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Abstract: Future land use and cover change (LUCC) simulations play an important role in providing
fundamental data to reveal the carbon cycle response of forest ecosystems to LUCC. Subtropical
forests have great potential for carbon sequestration, yet their future dynamics under natural and
human influences are unclear. Zhejiang Province in China is an important distribution area for
subtropical forests. For forest management, it is of great significance to explore the future dynamic
changes of subtropical forests in Zhejiang. As a popular LUCC spatial simulation model, the cellular
automata (CA) model coupled with machine learning and LUCC quantitative demand models such
as system dynamics (SD) can achieve effective LUCC simulation. Therefore, we first integrated a
back propagation neural network (BPNN), a CA, and a SD model as a BPNN_CA_SD (BCS) coupled
model for future LUCC simulation and then designed a slow development scenario (SD_Scenario), a
harmonious development scenario (HD_Scenario), a baseline development scenario (BD_Scenario),
and a fast development scenario (FD_Scenario), combining climate change and human disturbance.
Thirdly, we obtained future land-use patterns in Zhejiang Province from 2014 to 2084 under multiple
scenarios, and finally, we analyzed the temporal and spatial changes of land use and discussed the
subtropical forest dynamics of the future. The results showed the following: (1) The overall accuracy
was approximately 0.8, the kappa coefficient was 0.75, and the figure of merit (FOM) value was
over 28% when using the BCS model to predict LUCC, indicating that the model could predict the
consistent change of LUCC accurately. (2) The future evolution of the LUCC under different scenarios
varied, with the growth of bamboo forests and the decline of coniferous forests in the FD_Scenario
being prominent among the forest dynamics changes. Compared with 2014, the bamboo forest in
2084 will increase by 37%, while the coniferous forest will decrease by 25%. (3) Comparing the area
and spatial change of the subtropical forests, the SD_Scenario was found to be beneficial for the forest
ecology. These results can provide an important decision-making reference for land-use planning
and sustainable forest development in Zhejiang Province.

Keywords: land use and land cover change (LUCC); scenario simulation; cellular automata (CA)
model; system dynamics (SD) model; back propagation neural network (BPNN)

1. Introduction

Land use and land cover change (LUCC) is a direct driving factor of the carbon
balance in terrestrial ecosystems, and its impact on global warming is second only to that
of fossil fuels and industrial emissions [1–4]. Therefore, the impact of LUCC and climate
change on forest spatiotemporal dynamics has been widely appreciated. However, limited
LUCC data may lead to significant underestimations within the impact of LUCC on carbon
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emissions [5], and the absence of future LUCC data under future climate change is a major
limitation for revealing the response of forest ecosystems’ carbon cycles to future climate
change [6]. Therefore, it is of great scientific significance to obtain future LUCC data
through spatiotemporal LUCC simulations and to explore the LUCC evolution in order to
reveal the impact of LUCC on the forest ecosystem’s carbon cycle.

There are the following three types of models to simulate LUCC: quantitative models,
spatial models, and coupled models of the first two. Quantitative demand models focus on
predicting the area transfer among different land-use types, including system dynamics
(SD), grey prediction, and Markov chain models [7–9]. Most of these models are statistical
models. The SD model is a simulation method in which inventories and flows, with
corresponding feedback loops, are used to simulate large-scale, complex socioeconomic
systems [10]. SD models seek to understand how physical processes, information flows,
and management policies interact [11] so as to link feedback between different variables
in the system and, therefore, it can be used to deal with dynamic processes [12]. Previous
studies have been conducted to show that the SD model for LUCC demand prediction is
the most effective of the quantitative models, mainly because it considers comprehensive
factors such as the impact of markets, policies, and climate adaptation strategies [13].
However, these quantitative models lack the ability to project the spatial patterns of land
use; thus, spatial models that reveal LUCC at a spatial scale are required. The cellular
automata (CA) model and the conversion of land use and its effects at a small regional extent
(CLUE-S) model are popular methods to simulate the LUCC spatial evolution [12,14–17].
These models with spatial function are all scale-dependent. Among these models, the
CA model has simple preconditions and rules expressed by a matrix where a state defines
each cell [10,15]. It can simulate spatial dynamics from a bottom-up perspective and is
capable of establishing interconnections between LUCC and driving forces [18,19]. Its main
advantages are in expressing the driving forces of LUCC by transition rules and expressing
spatial externalities by neighborhood effects [20,21]. In addition, it is easily combined with
regression models to identify locations with high suitability for LUCC based on weighted
overlay suitability factors [17,22,23]. This has become an excellent method for predicting
future LUCC according to different scenarios [24,25].

