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Abstract: The estimation of downward long-wave radiation (DLR) at the surface is very important for
the understanding of the Earth’s radiative budget with implications in surface–atmosphere exchanges,
climate variability, and global warming. Theoretical radiative transfer and observationally based
studies identify the crucial role of clouds in modulating the temporal and spatial variability of DLR.
In this study, a new machine learning algorithm that uses multivariate adaptive regression splines
(MARS) and the combination of near-surface meteorological data with satellite cloud information
is proposed. The new algorithm is compared with the current operational formulation used by the
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Satellite Appli-
cation Facility on Land Surface Analysis (LSA-SAF). Both algorithms use near-surface temperature
and dewpoint temperature along with total column water vapor from the latest European Centre for
Medium-range Weather Forecasts (ECMWF) reanalysis ERA5 and satellite cloud information from
the Meteosat Second Generation. The algorithms are trained and validated using both ECMWF-ERA5
and DLR acquired from 23 ground stations as part of the Baseline Surface Radiation Network (BSRN)
and the Atmospheric Radiation Measurement (ARM) user facility. Results show that the MARS
algorithm generally improves DLR estimation in comparison with other model estimates, particularly
when trained with observations. When considering all the validation data, root mean square errors
(RMSEs) of 18.76, 23.55, and 22.08 W·m−2 are obtained for MARS, operational LSA-SAF, and ERA5,
respectively. The added value of using the satellite cloud information is accessed by comparing
with estimates driven by ERA5 total cloud cover, showing an increase of 17% of the RMSE. The
consistency of MARS estimate is also tested against an independent dataset of 52 ground stations
(from FLUXNET2015), further supporting the good performance of the proposed model.

Keywords: downward surface long-wave radiation; machine learning; multivariate adaptive
regression splines; EUMETSAT LSA-SAF; ECMWF-ERA5

1. Introduction

The downward long-wave radiation (DLR hereafter), defined as the irradiance reach-
ing the surface in the infrared range between 4 and 100 µm, is an essential component of
the Earth’s surface radiation budget [1–3]. DLR has a high dependency with the vertical
profiles of atmospheric temperature, water vapor (the largest contributor to the greenhouse
effect [4]), and cloud cover. Therefore, accurate estimations of DLR are important for a
wide range of applications dealing with climate variability [5]. Since DLR is a key compo-
nent of the land surface radiative balance, it is essential to model and estimate the land
surface turbulent fluxes (latent and sensible), which are relevant to predict the effects that
climate and land use changes have on water resources, ecosystems, and the agricultural
sector [6]. Naud and Miller [7] have reported DLR high sensitivity to changes in water
vapor in high-elevation regions, which are among the most sensitive regions to future
climate change. This is of particular relevance, since in such remote regions there is usually
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a lack of measured DLR and, therefore, an absence of information for determination of
possible warming rates triggers. There are other applications in which DLR estimates are
essential, such as for the design of passive cooling systems in buildings, where measured
values of DLR are usually absent [8].

In the past decades, several research works have been performed to estimate DLR
recurring to empirical formulations. The earlier studies were conducted only for clear-sky
conditions (e.g., [9–13]). Most of these formulations considered the two main modulators of
DLR in clear-sky conditions: temperature and moisture. Recently, several studies explored
the effects of clouds on the sky apparent emissivity and therefore on DLR, introducing
cloud fraction parameterizations to estimate DLR under all-sky conditions (e.g., [14–18]).
These new models brought more flexible and complex approaches to estimate DLR un-
der different sky conditions, considering atmospheric profile databases, semi-empirical
or multiple regression methods (e.g., [2,14,16,19,20]), hybrid systems that combine phys-
ical models and remotely sensed data (e.g., [17]), and, more recently, machine-learning
techniques (e.g., [21–30]). The latter provided the capability to handle complex nonlinear
statistical problems, particularly the nonlinear relation between DLR and its main mod-
ulators. These studies have shown satisfactory results when combining remote sensed
information with machine-learning algorithms for DLR estimation, such as extremely
randomized trees (ERT) [24], random forest (RF) [25,27,29], and artificial neuron network
(ANN) [30], surpassing the previous simpler methods. In particular, to the present date,
only a restricted number of machine-learning studies have applied MARS for the estimation
of DLR. For instance, Feng et al. [21] demonstrated the MARS potential for the determina-
tion of daily and monthly DLR values under all-sky conditions, including regions of high
and low altitude. However, despite their good results, the authors underlined the need for
reducing the obtained bias and model overfitting. Zhou et al. [23,28] included MARS as
part of a hybrid system that performed estimates of DLR under clear-sky conditions using
the moderate-resolution imaging spectroradiometer (MODIS) thermal infrared bands top
of the atmosphere radiances and surface measurements of DLR. Although the proposed
methodology (entirely dependable on satellite and ground data without the use of NWP
models) led to some deviations in the results, these showed an overall good performance
of the method when remote sensing-based DLR estimations are used. In another study,
Jung et al. [31] used several machine-learning methods, including MARS, to combine en-
ergy flux measurements acquired from FLUXNET eddy covariance towers with MODIS
and meteorological data and to produce the FLUXCOM dataset. The resulting FLUXCOM
estimates were found to be suitable for the quantification of global land–atmosphere inter-
actions and land surface model simulations benchmarking. Although there is no definitive
regression model technique to be used for all situations, MARS algorithms have proven
to have a good bias-variance trade-off (with fairly low bias and variances), being flexible
enough for modelling non-linearity and handling a large number of input variables (i.e.,
more than two variables), while in other simpler models such dimensionality generates
problems [32].

In the present work, we present a novel and synergetic approach that uses MARS to
combine the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis
with ground, and remote sensed information to estimate DLR hourly values under all-sky
conditions. Although it is not possible to directly infer DLR from remotely sensed observa-
tions under overcast conditions [10], the combination of satellite information and numerical
weather models has the advantage of providing accurate DLR values over large areas [14].
Moreover, this combination of data sources allows the estimate of DLR in remote locations
of difficult man-made access in which the installation of measuring equipment is not viable.
Despite improvements, the precise determination of DLR following these approaches has
some degree of dependency with factors that hinder their accuracy. For instance: (i) pure
empirical methods are limited due to particular calibration conditions (frequently appli-
cable to clear-sky conditions only); (ii) physical models are dependent on the quality and
availability of the atmospheric profile databases used; and (iii) satellite derived-data often
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lack accuracy, especially because top-of-atmosphere observations are only indirectly related
with DLR. The latter generally provides information on cloud fraction or type, which clearly
influences DLR. However, more specific variables affecting DLR estimations, particularly
cloud-base properties (height, temperature, and emissivity), are difficult to measure or to
model (e.g., [33–35]). It is therefore fundamental to create a robust synergistic approach
that combines the use of ground and remote sensing observations with numerical weather
prediction (NWP) models to quantify accurately DLR at the surface.

The starting point of this study is the semi-empirical model presented by Trigo et al. [14],
named here as the LSA-SAF model, which is currently operational in near real-time by
the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)
Satellite Application Facility on Land Surface Analysis (LSA-SAF). More details regarding
LSA-SAF, and respective products, are available online (https://www.eumetsat.int/lsa-saf;
accessed on 31 March 2022). The LSA-SAF currently provides DLR estimates as 30-min
instantaneous fluxes (product MSDSLF, LSA-204) and as daily averages (product DIDSLF,
LSA-206), both covering the Meteosat Second Generation (MSG) disk. The LSA-SAF model
is based on a small set of atmospheric variables, namely total column water vapor, near-
surface temperature, and near surface dewpoint temperature, being calibrated separately
for clear and cloudy-sky conditions. It uses cloud cover information, provided by the
spinning enhanced visible and infrared imager (SEVIRI) on board of the MSG satellite
series, to establish the sky classification. The MSG main optical payload SEVIRI was built
for the purpose of providing several NWP and climate applications over the European
and African regions [36], although South America is also covered. The LSA-SAF model
calibration was based on downward infrared flux simulations provided by the Moderate
Resolution Atmospheric Transmittance and Radiance Code (MODTRAN-4, [37]), using the
Thermodynamic Initial Guess Retrieval (TIGR) atmospheric-profile database presented by
Chevallier et al. [38]. The latter includes a subset of temperature and humidity profiles
from the ECMWF ERA-40 reanalysis covering a wide range of different atmospheric states
(classified into dry cold, dry warm and moist) fed to the MODTRAN-4 to calculate DLR
at the surface. The LSA-SAF algorithm was derived by adjusting such DLR estimates to a
semi-empirical function using uniquely total water vapor content and screen variables (near
surface temperature and dew point). The model was then validated using an independent
dataset, which showed that the algorithm is able to reproduce reasonably well DLR values
at the surface under clear and cloudy skies, with low bias and root mean square errors.
Furthermore, Trigo et al. [14] showed that combining satellite cloud information with bulk
and screen variables led to competitive results when compared with ECMWF estimates,
a result that highlighted the essential role of clouds in DLR. The LSA-SAF simple model was
therefore shown to be a viable option to derive DLR over large areas. Nevertheless, after a
long period in operations, the systematic comparison of DLR estimates from the LSA-SAF
model with station observations suggests that there is still room for improvements. More
details regarding the LSA-SAF model are available in the product user manual [39].

