376.08 40.13% 

Low 2.20 4.00% 188.00 20.06% 
Moderate 4.39 7.99% 125.53 13.39% 

High 15.23 27.70% 117.60 12.55% 
Very High 32.94 59.91% 130.01 13.87% 

As shown in Figure 10 and Table 6, the areas with a low and very low landslide sus-
ceptibility are distributed in the medium–high elevation range. The vegetation types in 
this range are mainly forest, tundra, and year-round snow on the mountain top. The NDVI 
value in this region is large, indicating that the vegetation coverage rate in this region is 
high. Although the rainfall in this area is greater than that in the study area, the rainfall 
often occurs as snowfall at high altitudes. Additionally, this area is far away from the river 
and less affected, so landslides do not easily occur. The areas with moderate, high, and 
very high landslide susceptibilities are mainly distributed in the areas with a low eleva-
tion. In this region, the vegetation types are mainly shrubs and bare land. The NDVI value 
is very low, indicating that the vegetation coverage rate in this region is very low. Nearly 
upright soft rocks dominate the lithology in this region. It is close to rivers and faults, so 
it is greatly influenced by fluvial and tectonic processes. The study area is located in rapid 
uplift, which leads to a relatively high river erosion intensity in the study area. Under the 
action of rapid uplift and rapid river erosion, the bank slope becomes steeper and steeper. 
Many landslides will occur along the river to adapt to the action of the river and uplift. 
Rainfall in this area relative to the entire study area is relatively low. However, there are 
more landslides in this area because the entire study area’s average annual rainfall is min-
imal. There is a high elevation of 750 mm ±, a low elevation of only 300 mm ±, and it is 
very difficult for the rainfall area to achieve enough rainfall in a short amount of time to 
induce rainfall landslides. This is also one of the important reasons for the stable existence 
of many deposits in the study area. In addition, as the vertical distribution of rainfall is 
closely related to the distribution of vegetation, the distribution of vegetation also follows 
the vertical distribution law. Due to less rainfall and less vegetation in low altitude areas 
(a low NDVI value in low altitude areas and high NDVI value in medium–high altitude 
areas), the areas without vegetation coverage are more prone to landslides. 

The areas with very high, high, and moderate landslide susceptibilities are mainly 
distributed in Guxue, Benzilan, and other villages on both sides of the Jinsha and Dingqu 

Figure 10. Landslide susceptibility map using the RF model.

Table 6. Statistical results of the landslide susceptibility map.

Susceptibility
Landslide Occurred Total Study Area

Area (km2) Ratio Area (km2) Ratio

Very Low 0.22 0.40% 376.08 40.13%
Low 2.20 4.00% 188.00 20.06%

Moderate 4.39 7.99% 125.53 13.39%
High 15.23 27.70% 117.60 12.55%

Very High 32.94 59.91% 130.01 13.87%

As shown in Figure 10 and Table 6, the areas with a low and very low landslide
susceptibility are distributed in the medium–high elevation range. The vegetation types in
this range are mainly forest, tundra, and year-round snow on the mountain top. The NDVI
value in this region is large, indicating that the vegetation coverage rate in this region is
high. Although the rainfall in this area is greater than that in the study area, the rainfall
often occurs as snowfall at high altitudes. Additionally, this area is far away from the river
and less affected, so landslides do not easily occur. The areas with moderate, high, and
very high landslide susceptibilities are mainly distributed in the areas with a low elevation.
In this region, the vegetation types are mainly shrubs and bare land. The NDVI value is
very low, indicating that the vegetation coverage rate in this region is very low. Nearly
upright soft rocks dominate the lithology in this region. It is close to rivers and faults, so it
is greatly influenced by fluvial and tectonic processes. The study area is located in rapid
uplift, which leads to a relatively high river erosion intensity in the study area. Under
the action of rapid uplift and rapid river erosion, the bank slope becomes steeper and
steeper. Many landslides will occur along the river to adapt to the action of the river and
uplift. Rainfall in this area relative to the entire study area is relatively low. However, there
are more landslides in this area because the entire study area’s average annual rainfall is
minimal. There is a high elevation of 750 mm ±, a low elevation of only 300 mm ±, and it
is very difficult for the rainfall area to achieve enough rainfall in a short amount of time to
induce rainfall landslides. This is also one of the important reasons for the stable existence
of many deposits in the study area. In addition, as the vertical distribution of rainfall is
closely related to the distribution of vegetation, the distribution of vegetation also follows
the vertical distribution law. Due to less rainfall and less vegetation in low altitude areas
(a low NDVI value in low altitude areas and high NDVI value in medium–high altitude
areas), the areas without vegetation coverage are more prone to landslides.