However, the single model described above could not fully consider the internal
mechanisms of the ecosystem when simulating LUCC. Therefore, the coupled model
integrated by a top-down quantitative model and a bottom-up spatial model has been
popular to improve the accuracy of LUCC simulation [7]. The FLUS model could be applied
to the effective Chinese LUCC simulation considering various socioeconomic and natural
climatic factors, which are integrated by an artificial neural network, a CA model, and an
SD model [26]. Considering that the performance of the back propagation neural network
(BPNN) is better than some artificial neural networks [27], the CA model integrated with the
BPNN (BPNN_CA) can be designed to control the spatial pattern changes more precisely.
Furthermore, the interactive coupling of the CA model and the SD model is more effective
and popular than the loose coupling of the two. Therefore, it is achievable to interactively
couple the three models of BPNN, CA, and SD together as a BPNN_CA_SD (BCS) model
for simulating LUCC precisely. Gradually, the refinement of coupled models meets the
accuracy requirements of LUCC spatiotemporal simulation.

Subtropical forests, with their diverse types, high photosynthetic capacity, and four-
season growth, have been of global concern for their carbon sequestration capacity, which
accounts for approximately 40% of the world’s gross primary productivity together with
tropical forests [28,29]. China is an important distribution area for subtropical forests.
The vegetation carbon storage of the evergreen broad-leaved forest and coniferous and
broad-leaved mixed forest in subtropical China is 2.527 billion tons, accounting for ap-
proximately 30% of the country [30]. The carbon sink here has great potential, but it is
very sensitive to LUCC caused by global climate change and anthropogenic disturbances.
Regarding the impact of LUCC on the subtropical carbon cycle, its past and current im-
pacts have been studied [31,32], while the impact of LUCC is still unknown under future
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scenarios [33,34]. Simultaneously, future spatiotemporal LUCC modeling studies mainly
focus on urban expansion [35,36], while less research has been conducted on the future
distribution of subtropical forests, and the complex competitive relationships between
subtropical forests and other land-use types are not yet clear. Given this situation, we posed
our research questions as follows: (1) How to establish a coupled model that takes into
account natural and human influences that can accurately simulate the quantitative and
spatial changes of subtropical forests? (2) How will subtropical forests change in the future
under natural and human effects, and which scenarios are beneficial to subtropical forests?

As a typical region of subtropical forests, Zhejiang Province has one of the highest
forest coverage rates in China, and its forest changes have been of great concern. Simul-
taneously, the Coupled Model Intercomparison Project 5 (CMIP5) stage could provide
reasonable scenario data for projecting future LUCC dynamics by combining representa-
tive concentration pathways (RCPs) 2.6, 4.5, 6.0, and 8.5 scenarios [37,38]. RCPs are used
for scenario modeling under natural influences such as greenhouse gas emissions and
radiative forcing. The combination of RCPs and socioeconomic development scenarios into
integrated scenarios will make future LUCC projections more reasonable and accurate [39].
Thus, in this study, we take Zhejiang Province as an example to develop a BPNN_CA_SD
(BCS) coupled model for future LUCC simulation under multiple development scenarios.
The objectives consisted of the following four specific parts: (1) to build an SD model to
project the land-use area demands, (2) to establish a BPNN_CA model to deal with the
simulation of the land-use spatial patterns, (3) to interactively couple BPNN_CA with SD
as the BCS model to obtain future spatiotemporal land-use patterns under the multiple
natural and socioeconomic development scenarios we set, and (4) to analyze the LUCC of
Zhejiang Province under different scenarios and provide a scenario reference for managing
subtropical forests in response to the impacts of climate change and human disturbances.