This work aims at establishing a simple and improved DLR algorithm for operational
purposes. The resulting DLR product should be compatible with MSG cloud information
to guarantee consistency among the different LSA-SAF products (e.g., downward solar
radiation). To this end, a new and more flexible formulation is proposed to estimate DLR,
making use of a machine learning algorithm based on multivariate adaptive regression
splines (MARS). This new approach combines recursive partitioning and spline fitting
in the form of a series of step (or hinge) functions and knots, as demonstrated by Frei-
dman [40], replacing simpler regression methods as the one performed in the original
calibration of the LSA-SAF algorithm. Similarly to Trigo et al. [14], the proposed method
treats clear and cloudy conditions separately, thus allowing the training of two different
models using ground measured DLR fluxes from several in situ stations as reference. Cloud
classification is based on satellite (MSG) observations, while each model uses ERA5 total
water column vapor and screen variables (2-metre temperature and dew point) as inde-
pendent variables. The validation of the new methodology consists of the assessment of
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DLR estimates from MARS against another set of ground stations previously excluded
from the training process. The in situ measurements are provided by the Baseline Surface
Radiation Network (BSRN, [41]) and the Atmospheric Radiation Measurement (ARM, [42])
user facility, all within the MSG-disk (as described in Section 2.1). Additionally, to assess
the consistency of the proposed methodology, MARS estimates are also validated against
an independent spatiotemporal dataset of 52 ground stations from FLUXNET2015. In this
analysis, besides DLR estimates from the MARS model, other model estimates are also
considered for comparison purposes, including the operational LSA-SAF model, a new LSA
model calibrated with ERA5 and measured data, and ERA5 radiation fluxes. Additionally,
the MARS and LSA models are also driven by ERA5 cloud information to assess the added
value of the MSG cloud information in the estimation of DLR. More details regarding
MARS application, as well as a description of other models used in this study, are presented
further on in Section 2.2.

The remainder of this paper is structured as follows: in Section 2, data and methods
are presented, including a description for the LSA and MARS models; Section 3 provides
the results for the validation of the MARS model against in situ measurements and other
models estimates within the MSG-disk; in Section 4, a discussion for the obtained results
is presented; while conclusions and future perspectives are given in Section 5; additional
information related to the analysis is added at the end of this paper in Appendix A,
Appendix B, Appendix C, Appendix D.

2. Methodology
2.1. Observations and Reanalysis

The BSRN [41] has been operational since 1995, as part of the world climate research
program, supported by the World Meteorological Organization (WMO) and others. As a
network of surface radiation monitoring, significant improvements have been achieved over
the last decades with the simultaneous increase of globally scattered stations and the quality
of ground measured data. Although there are currently 57 operational stations installed
over different surface types, measured data from a total of 77 stations is freely available
(https://bsrn.awi.de/; accessed on 31 March 2022), with quality control procedures.

In this work a total of 22 BSRN stations were used (Figure 1a), being located within
the MSG-disk (i.e., longitude/latitude within +/− 75◦E/N), and with available data within
the 16-year period from 2004 to 2019. Three BSRN stations located in the MSG-disk are
not considered for analysis, either because of representative issues of the measurements
(Izaña, in Tenerife, Spain) or due to complete absence of data (Ilorin, Nigeria; and Rolim de
Moura, Brazil). Izaña, is a relatively high-altitude station (2372.9 m), often above the clouds
that cover most of the island; under these conditions, the MSG pixel is usually correctly
classified as “cloud covered”, but DLR observations are characteristic of “clear sky” and
therefore inconsistent with the satellite information. In addition to the BSRN stations, the
Niamey station (13.4773◦N; 2.1758◦W) from the ARM user facility was also included (60-s
downwelling irradiances from the sky radiation sensor SKYRAD60S). Niamey station was
selected due to its particular local atmospheric features, in particular the aerosol load [43],
which can be in the form of severe dust events, such as desert storms. More details concerning
Niamey mobile facility and radiation observations are available in Sengupta et al. [44].

Although quality control procedures have been previously applied, several outliers
were found across the 23 stations (see Table 1), as well as a period of about 5 months in
SMS station with measurements made with malfunctioning equipment. Accordingly, the
corresponding sets of data were removed from the analysis, increasing the number of
gaps in the in situ observations. There is a diverse amount of temporal coverage across all
stations. For instance, the station that has the most complete list of records (TAM) only has
0.83% of missing data during the 16-year period, while the station with the lowest number
of records (BUD) has 99.49% of missing data. For comparison purposes, in this analysis all
DLR observations were temporally aggregated to hourly frequency.

https://bsrn.awi.de/
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Palaiseau PAL BSRN France 48.71°N; 2.21°E 156 15.63 322.61 

Paramaribo PAR BSRN Suriname 5.81°N; 55.22°W 4 0.58 421.16 

Figure 1. (a) Example of the annual mean (2020) downward long-wave radiation (DLR) at the surface
estimated with the LSA-SAF operational algorithm within the Meteosat Second Generation (MSG)
disk, including the location for each of the 23 Baseline Surface Radiation Network (BSRN) ground
stations marked by the green triangles; (b) Zoom of the European region, including both BSRN and
also the FLUXNET2015 48 ground stations marked by the cyan circles.

Table 1. List of 23 stations used within the Meteosat Second Generation (MSG) disk for validation
purposes of estimated downward long-wave radiation (DLR) at the surface. The name, acronym,
network of origin, location, geographical coordinates (◦), elevation (m), availability (total number of
years available between 2004 and 2019), and annual mean DLR (W·m−2) for each station is shown.

Station Acronym Network Location Latitude and
Longitude (◦) Elev. (m) Avail. (Years) Annual DLR

(W·m−2)

Brasília BRB BSRN Brazil 15.60◦S; 47.71◦W 1023 7.12 364.45
Budapest BUD BSRN Hungary 47.43◦N; 19.18◦E 139 0.08 373.82
Cabauw CAB BSRN Netherlands 51.97◦N; 4.93◦E 0 14.69 323.69

Camborne CAM BSRN U.K. 50.22◦N; 5.32◦W 88 11.64 324.57
Carpentras CAR BSRN France 44.08◦N; 5.06◦E 100 14.15 321.74

Cener CNR BSRN Spain 42.82◦N; 1.60◦W 471 10.28 321.71
De Aar DAA BSRN South Africa 30.67◦S; 23.99◦E 1287 6.25 303.88

Eastern North Atlantic ENA BSRN Azores 39.09◦N; 28.03◦W 15.2 1.00 359.34
Florianopolis FLO BSRN Brazil 27.61◦S; 48.52◦W 11 5.70 386.40
Gandhinagar GAN BSRN India 23.11◦N; 72.63◦E 65 1.58 401.45

Gobabeb GOB BSRN Namibia 23.56◦S; 15.04◦E 407 7.54 338.67
Neumayer GVN BSRN Antarctica 70.65◦S; 8.25◦W 42 14.89 216.87

Niamey NIM ARM Africa 13.48◦N; 2.18◦E 223 1.02 392.11
Lindenberg LIN BSRN Germany 52.21◦N; 14.12◦E 125 13.99 315.06
Palaiseau PAL BSRN France 48.71◦N; 2.21◦E 156 15.63 322.61

Paramaribo PAR BSRN Suriname 5.81◦N; 55.22◦W 4 0.58 421.16
Payerne PAY BSRN Switzerland 46.82◦N; 6.94◦E 491 15.70 315.05
Petrolina PTR BSRN Brazil 9.07◦S; 40.32◦W 387 7.56 386.86

Sede Boqer SBO BSRN Israel 30.86◦N; 34.78◦E 500 7.49 332.86
São Martinho da Serra SMS BSRN Brazil 29.44◦S; 53.82◦W 489 6.04 327.19

Sonnblick SON BSRN Austria 47.05◦N; 12.96◦E 3109 6.28 249.07
Tamanrasset TAM BSRN Algeria 22.79◦N; 5.53◦E 1385 15.88 330.70

Toravere TOR BSRN Estonia 58.25◦N; 26.46◦E 70 15.70 308.71

To further improve and reinforce the proposed validation procedure, an independent
dataset of ground observations from the FLUXNET2015 network has also been considered
(https://fluxnet.org/data/fluxnet2015-dataset/, [45]; accessed on 31 March 2022). To this
end, half-hourly measurements from 52 ground stations were aggregated to hourly values

https://fluxnet.org/data/fluxnet2015-dataset/
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and then used for validation purposes. The selected measured variable was the incoming
longwave radiation (LW_IN_F_MDS), which is gap-filled using the Marginal Distribution
Sampling (MDS) method, i.e., taking into account observations made under similar meteo-
rological, physical and temporal conditions [46]. It should be noted that only 52 stations
(Table A8) were eligible for the present study, since these needed to follow several require-
ments at the same time, i.e., to be within the MSG-disk, within the 2004–2015 period, and
should have representative values. Regarding the latter, during a quality control check it
was observed that several stations had different measuring periods with MDS gap-filling
applied, being characterized by a “poor-quality” flag (i.e., the lowest level) and, therefore,
are removed from the analysis. In this context, out of 198 stations globally available, only
52 were suitable. Moreover, out of these, 48 stations are located in Europe (Figure 1b).
More details regarding the FLUXNET2015 stations and respective validation results for the
MARS model are shown in Appendix D.

In addition to ground measured data, several fields with hourly frequency of the most
recent ECMWF reanalysis, ERA5 [47], were extracted from the Copernicus Data Store (CDS).
The fields include total column water vapor (tcwv, mm), 2-metre temperature (t2m, K),
2-metre dewpoint temperature (d2m, K), total cloud cover (tcc), and downwelling surface
thermal radiation (strd or DLR, W·m−2), with the latter being produced through the McRad
radiation scheme [48]. For comparison purposes, the ERA5 fields were interpolated to the
measuring station’s location following a nearest neighbor approach. It is worth noting
that, for the evaluation of MARS and LSA models against observations, both t2m and d2m
temperatures were adjusted to each measuring altitude considering a reference temperature
lapse rate of −6.5 K/km [49]. Similarly, ERA5 radiation fluxes were adjusted considering a
correction factor of −2.8 W/m2 per 100 m [13].