The areas with very high, high, and moderate landslide susceptibilities are mainly
distributed in Guxue, Benzilan, and other villages on both sides of the Jinsha and Dingqu
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Rivers. These villages have a dense population, high density of buildings, and cultivated
land, and some villages have developed industries. At the same time, these villages are
in the high susceptibility area of landslides, and the possibility of landslide occurrence is
high. Therefore, emphasis should be placed on disaster reduction and prevention in these
villages. The low and very low susceptibility areas are mainly distributed in the areas far
from the Jinsha and Dingqu Rivers. Human activity in the area is relatively weak and, even
if landslides occur, the damage is relatively minor.

In conclusion, the areas with a very high, high, and moderate susceptibility to land-
slides are mainly distributed in the areas with intensive human and engineering construc-
tion activities. Therefore, attention should be paid to disaster prevention and mitigation.
Human activities are rare in areas with a low and extremely low susceptibility to landslides,
and the potential threat caused by landslide disasters is minor. However, the prevention
and mitigation of landslides should also be carried out in these areas. Furthermore, neces-
sary treatment should be carried out on the high-susceptibility slope body, which affects
the construction of the hydropower station.

5.4. The Relationship between the Landslides and Crustal Uplift History and Glacial Age

As can be observed from the landslide susceptibility map, landslides in the study area
mostly occur along the two sides of the river, which indicates that landslides in the study
area have a significant effect on the uplift of the Tibetan Plateau and glacial period. In
order to determine the corresponding relationship between the landslides and the uplift
stage and glacial period of the Tibetan Plateau, 27 landslides with obvious sliding surfaces
in the study area were sampled by luminescence dating on their sliding surfaces. The
occurrence time of each landslide in Table 7 shows that the oldest landslide is the Yahong
landslide, which occurred about 118,000 years ago. A total of 5 landslides occurred in the
last 10,000 years; that is, all the landslides occurred since the late Pleistocene. As can be
observed from Figure 2, since the late Pleistocene, the Tibetan Plateau has entered a stage
of extremely rapid uplift, during which the uplift rate of the Tibetan Plateau can reach
4.50 mm/a to 15.00 mm/a. A large number of landslides also occurred during this period,
which indicates that the rapid uplift of the Tibetan Plateau has a certain correlation with
the landslide occurrence. In order to understand the relationship between landslides and
glacial age, this paper compares the dating data of landslides with the classification chart
of the global glacial age and the classification chart of the Chinese glacial age, as shown in
Figure 11. It can be observed in Figure 11 that the global glacial ages corresponding to the
landslides are MIS 2 to MIS 6, and there is a good corresponding relationship. According to
the classification results of the glacial ages in China, 6 landslides occurred in the late-glacial
period of the Last Glacial Period, 16 landslides occurred in the Last Glacial Period, and
5 landslides occurred in the last interglacial age.

From the data, it can be observed that when the landslides occur, the Tibetan Plateau
has already entered a period of rapid uplift, which would inevitably lead to the rapid
downward cutting of the river. Moreover, all the landslides in the study area occurred
during the last glacial and interglacial periods of the Tibetan Plateau, when the mean
altitude of the Tibetan Plateau reached more than 3000 m. The moderate and long-term
warm and wet airflow that moved northward greatly weakened in the Quaternary, and
the dry and cold airflows that developed on a large scale in the Late Pleistocene both
began during this period. During this period, the climate of the study area changed to a
subtropical climate, and the three-dimensional climate in the mountains and valleys was
very obvious. During the glacial period, the sea level significantly dropped due to climate
change. During the Last Glacial Period, the sea level was more than 100 m lower than
that of the present day, which inevitably led to the accelerated downcutting of rivers to
reach the sea level of the lowest base level of erosion. Thus, the upper reaches of Jinsha
River experienced rapid downcutting under the dual effects; that is, the Tibetan Plateau
uplifting at a rate of 5 mm/a during this period and the rapid downcutting of the rivers
due to the significant decrease in sea level. In addition, the upper Jinsha River belongs to
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the plate tectonic suture zone, regionally, and the characteristic products of the DTJ in the
suture zone endow the reach with a complex bank slope structure. The rapid downward
cutting caused the formation of high and steep bank slopes with a height difference of over
1000 m, which provided good space and conditions for the unloading of the river valley
and the continuous action of the gravity field. Additionally, the upper Jinsha River is a neo-
tectonic active area and earthquakes are frequent. In conclusion, these basic characteristics
constitute the common basic conditions for the deformation and failure of slope rock mass
in the upper reaches of Jinsha River.