2. Materials and Methods
2.1. Study Area

Zhejiang Province (Figure 1a) is located in the south of Yangtze River Delta on the
southeast coast of China, with a total area of 1.055 × 105 km2. Zhejiang Province includes
11 administrative cities (Figure 1b), including Hangzhou, Ningbo, and Wenzhou. The province
belongs to a subtropical monsoon climate. It has rich forest resources, and the forest coverage
rate of the whole province has been increasing since 2004 and reached 61.15% in 2020 (Figure 1c).
The major forest types are broad-leaved forest, coniferous forest, and bamboo forest (Figure 1d).

2.2. Data Sets and Processing

Natural environmental factors and socioeconomic factors have been proposed as
the two main driving forces of land use/cover change by the IGBP and IHDP [40]. To
simulate how climate change and human activities affect LUCC, these two types of driv-
ing forces (Table 1) were considered and consisted of the following three components:
(1) geospatial data were used for spatial simulation. All the geospatial data were projected
onto a WGS_1984 coordinate system and resampled to the same resolution (30 × 30 m)
of land-use patterns. (2) Macro statistical data were used for quantitative simulation.
(3) Sample plotted data were the classification verification data of each land-use type,
which were used to verify the accuracy.
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Table 1. List of data used in this study.

Data Set Category Data Year Resolution Diagram Data Resource

Geo-spatial data

Land use Land-use patterns 1984–2014 30 m Figure 2a,b

The data were based on the Satellite 30 m multispectral data
of Landsat-5 TM (1984–2008) and Landsat-8 OLI (2014). After
radiation correction, atmospheric correction, and geometric

correction, the maximum likelihood classification method was
used to obtain land-use patterns.

Terrain

DEM

2014 30 m Figure 3a–c

Downloaded from the Geospatial Data Cloud site
(http://www.gscloud.cn, accessed on 24 December 2021).

Slope
Calculated from DEM.

Aspect

Soil

Silt fraction

2008 1 km Figure 3d–i

Silt fraction, clay fraction, sand fraction, and available water
content were derived from the Harmonized World Soil

Database (HWSD 1.2).
The bulk density and soil wilt point were calculated by the silt

and clay fraction [41].

Clay fraction

Sand fraction

Available water content

Bulk density

Wilt point

Climate

Total precipitation

1984–2014 1 km Figure 3j–m

The annual data were calculated from the averages or sums of
the daily data. The daily data were interpolated from

observations at 410 meteorological stations in Zhejiang
Province and its surrounding provinces using the inverse

distance weighted method [42].

Average temperature

Average radiation

Average relative humidity

Human influence

Population
2015 1 km Figure 3n,o

Obtained from the Resource and Environmental Science and
Data Center of the Chinese Academy of Sciences

(http://www.resdc.cn, accessed on 24 December 2021).Gross domestic product (GDP)

Distance to roads

2014 30 m Figure 3p–r

Calculated from the vector maps of the roads, the railways,
and the water systems, which were downloaded from the

Open Street map (https://www.openstreetmap.org/,
accessed on 12 October 2020).

Distance to railways

Distance to water

http://www.gscloud.cn
http://www.resdc.cn
https://www.openstreetmap.org/
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Table 1. Cont.

Data Set Category Data Year Resolution Diagram Data Resource

Macro statistics data

Land-use area

1984–2014 -

- Calculated from the land-use patterns.

Total precipitation statistics - Calculated from the total precipitation.

Average temperature statistics - Calculated from the average temperature.

Population statistics

Figure 4a–d Collected from the Zhejiang Statistical Yearbook
(http://tjj.zj.gov.cn/, accessed on 12 October 2020).