Cloud mask information retrieved from the SEVIRI sensor on board MSG is also used
in this work (at 15-min frequency) for the definition of sky conditions. As described by
Derrien and Gléau [50], the MSG cloud mask was developed by the LSA on support to
Nowcasting and Very Short-Range Forecasting (NWC-SAF, https://www.eumetsat.int/
nwc-saf; accessed on 31 March 2022), allowing to identify cloud free areas where different
products can be computed (e.g., total precipitable water, land, or sea surface temperatures),
as well as cloudy areas from which other products can be derived (e.g., cloud type or
cloud top temperature/height). Several research works have shown the added value of the
MSG information for cloud detection (e.g., [14,51]). In particular, Trigo et al. [14] showed
an overall good performance of the MSG cloud mask in cloud identification during the
validation of DLR estimates. However, despite the satisfactory results, these authors also
observed that, in regions under high aerosol load, the accuracy of the satellite cloud mask
could contribute to a lower performance of the proposed method. In the context of DLR
estimation, the present study uses cloud fraction (denoted cf ) retrieved from the SEVIRI
sensor for the training and evaluation of both MARS and LSA algorithms. For this purpose,
15-min cloud mask data is aggregated to hourly cf using an hourly rolling mean. The
procedure allows to select pure situations of clear (cf = 0) and cloudy (cf = 1) conditions
during a particular hour.

2.2. Models

Two algorithms that estimate DLR are evaluated in this study: (i) the current opera-
tional semi-empirical algorithm used by LSA-SAF (referred as LSA hereafter) and (ii) a new
MARS algorithm, a more flexible approach for the definition of the different atmospheric
states under which DLR is calculated. The resulting models (LSA and MARS) are both
driven by ERA5 atmospheric conditions (tcwv, t2m, and d2m), satellite cloud cover from
MSG/SEVIRI observations, and are calibrated using DLR observations from the BSRN
and ARM stations. Additionally, estimates of DLR from ECMWF-ERA5 reanalysis (ERA5)
and of the current LSA-SAF operational product (LSA_OPER) are also considered in the
analysis. For completeness, to assess the value of using satellite cloud information to
calculate DLR with both algorithms, LSA and MARS models were also applied using ERA5

https://www.eumetsat.int/nwc-saf
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total cloud cover (denoted LSA* and MARS*, respectively) instead of the MSG cf. Table 2
resumes the key characteristics of the models used in the analysis, including the MARS
algorithm for the MARS and MARS* models, the LSA-SAF for the LSA and LSA* models,
and the ERA5 reanalysis for the ERA5 model.

Table 2. List of models used in the analysis, including respective predictors, predictands, and cloud
information, for the training and evaluation periods.

Training Evaluation

Model Predictors Cloud Info. Predictand Period Predictors Cloud Info.

MARS
tcwv, t2m,

d2m (ERA5)
cf

(MSG)
DLR

(BSRN, ARM) 2004–2019 1

tcwv, t2m,
d2m (ERA5)

cf
(MSG)LSA

MARS* tcwv, t2m,
d2m (ERA5)

tcc
(ERA5)LSA*

LSA_OPER tcwv, t2m,
d2m (ERA-40) tcc(ERA-40) DLR

(MODTRAN-4) 1992–1993
tcwv, t2m,

d2m (ECMWF
operational NWP)

cf
(MSG)

ERA5 - - - - - -
1 Random selection of 6 months of data from each station.

The LSA-SAF algorithm is presented in detail by Trigo et al. [14] and resumed in
Appendix A. The piecewise regression approach used by LSA-SAF is based on three classes
of atmospheric profiles, independent for clear and cloudy conditions, which were manually
selected (Table A1). Similarly, MARS [40,52] is based on a weighted sum of piecewise
functions, also known as basis functions, in which the MARS additive model follows
the recursive partitioning regression form, as described by Friedman [40]. The resulting
regression coefficients are then adjusted to find the best fitting to the data. The selection
of the basis functions is a fundamental process in MARS: this consists of an automatic
procedure following a two-stage building process, established by performing a forward
and a backward step. Compared with the LSA-SAF algorithm, the automatic procedure to
establish the piecewise regression in MARS is a key advantage. In this study, the MARS
algorithm available in the py-earth python package (version 0.1.0, https://github.com/
scikit-learn-contrib/py-earth; accessed on 31 March 2022) is used. As in the case of the LSA
algorithm, two MARS sub-models are trained for clear and cloudy conditions, respectively,
considering “pure types” identified by the MSG cf (0 or 1); the all-sky DLR is computed
following Equation (A4).

Both LSA and MARS models were calibrated with the same subsets of data indepen-
dently for clear and cloudy conditions, using the MSG cf. The models used ERA5 tcwv,
t2m, and d2m as predictors, and observations (BSRN and ARM) of DLR as predictand.
Since there are large differences in data availability for each station (Table 1), the models
were calibrated with a randomly selected sample of 40% of the full-time series in each
station limited to a maximum of 6 months of data. The procedure allowed us to avoid the
dominance of some stations with longer periods in the training dataset. In an initial phase,
the MARS model was also tested with different combinations between the three predictors
(tcwv, t2m, d2m). The results (not shown) indicated that the use of the three predictors
provides the best outputs, although tcwv and t2m alone could already generate reasonable
results. Moreover, the addition of the cf was also tested as an explicit input (predictor) in
MARS, i.e., as an alternative to the two sub-models for clear and cloudy conditions. This
approach did not perform as well as for the two sub-models (not shown), most likely due
to the binary nature of the cloud information, which is not optimal for the MARS model.
Considering these preliminary tests, and for consistency with LSA, it was decided to keep
the three predictors in MARS and two independent sub-models, i.e., one for clear and
another for cloudy conditions.

https://github.com/scikit-learn-contrib/py-earth
https://github.com/scikit-learn-contrib/py-earth
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The training of the LSA-SAF algorithm follows Trigo et al. [14], described briefly in
Appendix A, where the resulting calibrated parameters are shown in Table A2. For MARS,
a repeated k-fold cross-validation procedure was considered during the training phase.
The process involves the performance of repeated cross-validation procedure several times
and calculation of the mean result across all folds. For the present study, a 10-fold was
considered, since this value is typically used in machine learning models (e.g., [53–55]),
being found to provide a good trade-off of low computational cost and low bias. The results
of the training of both MARS and LSA models for clear and cloudy conditions are presented
in detail in Appendix B, showing the respective model performance in the training and
validation datasets.

2.3. Evaluation Metrics

The performance of the different DLR estimates obtained from each model is assessed
through a series of conventional error metrics, such as bias (µ), the root mean square error
(RMSE), standard deviation of the error or unbiased root mean square error (σ), and the
temporal correlation coefficient (R):

µ =
1
N ∑N

i=1 di, di = yi − oi (1)

RMSE =
1
N

√
∑N

i=1(di)
2, (2)

σ =
1

N− 1

√
∑N

i=1(di − µ)2, (3)

R =
∑N

i=1(yi − y)(oi − o)√
∑N

i=1(yi − y)2 ∑N
i=1(oi − o)2

, (4)

where yi is the modelled value of the i-th sample (N is the number of samples), oi is the
corresponding reference value, di is the difference between the modelled and reference,
with the overbar representing the temporal mean of a variable.

3. Results
3.1. Model Evaluation

The models were evaluated considering the whole DLR observational dataset between
2004 and 2019; statistics obtained for the independent datasets used in model training and
verification are shown in Appendix B. Since there is a large range of the temporal coverage
among the stations, the evaluation was performed following two approaches: (i) merging
all station data before the evaluation, computing the overall metrics, and displaying the
results as density scatter plots; and (ii) computing the evaluation metrics for each station
independently, displaying the distributions of the metrics as boxplots.

The overall performance of the models, i.e., merging all stations before the evaluation,
is depicted in Figure 2. The corresponding density scatter plot for each model and sky
condition (i.e., clear, cloudy, and all-sky) shows the model DLR as function of the obser-
vations along with the different metrics. The absolute biases are always below 2 W·m−2

for both LSA and MARS models. This is expected since the model’s training aims at the
minimization of systematic differences. For the case of ERA5, biases are also small under
clear-sky, however these grow to −14.54 W·m−2 in cloudy conditions, which result in
an all-sky bias of −5.25 W·m−2. The root mean square error is dominated by the error
variability (standard deviation of the error) in all models. This can be primarily attributed
to temporal/spatial variability that is not captured by ERA5 or by the ERA5 predictors
used in LSA and MARS. In terms of the RMSE, MARS has the best performance in all the
different sky conditions, with an error of 18.76 W·m−2 under all-sky, being followed by
LSA with 20.24, ERA5 with 22.08, and LSA_OPER with 23.55 W·m−2. Moreover, the linear
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correlations are always above 0.91 in all models and sky conditions, with MARS showing a
consistently better performance, although differences are small.
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the modelled fluxes in the vertical axis for all (left), clear (middle) and cloudy (right) sky conditions
estimated with 4 models: MARS (a–c), LSA (d–f), LSA_OPER (g–i), and ERA5 (j–l). The evaluation
metrics are shown in the top right corner of each plot, including the number of samples used (#). The
data represented includes all valid observations for the 23 ground stations in the period 2004–2019.
Units are in W·m−2.

