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Figure S1. Experiment site locations in Woodland, California (yellow location pin marked as 

“Rominger plots”) and West Lafayette, Indiana (yellow location pin marked as “ACRE plots”) [75]. 

Table S1. Monthly weather averages (precip = precipitation; temp = temperature; deg = degrees). 

Year Location Month 
Mean Monthly 

Precip (mm) 

Mean Air Temp 

(deg C) 

30-Year Mean 

Monthly Precip 

(mm) 

30-Year Mean 

Temp (deg C) 

2014 Woodland May 0 21.3 16.8 20.2 

  June 0 23.3 5.6 23.5 

  July 0 24.9 0 25.4 

  August 0.8 23.6 1.3 24.8 

  September 10.4 22.8 2.8 23.4 

  October 22.6 19.6 21.3 18.8 

2017 ACRE May 156.0 15.8 120.4 16.7 

  June 156.5 22.3 125.5 21.8 

  July 179.8 23.5 112.8 22.9 

  August 123.9 20.7 94.5 21.9 

  September 50.5 19.2 78.0 18.4 

  October 67.9 14.2 78.5 12.0 

Table S2. Soil nutrient characteristics. 

Year Location 

Soil 

Depth 

(cm) 

pH 
Organic 

Matter (%) 

K  

(mg kg−1) 

P  

(mg kg−1) 

Mg  

(meq L−1) 

Ca  

(meq L−1) 

CEC (meq 

100g−1) 

2014 

Gorman 
0–15 7.6 1.60 225 43 3.0 2.8 22.5 

15–30 7.8 1.47 237 13 3.9 3.6 23.2 

Rominger 
0–15 7.6 2.70 225 7 1.6 1.6 25.8 

15–30 7.6 2.26 169 4 1.7 1.9 26.9 

2017 ACRE 0–20 6.4 3.1 151 20 610 ppm 2221 ppm 18.7 

Treatment effect on biomass at R6: In the ground reference total dry matter model (stover 

+ grain biomass at R6; TDM), the individual main effects of hybrid, N treatment, and plant 
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density were significant, yet none of the interactions were significant (Table S3). This 

model accounted for approximately 60% of the variability in the data. Location effects, 

which included the blocking effects, accounted for the largest portion of explained varia-

bility. This was not surprising considering the large difference in environment between 

our locations in CA and IN. Significant biomass differences between hybrids were found 

across N rates and densities. Hybrids with the highest biomass were DAS05 and DAS08, 

significantly greater than DAS09 (Table S4). Increased N levels resulted in significantly 

greater biomass than those under low N conditions., across all hybrids. Additionally, 

higher biomass levels were evident at the high planting density.  

Treatment effect on total N content: Total N content (TNC) was measured at V12, R1 and 

R6, and ground reference models were built for each of these measurements. The models 

for TNC had good fit with residuals less than 30% (Table S3). Location alone accounted 

for more than 60% of the variability in the data across all three models indicating the sub-

stantial effect that environment had on the availability and uptake of N, as anticipated. It 

is well documented that availability of mineral N (N sourced from organic or non-organic 

matter) is strongly affected by precipitation, temperature, microbial flora, and soil type 

[1,76–78]. For TNC at V12, only N and plant density had significant effects on the model 

(Table S3). By R1, neither hybrid nor N alone were significant main effects for TNC, 

though plant density continued as a significant fixed effect. Interestingly, there was some 

hybrid separation at R1 (Table S4). DAS03 had a significantly higher R1 TNC least square 

mean estimate than DAS07. At R6 all three main fixed effects, hybrid, N, and plant density 

were significant. However, there was no significant hybrid separation in the conservative 

Tukey–Kramer analysis, hence TNC was not identified as an N parameter warranting fur-

ther investigation with HSIs. 

Treatment effect on grain yield: The mixed model evaluating the treatment effects on 

grain yield at all 3 locations explained about 70% of the variability in the data (Table S3). 

Location effects accounted for more than 70% of the data variability revealing a substantial 

environmental effect on final grain yields. Hybrid was the only significant main fixed ef-

fect for yield.  

Table S3. Mixed model analysis of treatment effects and interactions on physiological characteristics 

across 3 site-years (α = 0.10). 