GDP statistics

Grain yield

Aquatic product yield

Forest coverage rate 2004–2020 Figure 1c

Collected from the Announcement of Forest Resources and Its
Ecological Function Value of Zhejiang Province

(http://lyj.zj.gov.cn/index.html, accessed on 24 December
2021).

Sample plots data Classification verification plots 1984–2014 - Figure 1b and
Table 2

Classification verification plots of BLF, CF, and BF were
derived from the data of the National Forest Inventory.

Verification plots of other land-use types were based on field
investigation and image visual interpretation.

http://tjj.zj.gov.cn/
http://lyj.zj.gov.cn/index.html
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The land use of Zhejiang Province (Figure 2a) was classified into the following six types:
urban land (UL), water body (WB), cultivated land (CL), broad-leaved forest (BLF), coniferous
forest (CF), and bamboo forest (BF) [43,44]. The sample plots data (Tables 1 and 2) were used
to calculate the overall accuracy (OA) and kappa coefficient (Kappa) to evaluate the accuracy
of the classification results. Figure 2b shows the normalized confusion matrices from 1984
to 2014. Each value of the main diagonal in the normalized confusion matrix corresponds
to the producer’s accuracy (PA) value for each land-use type. It can be seen that the overall
accuracy (OA) and kappa coefficients (Kappa) in different years were all higher than 0.78 and
0.73, respectively, indicating that the classification results were highly consistent with the actual
situation. Moreover, most of the PA values were higher than 76%, which provides an important
guarantee for spatiotemporal LUCC simulation in the study area.
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Table 2. The number of verification plots in different years. 

Year UL WB CL BLF CF BF Total 

1984 151 141 302 204 385 114 1297 

1988 157 104 287 164 317 149 1178 
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1996 177 134 267 144 215 170 1107 

2000 128 146 139 159 165 232 969 

2004 128 142 139 142 152 215 918 

2008 123 128 127 127 127 246 878 

2014 123 132 138 147 154 139 833 

Figure 3. Topographic data in 2014: (a) DEM, (b) slope, and (c) aspect; soil data in 2008: (d) clay
fraction, (e) sand fraction, (f) silt fraction, (g) soil available water content, (h) soil bulk density, and
(i) soil wilt point; climate data in 2014: (j) total precipitation, (k) average temperature, (l) average
radiation, and (m) average relative humidity; socioeconomic data in 2015: (n) population density,
(o) GDP; distance data in 2014: (p) distance to road, (q) distance to railway, and (r) distance to water.
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Table 2. The number of verification plots in different years.

Year UL WB CL BLF CF BF Total

1984 151 141 302 204 385 114 1297
1988 157 104 287 164 317 149 1178
1992 163 112 237 196 266 182 1156
1996 177 134 267 144 215 170 1107
2000 128 146 139 159 165 232 969
2004 128 142 139 142 152 215 918
2008 123 128 127 127 127 246 878
2014 123 132 138 147 154 139 833

2.3. Future Scenario Description

Four development scenarios (Figure 5) were designed based on the CMIP5 while
considering climate variations together with different socioeconomic developments in
Zhejiang Province.

Future climate data were derived from BCC-CSM1-1 climate change modeling data
under the RCP 2.6, 4.5, 6.0, and 8.5 scenarios proposed by the IPCC AR5 [45]. The data
under each scenario included annual total precipitation, annual average temperature,
annual average radiation, and annual average relative humidity, which correspond to past
climate data so that the BCS model can alternate input data in the prediction phase. Future
socioeconomic scenario settings (Table 3) were mainly based on past macro-statistical
data (Figure 4).
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Figure 5. Configurations of four development scenarios concerning human and natural effects:
(a) annual total precipitation; (b) annual average temperature; (c) annual average radiation;
(d) annual average relative humidity under four scenarios.

Table 3. Parameter settings of different socioeconomic development scenarios.