The performance of each model can also be assessed considering different DLR
ranges for all-sky conditions. The following ranges were established: (UL) upper limit
for values above 400 W·m−2, with a total of 100,521 samples; (ML) middle limit for be-
tween 200–400 W·m−2, with a total of 1,571,217 samples; and (LL) lower limit for below
200 W·m−2, with a total of 65,888 samples. Figure 1a gives a reasonable overview of the
actual conditions represented by those ranges of DLR: there are values above 400 W·m−2

under warm and very moist conditions, such as those found in the tropics, while the other
end of the range, with DLR below 200 W·m−2, is only found under very cold and dry
conditions, such as in high latitudes winter. Table 3 includes a summary of the results for
all-sky conditions considering all the data (ALL) and the median (MED) of the metrics
distribution when computed for each station. Moreover, as complementary material to
these results, detailed information concerning the statistics found in each station under all,
clear, and cloudy-sky conditions is provided in Appendix C (Tables A5–A7, respectively).
The highest performance is found in all models within the “middle” range, with similar



Remote Sens. 2022, 14, 1704 10 of 26

metrics to those computed when considering the entire dataset. This is expected due to
a higher sampling, which impacts the training of the models prior to the evaluation. On
the other hand, focusing on the upper and lower limits, a clear reduction of all model’s
performance is found. MARS and LSA underestimate the most extreme conditions, namely
at higher values of DLR, while LSA_OPER and ERA5 shows a systematic underestimation
of DLR in all conditions with an exception to the ERA5 overestimation at lower values.
The large biases in MARS and LSA in the upper and lower conditions lead to high RMSE,
with LSA_OPER showing a better overall performance. This is likely associated with the
small sampling of these extreme conditions in the training dataset initially used. Despite
the limitation in extreme conditions, these results are favorable to the MARS model. When
pulling all stations together, the results will be dominated by those stations with larger
temporal extend. This could potentially hide some problematic stations (or regions), which
will be partially addressed in the following analysis.

Table 3. Comparison of bias (µ), standard deviation of the error (σ), root mean square error (RMSE),
and temporal correlation coefficient (R) between different models (MARS, LSA, LSA_OPER, and
ERA5) and observations from all 23 ground stations for all-sky (2004–2019) in different conditions:
considering all data (ALL); observations with values above 400 W·m−2 (UL); observations with
values between 200–400 W·m−2 (ML); observations with values below 200 W·m−2 (LL); and the
median of the distribution of the metrics computed independently for each station (MED). Units are
in W·m−2, while correlations are given between 0–1.

MARS LSA

Condition µ σ RMSE R µ σ RMSE R

ALL 0.65 13.86 18.76 0.95 0.48 15.00 20.24 0.94
UL −9.13 12.02 18.54 0.61 −11.65 13.74 21.51 0.54
ML 0.51 13.53 18.35 0.92 0.77 14.78 19.96 0.91
LL 18.82 14.52 26.97 0.69 12.21 15.70 24.47 0.70

MED 0.40 12.27 16.96 0.91 0.87 13.29 18.52 0.91

LSA_OPER ERA5

Condition µ σ RMSE R µ σ RMSE R

ALL −1.30 17.29 23.55 0.93 −5.25 15.40 22.08 0.93
UL −2.47 13.37 17.76 0.57 −11.91 14.34 22.49 0.52
ML −0.86 17.53 23.91 0.90 −5.31 15.37 22.07 0.90
LL −9.87 14.50 22.56 0.73 6.44 15.51 21.73 0.70

MED 0.78 14.05 19.53 0.89 −5.81 13.88 20.65 0.88

The performance of each model in estimating hourly DLR in each station can be
assessed through the distributions of the various metrics displayed, as shown in Figure 3
boxplots for all, clear, and cloudy-sky conditions (i.e., left, middle, and right column,
respectively). Each boxplot has a reference at the top, corresponding to the median value
(also shown in Table 3) found for each error metric (i.e., bias, standard deviation, RMSE and
correlation coefficient) and each model. Additionally, Figure 3 shows the same boxplots
for the LSA* and MARS* models, which will be discussed in the next subsection for the
assessment of the cloud information in DLR estimation. The results are qualitatively
consistent with the previous analysis, when all data was merged, with MARS always
showing better adjustments to observations (being followed by LSA, LSA_OPER, and
ERA5). However, quantitatively, the median of station metrics differs from the metric
considering all the data. A clear example is the temporal correlations in cloudy conditions
with median values ranging between 0.86 for MARS and 0.82 for ERA5 (Figure 3l), which
varied between 0.94 for MARS (Figure 2c) and 0.92 for ERA5 (Figure 2l) when considering
the full data. Similarly, for the RMSE, the all-sky median varies between 16.96 in MARS and
20.65 W·m−2 in ERA5 (Figure 3g), while it varied between 18.76 in MARS (Figure 2a) and
22.08 W·m−2 in ERA5 (Figure 2j) when considering the full data. Moreover, the graphical
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display of the metrics distribution also allows to clearly identify a better performance in
clear conditions (RMSE and correlation) when compared with cloudy conditions in all
models. This is associated with the different radiative impact of clouds, in particular cloud
base, which is not considered in the LSA and MARS models, and limitations due to model
uncertainty in ERA5. Finally, it is worth noting the presence of outliers in all estimates,
which are due to several factors that can affect model accuracy in a group of stations,
leading to higher deviations from observations, as shown next.
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In addition to these results, and as a parallel validation of the MARS model, we
used a set of (52) stations from an independent network with DLR observations from
FLUXNET2015 [45]. The results, shown in detail in Appendix D, demonstrate the MARS
model consistency between the different networks. Similarly to Table 3, in Table A9 it is
possible to observe that, despite an overall error increase in all models metrics, MARS has
the best performance. The best scores are found in the “middle range” for all models, where
MARS presents the lowest bias and RMSE of 0.06 and 18.32 W·m−2, respectively. The same
behavior is observed when considering all data from FLUXNET2015, as well as when using
data from each individual station. As previously noted, larger errors are also found at
the lower and upper limits in all models. It is important to note that such results, beside
reinforcing the proposed methodology, suggest BSRN observations are more appropriate
for the MARS training (and validation) within the MSG-disk than the FLUXNET2015
network. BSRN operates exclusively for continuous radiation measurements at surface,
where most sites provide both downward longwave and shortwave fluxes, following high
standards in terms of instrument calibration and observations quality checks [41], while
FLUXNET2015 targets a broader set of observations aimed at characterizing exchanges
of energy, water, and carbon between the surface and the atmosphere, where available
radiation plays an important role. Within FLUXNET2015, and despite the quality checks
performed on measurements, availability of a complete set of measured variables (including
longwave and shortwave radiation fluxes) is considered crucial [45]; across-variable quality
checks are regularly performed, but the BSRN standards for radiation flux observations
may not be always followed. The geographical distribution of FLUXNET2015 sites with
acceptable quality radiation fluxes is limited to Europe, if we only consider sites within
the MSG-disk as opposed to BSRN. These aspects are confirmed by the FLUXNET2015
validation, as depicted by the overall error increase in all models.

The evaluation procedure continues, now focusing on different case studies to high-
light several aspects (positive and negative) of the different models. As previously men-
tioned, there are stations (most noticeably GVN, SMS, and SON) from which model esti-
mates deviate further from observations. On the other hand, there are also stations (e.g.,
CAR and TAM) in which models have an overall good correspondence with observations.
The following examples presented in Figure 4 depict the behavior of each model during
a 36 h-period in such stations, which also include the NIM station, due to particular at-
mospheric effects that occur in the region. The DLR time-series of each station are shown
at the hourly resolution from the different models and observations, as well as the cloud
information (in the bottom subplot) from ERA5 (tcc) and MSG (cf ). For the best performance
cases (Figure 4a,b), the MARS model is the one that has better adjustments to observations,
while ERA5 produces higher deviations. A suitable example is the CAR station (Figure 4a),
where a good relation is found between the observations’ DLR variability and the MSG cf,
reflected in the MARS, LSA, and LSA_OPER simulations, while ERA5 DLR shows some
deviations associated with tcc variability. In TAM station (Figure 4b), the reduced cloud
variability clearly leads to lower deviations between models and observations, in which
DLR values are found between 250–350 W·m−2 during this time of the year. When analyz-
ing NIM station (Figure 4c), underestimation of DLR occurs in all models. Despite a slightly
higher deviation in comparison with the LSA estimates, MARS shows a smoother variation
than the former, closer to the observed behavior. Regarding the worst performances cases
(Figure 4d–f), significant deviations are observed in all models. In GVN station (Figure 4d),
all models deviated from the observations, missing the increase in DLR at the start of the
period and underestimating DLR in the following hours. Such behavior can be explained
by the fact that GVN is in Antarctica, at a very high latitude, near the MSG-disk limit (close
to 80◦), posing significant challenges to the identification of cloudy pixels under very high
view angles and under circumstances that make it difficult to separate the signature of
clouds from those of snow or ice in SEVIRI/MSG observations. In SON and SMS stations,
an overall overestimation of models estimates towards observations is visible, particularly
in SMS (Figure 4f). For the case of SON station, the measuring equipment is located at a
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relatively high altitude (about 3109 m), which, similarly to Izaña station in Tenerife, can be
measuring DLR values above clouds, instead of recording values below cloud-base height.
In SMS, the frequent occurrence of stratiform and shallow convective clouds [56] can lead
to higher deviations, since under such conditions there is a higher difficulty to model DLR.
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3.2. Impact of Satellite Information

Following the previous results describing MARS and LSA performances, the added
value that the satellite cloud information has in the calculation of DLR in both MARS
and LSA algorithms is clearly observed through the MARS* and LSA* results (Figure 3).
In comparison to all the other models, MARS* and LSA* stand out with an overall error
increase in all the metrics. This can be primarily associated with cloud misrepresentation
in ERA5. However, MARS* still shows an overall better performance than the LSA* model,
although with small differences. For instance, for all-sky conditions, a correlation of
0.87 and 0.86 is found for MARS* and LSA*, respectively, while 0.88 is obtained with ERA5
(Figure 3j). These deviations are generally higher than the ERA5 estimates due to the linear
relation between clear/cloudy and tcc that both MARS and LSA algorithms consider, which
does not happen in ERA5. Following the results obtained for different ranges of DLR in
the remaining models, a similar behavior of both LSA* and MARS* models is observed in
Table 4. Despite an overall error increase due to the use of the tcc to calculate DLR, lower
deviations and higher correlations (0.88 and 0.89, respectively) occur in the “middle” limit.