Table 7. Luminescence dating statistics of the landslides in the study area (sorted by age).

Number Name Method of
Dating Age (Ka) Number Name Method of

Dating Age (Ka)

1 Quzhi landslide TH 2.8 ± 0.2 15 Deze landslide TH 42.5 ± 2.0
2 Yingui landslide PH 3.4 ± 0.2 16 Guxue landslide TH 45.1 ± 2.7
3 Aluogong landslide TH 4.4 ± 0.3 17 Waka 2 landslide TH 46.5 ± 2.1
4 Yongduo landslide TH 5.2 ± 0.2 18 Zhanzhui landslide TH 50.0 ± 3.1

5 Waka 1 landslide TH 7.7 ± 0.5 19 Jinshaqiaotou
landslide TH 52.4 ± 3.0

6 Saimaoding
landslide TH 10.6 ± 0.5 20 Dari landslide TH 56.9 ± 3.7

7 Senen landslide TH 17.6 ± 1.1 21 Gaiyiri moraine PH 58.8 ± 3.1

8 Maodinghe
landslide TH 18.3 ± 1.2 22 Maoding landslide TH 70.8 ± 5.1

9 Yingui landslide TH 19.7 ± 1.3 23 Qulong moraine TH 77.3 ± 4.5
10 Zhisishan landslide TH 22.7 ± 1.0 24 Yeligong moraine TH 79.0 ± 4.1

11 Guanyinxiang
landslide TH 25.9 ± 1.6 25 Yegeding landslide TH 81.0 ± 4.3

12 Rancun landslide TH 31.1 ± 1.8 26 Yinduba landslide TH 115.7 ± 7.6
13 Benzilan landslide TH 33.2 ± 1.6 27 Yahong landslide TH 118.1 ± 6.0
14 Waka 3 landslide TH 41.1 ± 3.1 - - - -

Notes: TH—thermoluminescence and PH—photoluminescence.
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6. Conclusions

In this paper, the susceptibility of landslides under a special geodynamic system in
the upper reaches of Jinsha River was mapped. First, a total of 61 landslides were mapped
in the study area. Furthermore, a conditioning factors system consisting of fourteen factors
was established. Then, LR, RF, and ANN models were used to build the model, and
statistical parameters and ROC curves were used to optimize the model. In conclusion, the
following inferences were obtained:

1. By comparing the results of the three models, it was found that the RF model is the
optimal model. The area percentages of very low, low, moderate, high, and very high
susceptibility classes were 40.13%, 20.06%, 13.39%, 12.55%, and 13.87%, respectively.

2. By analyzing the landslide susceptibility map, it was found that the areas with a very
high, high, and moderate landslide susceptibility were mainly distributed in Guxue,
Benzilan, and other villages on both sides of the Jinsha and Dingqu Rivers. Since
these areas are densely populated with people and buildings, priority should be given
to disaster prevention and mitigation.

3. By analyzing the relationship between landslides and crustal uplift history and glacial
age, it is suggested that the landslide geological hazards in the upper reaches of Jinsha
River be controlled by the double disaster effect of the geodynamic system, caused by
the rapid uplift of the Tibetan Plateau and the significant decrease in sea level during
the glacial period.

Some problems in the research process are also worth noting. Firstly, only Sentinel-1A
data obtained in descending mode were used to interpret landslides in the study area,
resulting in limitations in interpretation accuracy. Secondly, the results of susceptibility
mapping are biased by ignoring the fact that topography changes after a landslide occurs.
Furthermore, although the characteristics of rapid uplift were considered, the relationship
between the landslide occurrence and uplift history could not be analyzed in more detail.
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