Var 
Summary of Fit Model 

Statistics 

Random Effects 
Type 3 Tests of Fixed Effects 

REML Var Comp Est  

(% of Total) Effect DF Den DF Pr > F 

TDM at R6 

N Obs 427 Loc 37.4 
H 8 12 0.052 

N 2 4 0.068 

AIC 1892.2 N*Loc 10.4 
PD 1 363 <0.0001 

H*N 16 363 ns 

Res(%) 43.0 H*Loc 9.2 
H*PD 8 363 ns 

N*PD 2 363 ns 

TNC V12 

N Obs 364 
Loc 69.6 

H 8 12 ns 

N 2 3 0.013 

AIC -37.7 
PD 1 301 0.002 

N*Loc 2.2 

H*N 16 301 ns 

Res(%) 28.2 
H*PD 8 301 ns 

N*PD 2 301 ns 

TNC R1 

N Obs 252 Loc 66.2 
H 8 12 ns 

N 2 4 ns 

AIC 2138 N*Loc 10.8 
PD 1 190 0.003 

H*N 16 190 0.040 

Res(%) 20.3 H*Loc 2.7 
H*PD 8 190 0.007 

N*PD 2 190 ns 
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TNC R6 

N Obs 363 Loc 60.3 
H 8 12 0.077 

N 2 4 0.035 

AIC 3132.1 N*Loc 18.3 
PD 1 299 0.045 

H*N 16 299 ns 

Res(%) 18.4 H*Loc 3 
H*PD 8 299 ns 

N*PD 2 299 ns 

GY 

N Obs 501 Loc 37.2 
H 8 12 0.005 

N 2 4 ns 

AIC 1747.9 N*Loc 25.4 
PD 1 436 ns 

H*N 16 436 ns 

Res(%) 27.2 H*Loc 10.3 
H*PD 8 436 0.016 

N*PD 2 436 0.001 

Notes: TDM = Total Dry Matter (Mg ha−1) (stover + grain); TNC = Total Nitrogen Content (kg N 

ha−1); GY = Grain Yield at 15.5% moisture content; N Obs = number of observations; AIC = Akaike’s 

Information Criterion; Loc = Location and Blocking effects; N = Nitrogen Treatment; H = Hybrid; 

PD = Plant Density; DF = Degrees of Freedom for numerator; Den DF = Degrees of Freedom for 

denominator; ns = Not Significant at α = 0.10. For random effects % of total variability reported. For 

fixed effects, p-value reported. 

Table S4. Least square mean estimates of plant biomass at R6 (TDM), and N content (TNC) at V12, 

R1 and R6 for the main fixed effects of hybrid (H), nitrogen (N), and plant density (PD). 

Trt Class 
Main Fixed 

Effects 

TDM R6 Estimate  

(Mg ha−1) 

TNC V12 Estimate  

(kg N ha−1) 

TNC R1  

Estimate  

(kg N ha−1) 

TNC R6  

Estimate  

(kg N ha−1) 

Means SE Means LCL UCL Means SE Means SE 

H 

DAS01 22.53 AB 1.53 130 ns 127 133 170 AB 31 212 ns 28 

DAS02 22.71 AB 1.44 138 ns 136 140 173 AB 30 211 ns 27 

DAS03 23.47 AB 1.44 133 ns 131 135 195 A 30 209 ns 27 

DAS04 22.24 AB 1.44 134 ns 132 137 167 AB 30 199 ns 27 

DAS05 24.08 A 1.44 137 ns 135 140 174 AB 30 218 ns 27 

DAS06 22.25 AB 1.53 139 ns 136 142 179 AB 30 214 ns 28 

DAS07 21.37 AB 1.53 118 ns 116 121 148 B 31 185 ns 28 

DAS08 24.54 A 1.53 126 ns 124 129 184 AB 31 223 ns 28 

DAS09 20.68 B 1.44 130 ns 128 132 170 AB 30 194 ns 27 

N 

High_N 24.25 A 1.41 157 A 155 158 199 ns 31 251 A 29 

Med_N 22.67 AB 1.41 132 A 130 134 166 ns 31 202 AB 29 

Low_N 21.03 B 1.41 110 B 109 112 155 ns 31 169 B 29 

PD 
High 23.33 A 1.30 136 A 135 137 179 A 29 210 A 27 

Low 21.97 B 1.30 127 B 126 128 168 B 29 205 B 27 

Note: Standard errors (SE) reported for all except TNC V12 where 95% upper and lower confidence 

limits (CL) are shown due to transformation of the response variable. Levels with different letters 

are significantly different by Tukey–Kramer HSD (α = 0.10) within a treatment class (trt class) and 

physiological variable; ns = not significant. 
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