Table 4. Bias (µ), standard deviation of the error (σ), root mean square error (RMSE) and temporal
correlation coefficient (R) between MARS and LSA models hourly estimates using ERA5 cloud infor-
mation (MARS* and LSA*) against observations from all 23 ground stations for all-sky (2004–2019).
Different conditions are considered for analysis: all data (ALL); observations with values above
400 W·m−2 (UL); observations with values between 200–400 W·m−2 (ML); observations with values
below 200 W·m−2 (LL); and the median of the distribution of the metrics computed independently
for each station (MED). Units are in W·m−2, while correlations are given between 0–1.

MARS* LSA*

Condition µ σ RMSE R µ σ RMSE R

ALL 3.07 16.68 22.05 0.93 3.21 17.79 23.16 0.92
UL −9.39 13.87 20.59 0.53 −11.26 14.55 22.14 0.51
ML 3.07 16.44 21.73 0.89 3.58 17.73 23.02 0.88
LL 22.01 15.92 30.25 0.70 16.48 16.85 27.61 0.71

MED 2.73 15.54 20.94 0.87 3.59 15.64 21.32 0.86

4. Discussion

The present work focusses the estimation of DLR fluxes at surface using MARS com-
bined with hourly observations of DLR (from BSRN and ARM stations), ERA5 atmospheric
profiles (tcwv, t2m, and d2m), and the MSG cf. The fact that ground and remote sensed
observations are used for model training under different sky conditions provides a novel
approach to estimate DLR. Similarly, to all NWP models, despite an overall good result
in comparison to other models estimates, the proposed MARS model also has a few lim-
itations. The main source of uncertainty is related to the adopted training procedure,
particularly to the 23 ground stations used, which provide some degree of data availability
differential. This means that stations with higher samplings will induce a local bias de-
pendency. Moreover, the selected stations are mainly distributed in Europe, which also
creates a regional dependency. When using a spatiotemporal independent set of 52 ground
stations from FLUXNET2015 to validate the MARS model over a period of about 11 years,
it was possible to observed that, regardless of its limitations, the proposed methodology is
consistent. Most of the FLUXNET2015 stations used are located in Europe (i.e., a total of
48 stations), which limits a more global assessment of the results. Nevertheless, the MARS
model continues to demonstrate an overall better estimation of DLR when compared with
the remaining models. Furthermore, we should keep in mind that in situ observations may
also be subject to significant uncertainties. Other sources of error can result from the cf
information used for the sky classification, in which the data quality is dependent on the
satellite interpretation of clouds and associated errors.
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Considering all the available data, the validation of the MARS model (Figure 2) shows
that, generally, and despite its limitations, using measured data for training (i.e., a total
of about 5.86 years) purposes produces better adjustments to observed values. This is
the case for the MARS (Figure 2a–c) and LSA (Figure 2d–f) model estimates. Particularly,
MARS provides the best performance under the different sky conditions as a result of
using an automatic piecewise regression method instead of the least square fitting method
used in the LSA-SAF original algorithm. In comparison, the worst results are found with
ERA5, which also depict an overall decrease in performance. As previously mentioned,
the ERA5 negative bias in cloudy conditions might be partially explained by problems in
the representation of clouds and their radiative effect. It is worth noting that this effect
is observed not only during cloudy-sky periods (where higher deviations are found) but
also during clear-sky periods (with a very low bias of −0.46 W·m−2), in which ERA5
is likely assuming some situations of cloud occurrence when none are to be observed,
thus leading to overestimation that lowers bias close to zero. Moreover, the separation
between clear and cloudy conditions is performed using the satellite information, which
can introduce a few inconsistencies regarding the actual observations (due to satellite
footprint and uncertainties in cloud detection) and ERA5 atmospheric conditions (e.g.,
cloud base errors). Therefore, the interpretation of the model’s evaluation in clear versus
cloudy conditions is not straightforward. Nevertheless, in the absence of accurate cloud
information from NWP models, satellite information should be used instead of reanalysis
data for model training purposes, as particularly shown by the improved DLR estimates of
MARS in comparison to the ones found with MARS*. Another overall underestimation of
DLR is similarly found with the LSA-SAF operational model (LSA_OPER), although with
smaller deviations than in the ERA5 model. In that case, the poorer performance must be
attributed to the original calibration carried out by Trigo et al. [13], where TIGR-like and
MODTRAN-4 simulations (not observations) were used to calibrate the model parameters
(Table A1). Additionally, a common feature of the original LSA-SAF algorithm is the ‘S’
shape curve in DLR estimates, as shown by the LSA_OPER results (Figure 2g–i), where
its effects are particularly visible under cloudy conditions. Since the plots of MARS, the
newly calibrated LSA model, and ERA5 do not present that characteristic, it is likely an
artifact introduced by the MODTRAN-4 estimates used in the fitting. It should be noted
that, although MARS eliminates most of the previous error signatures from LSA-SAF and
ERA5 models, there is still room for improvement, particularly for cloudy conditions. In
particular, the way to further incorporate satellite observations related to, e.g., cloud type
and cloud phase, is still largely unexplored.

The results analyzed so far suggest an overall good performance of the considered
models, but also reveal the presence of several outliers in all model estimates (Figure 3).
Taking into account the information provided by Tables A5–A7, it is possible to find signifi-
cant deviations towards observations in three stations (GVN, SMS, and SON), either due to
the latitude or altitude effect, as well as measurement inaccuracies related to equipment
malfunction. Figure 4 presents (36-h) examples of the behavior in each model for a selected
group of very different stations, which are aimed to represent the best- and worst-case
studies. Despite the good results in CAR and TAM stations (Figure 4a,b), it is important
to consider the fact that the spatial sampling is not equally distributed throughout all
the selected stations within the MSG-disk. In terms of the spatial distribution, the use of
observations for validation allows to test the performance of different model estimates
over different climate regions, strengthening the validation of the proposed formulation.
However, as previous mentioned, regional dependencies should be expected in regions
that have a higher number of stations (e.g., Europe), therefore contributing to an overall
bias reduction to the MARS and LSA models. Nevertheless, for the best-case studies, ERA5
continues to produce higher deviations due deficiencies in cloud representation. When
analyzing NIM station (Figure 4c), a clear underestimation of measured values is provided
by all models (between 340–450 W·m−2). This aspect can be explained with the fact that
NIM station may be subject to high aerosol loads, usually desert dust, which can lead to
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a significant increase in observed DLR when compared to similar aerosol free conditions,
which is not captured well by any model. In particular, this station usually experiences
higher occurrence of extreme dust events (e.g., desert storms), resulting in larger deviations
of estimations from observations [44]. For the worst-case studies, the latitude effect in GVN
(Figure 4d), the altitude effect in SON (Figure 4e), and the measuring inaccuracies in SMS
(Figure 4f) result in very high errors between estimated and observed values, particularly
in the former. At a very high latitude, the LSA_OPER seems to provide a higher deviation
from observations, which is in accordance with one of the LSA-SAF model limitation
stated by Trigo et al. [14], while the MARS and LSA models demonstrate to have a better
approximation to observations, particularly MARS.

5. Conclusions

This work aimed at contributing to a new and improved formulation for the estimation
of downward long-wave radiation (DLR) at the surface. The new formulation was built
considering the combination of hourly reanalysis, ground, and remote observed inputs to
train a state-of-the-art machine learning algorithm based on multivariate adaptive regres-
sion splines (MARS). The use of satellite data not only allows us to perform better estimates
of DLR with suitable temporal and spatial samplings under different sky conditions, but
also provides a wide spatial coverage at high-resolution.

When compared with the Satellite Application Facility on Land Surface Analysis (LSA-
SAF) algorithm, results showed that the MARS algorithm performs very well, providing
better adjustments to observed DLR fluxes than the former, where lower errors and higher
correlations were evident under all, clear, and cloudy-sky conditions. This is mainly related
to the fact that MARS allows to replace the previous least square fitting criterion for a
set of pre-defined atmospheric states implemented in the LSA-SAF with a more refined
discretization that accounts with the best fitting option based on maximum reduction
on sum-of-squares residual error. Systematic differences and an overall underestimation
were found in both LSA_OPER and ERA5 models, being linked to the original calibra-
tion with the Thermodynamic Initial Guess Retrieval (TIGR, [38]) atmospheric-profile
database and the Moderate Resolution Atmospheric Transmittance and Radiance Code
(MODTRAN-4, [37]) fluxes, and the cloud representation by the total cloud cover retrieved
from ERA5, respectively. The role of satellite information in the calculation of DLR was
also evaluated using both MARS and LSA models but considering ERA5 cloud information
instead of the satellite cloud information to separate clear and cloudy situations (MARS*
and LSA* models). The results clearly showed the added value of using remotely sensed
data instead of reanalysis cloud cover.

The evaluation analysis, performed within the MSG-disk (i.e., longitude/latitude
within 75◦E/N), continued to show that MARS provided best results in comparison to
the remaining models (LSA, LSA_OPER, and ERA5). In particular, the use of ground
observations, from the baseline surface radiation network (BSRN, [41]) and the atmospheric
radiation measurement (ARM, [42]) user facility, to calibrate MARS led to improved adjust-
ments with lower errors and higher correlations (in which sampling plays an important
role). During the validation procedure it was shown that, when using all available data
from the 23 stations, MARS allows us to obtain RMSEs of 18.76, 17.07, and 17.13 W·m−2

under all, clear, and cloudy conditions, respectively. Lower errors were found when con-
sidering the performance of the model at each measuring location, as shown by the median
values of the RMSE for all, clear, and cloudy-sky, i.e., 16.96, 15.44, and 16.00 W·m−2, re-
spectively. Moreover, the reduction and elimination of previous systematic differences and
overall underestimation carried out by LSA_OPER and ERA5 was achieved. The added
value of using the satellite cloud information was accessed by comparing with estimates
driven by ERA5 total cloud cover, showing an increase of 17% of the RMSE. Finally, the
proposed methodology was further validated against independent observations gathered
from 52 FLUXNET2015 ground stations over an 11–year period, showing that MARS DLR
estimates have a better approximation to observations than the remaining models.
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There is potential in using the proposed MARS formulation for operational purposes,
however there are still a few steps towards improvement that need to be carried out in
the future. These include: (i) the assessment of DLR estimates on a regional level, by
producing regional maps and comparing MARS estimates with LSA-SAF product outputs
(a fundamental procedure in order to operationalize MARS estimates); (ii) improvements
of MARS estimates with enhanced input fields from ECMWF numerical weather prediction
(e.g., increased resolution, better model physics, data assimilation); and (iii) other MARS
model variants that can make use of other satellite products, such as measurements of
thermal infrared bands and the top of atmosphere radiances as inputs for the training
phase, similarly to Zhou et al. [23].

An application example for the estimation of hourly DLR values from the MARS
model is made available in the Supplementary Materials, including a python code and the
two calibrated MARS submodels (i.e., for clear and cloudy skies), and a synthetic test data
for a 24-h period.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs14071704/s1; Code S1: zip compressed archive with 3 files: (i) MARS clear-
sky model: mars_bsrn_model_clear_sky.sav; (ii) MARS cloudy-sky model: bsrn_model_cloud_sky.sav
and (iii) example python script to run the MARS model and calculate DLR at surface using synthetic
input data: MARS_DLR_output_2020.py.
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Appendix A. LSA-SAF Algorithm

In the LSA-SAF algorithm, DLR (F↓) is estimated through a bulk parameterization
given by the following equations, as described by Trigo et al. [14]:

F↓ = σεskyT4
sky, (A1)

where σ is the Stefan–Boltzmann constant, εsky and T4
sky are the sky effective emissivity and

the sky effective temperature, respectively. The former is given as a function of the total
column of water vapor (tcwv), as follows:

εsky = 1−
[

1 +
(

tcwv
10

)
exp

(
−
(

α + β
tcwv

10

)m)]
, (A2)
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where m are values that best adjust to clear and cloudy conditions (0.5 and 1, respectively).
For the case of the latter, the following relation is used:

Tsky = T0 + (δ∆d0 + γ), (A3)

where T0 is the 2-metre temperature corrected through the 2-metre observed dewpoint
depression (δ∆d0). The parameters α, β, γ, and δ in Equations (A2) and (A3) are fitted
independently for cloudy-sky and clear-sky conditions, and the all-sky DLR is the sum of
the clear F↓clear) and cloudy F↓cloudy) contributions considering the cloud fraction (cf ):

DLR = c f F↓cloudy + (1− c f )F↓clear. (A4)

More information regarding the calibration procedure of the parameters in
Equations (A2) and (A3) is presented by Trigo et al. [13]. The method follows a piece-
wise regression independent for clear and cloudy conditions considering three classes of
profiles: (i) dry cold, with tcwv ≤ 10 mm and t2m < 270 K; (ii) dry and warm, with tcwv
≤ 10 mm and t2m > 270 K; and (iii) moist, with tcwv > 8 mm. For the calibration phase of
the operational LSA-SAF algorithm (LSA_OPER) atmospheric profiles from the TIGR-like
database, namely the tcwv, t2m, d2m, and fluxes simulated with MODTRAN-4, were used.
Moreover, the separation of clear and cloudy skies in the calibration database considers
the total cloud cover (tcc), where clear and cloudy conditions are assigned for tcc = 0 and
tcc > 0.9, respectively, in which a piecewise regression method is then applied to each set
of clear and cloudy conditions, separately. The parameters used by the current LSA-SAF
operational algorithm (LSA_OPER) are presented in Table A1.

Table A1. Calibrated parameters for the LSA_OPER model [14], i.e., the LSA-SAF operational
algorithm that makes use of TIGR-like database (1992–1993) [38] for different atmospheric profiles
under clear and cloudy-sky.

Clear-Sky Cloudy-Sky

Profiles α β γ δ α β γ δ

Dry Cold 0.653 4.796 1.253 −0.739 0.968 2.257 −0.236 −0.877
Dry Warm 0.704 3.720 1.655 −0.151 3.446 0.369 0.278 −0.443

Moist 0.587 3.344 1.686 −0.203 3.446 0.369 0.278 −0.443

Table A2. Calibrated parameters for the LSA model using ERA5 inputs and observed DLR (BSRN
and ARM) for the different atmospheric profiles under clear and cloudy-sky.

Clear-Sky Cloudy-Sky

Profiles α β γ δ α β γ δ

Dry Cold 2.289 4.992 −2.368 −1.129 1.804 3.026 0.436 −0.991
Dry Warm 0.865 3.701 0.532 −0.135 3.229 0.324 0.737 −0.562

Moist 1.466 3.051 0.5709 −0.187 3.229 0.324 0.737 −0.562

Appendix B. Models Training

For the training of both LSA and MARS models (i.e., for clear and cloudy conditions),
the full dataset was divided in two components: training and verification. The training
dataset was constructed by randomly selecting 40% of the full-time series for each station
limited to a maximum of 6 months of data used from each station, with the remaining data
being used as the verification dataset. This corresponded to a total of 51,386 (5.87 years) and
932,282 (106.42 years) hourly samples for the training and verification period, respectively.
The bias and root mean square error (RMSE) for clear and cloudy conditions in the training
and verification samples are presented in Tables A3 and A4, respectively. The results
show that MARS always performs better than LSA under clear and cloudy-sky conditions.
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During the training stage, MARS presents a very small bias (close to zero) as opposed
to LSA, which shows a relatively large bias in comparison with higher deviation for the
training under clear-sky. The RMSE, besides being lower in MARS (although with less
discrepancies than the bias found for each model), does not vary significantly from clear
to cloud sky. A similar behavior is observed for the verification phase, despite an overall
increase in the bias in both models, which is related to the sampling increase with a higher
data availability differential.

Table A3. Bias and root mean square error of LSA-SAF and MARS for the training and verification
samples (#) in clear-sky conditions. Units are in W·m−2.

Training (#31820) Verification (#541360)

Models Bias RMSE Bias RMSE

LSA 0.24 20.41 −0.27 18.99
MARS −0.00 19.71 0.12 18.00

Table A4. Bias and root mean square error of LSA-SAF and MARS for the training and verification
samples (#) in cloudy-sky conditions. Units are in W·m−2.

Training (#19566) Verification (#390922)

Models Bias RMSE Bias RMSE

LSA 1.20 21.71 −1.06 19.95
MARS −0.00 19.36 −1.55 18.19

Appendix C. Evaluation Detailed Results

The following tables comprise all the statistical error metrics obtained. Tables A5–A7
show the scores for each station in all, clear, and cloudy-sky conditions (respectively).
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Table A5. Error metrics between model (MARS, LSA_OPER, LSA, and ERA5) and measuring station (all-sky conditions) for 2004–2019. Bias (µ), standard deviation
(σ), and root mean square error (RMSE) are in W·m−2; temporal correlation coefficient. (R) is given between 0–1.

µ σ RMSE R

Station MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5

BRB 5.72 5.77 10.33 1.46 9.36 10.10 10.84 11.22 13.26 14.03 17.09 14.99 0.92 0.91 0.91 0.88
BUD 0.40 1.14 6.66 −1.80 7.93 7.44 8.13 9.42 9.98 9.49 12.22 12.61 0.91 0.92 0.91 0.86
CAB −0.41 −0.39 0.00 −7.09 11.84 13.29 13.65 13.96 15.60 17.33 17.99 20.65 0.93 0.91 0.91 0.89
CAM 0.44 0.87 2.79 −4.58 15.38 16.61 15.88 16.96 19.87 21.39 21.03 23.33 0.87 0.85 0.85 0.82
CAR 3.60 4.09 5.86 −8.04 9.74 10.60 11.09 11.38 13.57 14.89 15.98 17.89 0.96 0.95 0.95 0.94
CNR 0.34 3.96 4.75 −0.11 12.84 13.43 14.22 15.83 16.88 18.52 20.01 21.07 0.91 0.90 0.89 0.86
DAA 5.71 5.45 6.38 −4.24 11.62 12.69 12.77 10.46 16.27 17.44 18.07 16.28 0.94 0.93 0.93 0.93
ENA −8.78 −7.89 −3.89 −6.24 14.35 14.34 13.96 16.78 20.12 20.15 19.07 22.69 0.84 0.84 0.83 0.77
FLO −6.96 −7.09 −1.79 −7.28 10.80 10.95 11.00 12.43 15.73 15.92 14.73 18.14 0.91 0.91 0.91 0.88
GAN 3.52 5.90 14.38 −9.07 15.18 18.55 18.99 13.87 21.77 25.44 29.06 22.53 0.90 0.87 0.86 0.91
GOB −7.61 −6.99 −6.68 −8.86 11.35 12.17 12.72 11.62 18.72 19.07 19.53 19.54 0.88 0.88 0.88 0.88
GVN −1.70 −7.07 −34.06 −10.88 18.49 20.28 21.99 18.75 23.23 26.68 42.63 27.26 0.88 0.85 0.85 0.86
NIM −9.96 −9.00 −4.59 −13.84 11.88 12.01 14.58 14.63 18.48 18.04 18.72 23.71 0.93 0.94 0.94 0.92
LIN 3.59 2.38 0.78 −3.88 12.76 14.03 15.68 13.88 16.96 18.14 20.34 20.05 0.93 0.91 0.90 0.90
PAL 0.69 0.14 0.77 −4.62 12.27 13.43 14.05 14.20 16.19 17.49 18.60 20.87 0.92 0.91 0.90 0.88
PAR −1.20 −3.02 4.90 −4.58 9.09 8.34 8.28 10.38 11.29 10.72 11.30 13.45 0.78 0.82 0.83 0.71
PAY 0.60 5.22 2.72 −6.25 13.02 13.18 15.58 17.01 17.24 18.67 22.06 23.97 0.92 0.91 0.89 0.85
PTR 7.89 9.75 16.61 8.06 9.79 10.17 10.15 12.87 14.87 16.21 21.04 18.69 0.86 0.85 0.86 0.77
SBO −6.85 −4.39 −4.37 −5.81 13.82 14.13 14.90 13.71 19.44 19.66 20.70 19.52 0.88 0.87 0.85 0.88
SMS 22.07 21.70 25.10 21.12 20.34 22.17 21.93 20.40 35.04 36.19 38.23 34.65 0.85 0.83 0.83 0.85
SON 9.73 1.81 −9.88 −5.08 24.98 27.29 28.44 26.26 32.76 33.03 35.67 33.05 0.81 0.78 0.78 0.79
TAM −6.15 −8.79 −6.82 −14.05 10.55 12.64 11.33 10.41 14.95 18.62 16.14 20.36 0.96 0.94 0.95 0.95
TOR −2.67 −2.30 −8.38 −7.80 13.91 14.73 18.50 14.38 18.39 19.35 25.14 21.86 0.93 0.92 0.90 0.91

Table A6. Error metrics between model (MARS, LSA_OPER, LSA, and ERA5) and measuring station (clear-sky conditions) for 2004–2019. Bias (µ), standard
deviation (σ), and root mean square error (RMSE) are in W·m−2; temporal correlation coefficient. (R) is given between 0–1.

µ σ RMSE R

Station MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5

BRB 4.29 5.41 5.03 5.36 6.81 7.45 8.49 8.05 9.84 11.00 11.91 12.22 0.91 0.91 0.90 0.89
BUD −4.58 −2.89 0.89 −1.71 6.12 6.46 6.89 7.79 8.92 8.48 8.71 11.06 0.94 0.94 0.94 0.89
CAB −1.45 −1.53 −2.19 2.10 6.47 6.54 6.85 12.02 9.52 9.77 10.15 16.40 0.97 0.97 0.97 0.92
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Table A6. Cont.

µ σ RMSE R

Station MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5

CAM 3.44 2.32 1.88 8.64 12.99 13.11 13.20 14.97 19.02 19.03 18.99 22.86 0.84 0.83 0.83 0.80
CAR 2.27 2.68 2.23 −3.58 6.19 5.99 6.73 7.99 8.31 8.24 8.96 11.61 0.99 0.99 0.98 0.97
CNR 1.58 1.96 1.27 10.87 8.55 8.62 8.97 11.63 12.49 12.71 12.98 18.88 0.96 0.96 0.96 0.93
DAA 6.10 5.01 3.14 −2.00 10.80 11.11 11.18 7.69 15.44 15.34 14.97 12.55 0.93 0.93 0.93 0.94
ENA −9.59 −10.46 −8.86 2.51 15.21 15.40 15.02 15.77 21.49 22.05 21.12 21.00 0.83 0.83 0.83 0.79
FLO −7.48 −7.56 −5.23 −0.83 10.82 10.80 11.22 12.89 16.74 16.82 16.36 16.93 0.91 0.91 0.91 0.89
GAN −9.00 −6.89 −5.11 −7.03 13.76 14.28 15.30 14.54 21.73 21.45 21.87 21.50 0.86 0.86 0.86 0.86
GOB −7.55 −6.56 −7.70 −7.22 10.32 11.16 11.90 10.15 17.87 18.20 19.14 17.24 0.88 0.87 0.87 0.89
GVN −2.98 −11.82 −28.34 −6.23 20.37 23.89 23.62 17.12 25.50 30.77 40.02 25.13 0.73 0.64 0.65 0.75
NIM −13.80 −10.86 −10.66 −15.68 10.83 10.99 13.70 12.90 19.94 18.11 20.50 23.45 0.94 0.95 0.95 0.93
LIN 4.05 4.10 2.93 6.48 6.86 7.01 6.95 10.75 10.68 10.92 10.46 16.54 0.98 0.98 0.98 0.95
PAL 0.61 0.36 −0.22 3.02 7.72 7.91 8.05 11.94 11.50 11.74 11.94 17.16 0.96 0.96 0.96 0.92
PAR 1.53 −1.27 6.95 4.78 8.12 6.94 7.22 8.07 10.92 9.86 12.16 11.60 0.67 0.70 0.70 0.65
PAY 2.96 3.34 2.17 6.17 7.98 7.87 8.05 13.92 13.10 13.11 13.03 19.67 0.96 0.96 0.96 0.91
PTR 8.74 12.74 16.27 12.14 7.34 7.70 8.48 11.04 13.41 16.68 19.92 18.84 0.85 0.85 0.85 0.78
SBO −7.54 −6.36 −7.90 −3.65 12.86 12.83 13.26 11.92 18.61 18.30 19.20 17.19 0.90 0.90 0.89 0.91
SMS 25.26 24.99 25.40 29.40 19.07 19.65 19.67 19.20 37.13 37.40 37.64 39.75 0.79 0.78 0.79 0.81
SON 12.64 8.16 0.12 9.71 25.32 26.27 26.30 26.00 35.46 34.25 33.05 34.50 0.71 0.71 0.72 0.74
TAM −2.67 −4.41 −7.61 −11.25 8.53 8.93 9.33 7.14 11.43 12.17 14.15 15.20 0.96 0.96 0.96 0.97
TOR −2.22 −2.36 −5.75 1.69 10.64 10.63 10.91 13.48 16.22 16.08 17.27 19.24 0.95 0.95 0.96 0.94

Table A7. Error metrics between model (MARS, LSA_OPER, LSA, and ERA5) and measuring station (cloudy-sky conditions) for 2004–2019. Bias (µ), standard
deviation (σ), and root mean square error (RMSE) are in W·m−2; temporal correlation coefficient. (R) is given between 0–1.

µ σ RMSE R

Station MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5

BRB 3.30 1.59 9.20 −9.94 8.37 9.04 9.33 11.73 11.44 12.08 15.33 17.96 0.71 0.64 0.62 0.62
BUD 5.35 4.01 11.75 −6.80 7.96 7.30 7.03 10.53 11.33 10.00 14.66 14.86 0.83 0.83 0.84 0.63
CAB −2.74 −2.99 −3.17 −15.53 10.19 11.57 12.34 13.88 14.12 15.97 17.61 23.71 0.90 0.88 0.87 0.87
CAM −0.65 0.19 2.94 −13.56 12.36 13.67 12.98 15.42 17.20 18.85 18.17 24.27 0.84 0.83 0.83 0.83
CAR 1.09 0.67 4.45 −17.54 11.11 12.78 12.65 14.36 15.38 17.50 18.16 25.45 0.90 0.87 0.86 0.87
CNR −2.92 3.69 4.49 −12.52 11.33 12.5 13.70 15.38 15.80 17.54 20.34 23.32 0.86 0.83 0.81 0.83
DAA −0.10 0.08 8.82 −17.90 13.54 17.71 16.71 15.34 18.20 23.23 23.57 26.65 0.90 0.85 0.86 0.89
ENA −10.56 −7.51 −0.98 −17.58 10.98 9.55 9.61 14.11 17.84 15.21 13.36 25.28 0.81 0.84 0.84 0.75
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Table A7. Cont.

µ σ RMSE R

Station MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5 MARS LSA LSA_OPER ERA5

FLO −7.35 −8.22 −1.46 −13.58 8.25 7.53 7.49 10.73 12.82 12.78 9.86 19.42 0.86 0.88 0.88 0.81
GAN 6.77 12.47 23.50 −12.51 14.42 20.12 19.22 13.12 21.07 28.25 33.82 22.67 0.93 0.92 0.92 0.93
GOB −9.19 −11.47 −1.60 −25.76 13.65 12.30 12.05 16.55 19.73 21.17 17.07 33.16 0.84 0.83 0.84 0.82
GVN −2.29 −4.06 −39.48 −17.53 14.04 14.65 16.32 20.61 18.76 19.76 44.43 31.10 0.86 0.85 0.85 0.77
NIM −0.76 −4.19 6.61 −11.05 11.78 14.27 12.31 16.87 16.00 19.23 17.45 24.68 0.79 0.67 0.73 0.70
LIN −0.27 −1.98 −6.62 −12.94 11.15 11.91 14.79 13.53 15.18 16.54 21.41 22.27 0.90 0.89 0.87 0.88
PAL −2.19 −3.03 −3.53 −13.81 10.50 11.09 12.60 14.38 14.26 15.52 18.21 23.39 0.90 0.88 0.86 0.86
PAR −5.96 −5.65 1.32 −13.61 6.99 7.05 6.34 7.60 10.48 10.38 7.93 16.66 0.54 0.46 0.59 0.49
PAY −4.00 3.42 −2.22 −16.68 11.07 11.75 16.22 16.95 16.13 16.88 23.52 27.53 0.89 0.88 0.85 0.83
PTR −3.92 −3.20 6.48 −7.99 8.84 8.19 7.77 12.73 12.04 11.14 12.06 18.07 0.65 0.61 0.66 0.56
SBO −4.71 4.08 11.83 −19.26 15.42 18.68 18.15 16.46 20.48 24.02 25.58 28.74 0.83 0.75 0.77 0.80
SMS 13.41 10.98 16.51 6.54 16.26 17.80 18.12 16.11 25.61 26.29 29.20 23.01 0.78 0.73 0.73 0.81
SON 9.83 −0.99 −16.69 −15.14 19.23 21.27 23.62 20.31 28.30 29.40 36.30 31.49 0.77 0.70 0.73 0.76
TAM −17.03 −27.47 −9.71 −27.56 13.16 17.99 15.31 15.86 23.98 35.80 22.34 34.43 0.93 0.88 0.91 0.89
TOR −4.93 −4.37 −13.86 −14.48 11.27 11.7 16.83 13.37 15.89 16.67 26.48 23.21 0.92 0.90 0.89 0.89
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Appendix D. FLUXNET2015 Validation

The following results show the use of FLUXNET2015 [45] dataset for the validation of
the MARS model. To this end, 30-min data from 52 ground stations within the MSG-disk
were aggregated to hourly values and then used for validation purposes considering a
period of 11 years between 2004 and 2015 (Table A8). In Table A9, a summary of the error
metrics distribution for different ranges of DLR and under all-sky conditions is shown.

Table A8. List of 52 stations from FLUXNET2015 used within the Meteosat Second Generation (MSG)
disk for validation purposes of estimated downward long-wave radiation (DLR) at the surface. The
name, acronym, location, geographical coordinates (◦), elevation (m), availability (total number of
years available between 2004 and 2015), and annual mean DLR (W·m−2) for each station is shown.

Station Acronym Location Latitude and
Longitude (◦) Elev. (m) Avail. (Years) Annual DLR

(W.m−2)

Neustift AT-Neu Austria 47.12◦N; 11.32◦E 970 6.96 288.86
Brasschaat BE-Bra Belgium 51.31◦N; 4.52◦E 16 7.33 322.16

Lonzee BE-Lon Belgium 50.55◦N; 4.75◦E 167 7.38 320.71
Chamau CH-Cha Switzerland 47.21◦N; 8.41◦E 393 9.29 321.45
Davos CH-Dav Switzerland 46.82◦N; 9.86◦E 1639 7.70 273.69

Früebüel CH-Fru Switzerland 47.12◦N; 8.54◦E 982 8.80 306.25
Laegern CH-Lae Switzerland 47.48◦N; 8.36◦E 689 9.25 304.40

Oensingen grassland CH-Oe1 Switzerland 47.29◦N; 7.73◦E 450 4.87 326.28
Oensingen crop CH-Oe2 Switzerland 47.29◦N; 7.73◦E 452 10.66 326.24
Bily Kriz forest CZ-BK1 Czech Republic 49.50◦N; 18.54◦E 875 7.23 313.66

Bily Kriz grassland CZ-BK2 Czech Republic 49.49◦N; 18.54◦E 855 5.32 313.12
Trebon CZ-wet Czech Republic 49.03◦N; 14.77◦E 426 7.82 322.84

Anklam DE-Akm Germany 53.87◦N; 13.68◦E −1 4.52 320.87
Gebesee DE-Geb Germany 51.10◦N; 10.92◦E 162 11.00 307.30

Grillenburg DE-Gri Germany 50.95◦N; 13.51◦E 385 8.07 311.01
Hainich DE-Hai Germany 51.08◦N; 10.45◦E 430 8.84 310.49

Klingenberg DE-Kli Germany 50.89◦N; 13.52◦E 478 10.58 303.74
Lackenberg DE-Lkb Germany 49.10◦N; 13.31◦E 1308 3.60 296.89
Leinefelde DE-Lnf Germany 51.33◦N; 10.37◦E 451 5.96 306.42

Oberbärenburg DE-Obe Germany 50.79◦N; 13.72◦E 734 6.90 301.53
Rollesbroich DE-RuR Germany 50.62◦N; 6.30◦E 515 3.48 318.72

Selhausen Juelich DE-RuS Germany 50.87◦N; 6.45◦E 103 2.65 330.62
Schechenfilz Nord DE-SfN Germany 47.81◦N; 11.33◦E 590 2.44 323.40

Spreewald DE-Spw Germany 51.89◦N; 14.03◦E 61 4.33 322.56
Tharandt DE-Tha Germany 50.96◦N; 13.57◦E 385 10.74 311.30
Zarnekow DE-Zrk Germany 53.88◦N; 12.89◦E 0 1.61 328.96

Soroe DK-Sor Denmark 55.49◦N; 11.65◦E 40 6.81 314.17
Hyytiala FI-Hyy Finland 61.85◦N; 24.30◦E 181 4.25 306.04

Lompolojankka FI-Lom Finland 67.99◦N; 24.21◦E 274 2.93 282.32
Grignon FR-Gri France 48.84◦N; 1.95◦E 125 10.80 328.80
Le Bray FR-LBr France 44.72◦N; 0.77◦W 61 5.01 333.98

Puechabon FR-Pue France 43.74◦N; 3.60◦E 270 9.11 318.07
Guyaflux GF-Guy French Guiana 5.28◦N; 52.93◦W 48 2.00 411.47
Ankasa GH-Ank Gana 5.27◦N; 2.69◦W 124 2.00 405.94

Borgo Cioffi IT-BCi Italy 40.52◦N; 14.96◦E 20 4.12 331.83
Castel d’Asso1 IT-CA1 Italy 42.38◦N; 12.03◦E 200 3.35 341.22
Castel d’Asso2 IT-CA2 Italy 42.38◦N; 12.03◦E 200 2.59 345.66
Castel d’Asso3 IT-CA3 Italy 42.38◦N; 12.02◦E 197 2.90 339.64

Collelongo IT-Col Italy 41.85◦N; 13.59◦E 1560 7.35 280.26
Ispra ABC-IS IT-Isp Italy 45.81◦N; 8.63◦E 210 2.00 335.75

Lavarone IT-Lav Italy 45.96◦N; 11.28◦E 1353 10.43 289.81
Monte Bondone IT-MBo Italy 46.02◦N; 11.05◦E 1550 8.97 282.15

Arca di Noe IT-Noe Italy 40.61◦N; 8.15◦E 25 9.50 349.74
Renon IT-Ren Italy 46.59◦N; 11.43◦E 1730 8.84 280.63

Roccarespampani 1 IT-Ro1 Italy 42.49◦N; 11.93◦E 235 1.00 310.57
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Table A8. Cont.

Station Acronym Location Latitude and
Longitude (◦) Elev. (m) Avail. (Years) Annual DLR

(W.m−2)

Roccarespampani 2 IT-Ro2 Italy 42.39◦N; 11.92◦E 160 1.51 332.02
Torgnon IT-Tor Italy 45.84◦N; 7.58◦E 2160 5.81 274.69

Horstermeer NL-Hor Netherlands 52.24◦N; 5.07◦E 2 7.00 326.18
Loobos NL-Loo Netherlands 52.17◦N; 5.74◦E 25 10.95 343.79

Fyodorovskoye RU-Fyo Russia 56.46◦N; 32.92◦E 265 2.76 293.74
Stordalen grassland SE-St1 Sweden 68.35◦N; 19.05◦E 351 1.99 297.90

Mongu ZM-Mon Zambia 15.44◦S; 23.25◦E 1053 1.85 358.19

Table A9. Comparison of bias (µ), standard deviation of the error (σ), root mean square error (RMSE),
and temporal correlation coefficient (R) between different models (MARS, LSA, LSA_OPER, and
ERA5) and observations from all 52 FLUXNET2015 ground stations for all-sky (2004–2015) in different
conditions: considering all data (ALL); observations with values above 400 W·m−2 (UL); observations
with values between 200–400 W·m−2 (ML); observations with values below 200 W·m−2 (LL); and the
median of the distribution of the metrics computed independently for each station (MED). Units are
in W·m−2, while correlations are given between 0–1.

MARS LSA

Condition µ σ RMSE R µ σ RMSE R

ALL 0.05 18.49 24.14 0.88 0.86 19.01 24.66 0.87
UL −16.91 15.53 26.45 0.41 −16.79 14.99 25.82 0.42
ML 0.06 18.32 23.90 0.85 0.77 18.76 24.35 0.84
LL 20.51 16.75 30.81 0.39 26.68 16.07 34.78 0.41

MED 0.42 16.40 22.52 0.87 1.16 16.85 22.77 0.86

LSA_OPER ERA5

Condition µ σ RMSE R µ σ RMSE R

ALL −1.60 20.90 27.24 0.86 −8.71 18.93 26.71 0.87
UL −9.94 15.94 23.07 0.41 −20.90 17.74 30.77 0.37
ML −1.63 21.05 27.40 0.82 −8.92 18.76 26.55 0.84
LL 9.95 16.37 24.82 0.46 15.32 18.24 28.79 0.38

MED −2.02 18.83 25.88 0.85 −8.08 16.29 23.82 0.86
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