Factors Patterns Annual Growth Rate Settings from 2014 to 2084

Population

High growth (P1) 7.2‰ average from 2004 to 2014

Steady growth (P2) Growth rate simulated by logistic population
retardation growth model

Moderate growth (P3) 0.85× growth rate simulated by logistic
population retardation growth model

Slow growth (P4) 7.2‰ linearly down to 3.4‰

GDP

High growth (G1) 14% average from 2004 to 2014
Steady growth (G2) 14% linearly down to 10.5%

Moderate growth (G3) 14% linearly down to 8%
Slow growth (G4) 14% linearly down to 6.5%
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Table 3. Cont.

Factors Patterns Annual Growth Rate Settings from 2014 to 2084

Technology

Rapid innovation (T1) Grain yield Maintain 5‰ in 2014
Aquatic yield Maintain 8% in 2014

Steady innovation (T2) Grain yield 5‰ linearly down to 3‰
Aquatic yield 8% linearly down to 5%

Moderate innovation (T3)
Grain yield 5% linearly down to 1%

Aquatic yield 8% linearly down to 2%

No innovation (T4)
Grain yield 0%

Aquatic yield 0%

Ecology

Higher forest coverage rate (E1)
High forest coverage rate (E2)

Medium forest coverage rate (E3)
Low forest coverage rate (E4)

60.89% linearly up to 65%
60.89% linearly up to 63%
60.89% linearly up to 61%

60.89% linearly down to 60%

The logistic population retardation growth model [46] was constructed to calculate pm and r. pm is the maximum
population of 4,328,457, and r is the population growth rate of 6.097%.

The slow development scenario (SD_Scenario) was constructed to predict the demand
for land use under the influence of slow socioeconomic growth and mild climate change.
Corresponding to the RCP2.6 scenario, it is the lowest scenario for greenhouse gas emissions
and radiative forcing. Radiative forcing will increase first and decrease after 2054, reaching
2.6 W · m−2 by 2100, with global average warming limited to 2 ◦C [47]. In this scenario,
the population, GDP, and technological innovation are considered to be at their lowest
levels, while the annual temperature and precipitation change slowly. It promotes the
use of biomass energy and advocates the restoration of forests, so the forests will be well
restored and the forest coverage rate will be the highest.

The harmonious development scenario (HD_Scenario) is a sustainable development
model. Moderate growth of the population and GDP are taken into account, and the propor-
tion of investment is assumed to have more input into the productivity of agriculture and
fisheries. Additionally, the natural environment will undergo moderate changes (RCP4.5
scenario), forming a model of sustainable development with the economy and society. This
scenario limits greenhouse gas emissions through low-emission energy technologies so
that increasing radiative forcing will only reach 4.5 W · m−2 by 2100.

The baseline development scenario (BD_Scenario) is established based on the past
and current development trends of Zhejiang Province. Under this scenario, the population,
economy, and technological level are recognized as stable and advanced. Moreover, the
climate is assumed to maintain its current temperature and precipitation rates, which is
consistent with the RCP6.0 scenario [48].

Contrary to the SD_Scenario, the fast development scenario (FD_Scenario) aims to
maximize the social and economic benefits of Zhejiang Province. The economy and popu-
lation increase at a high speed, and science and technology develop rapidly. At the same
time, massive-scale human activities will accelerate greenhouse gas emissions and increase
atmospheric radiation, leading to a sharp increase in temperature (RCP 8.5) and, thus,
resulting in drastic climate change [49,50].

2.4. Methodology

In the paper, we present the BCS model for multiple LUCC scenarios for future land
use by coupling human and natural effects. The proposed model consists of an SD model
and a BPNN_CA model. The SD model was used to project the land-use demand at
the macro-level, and the BPNN_CA model was used to allocate land use spatially at the
micro-level.

The flow chart used is shown in Figure 6. Firstly, based on the geospatial data in
the past, sample sets were randomly sampled to train the BPNN, and then the overall
probability was calculated, and the simulated land-use types were determined according to
the overall probability and roulette-wheel selection mechanism. Secondly, macro-statistical
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data were used to establish the relationship between land-use area and macro-factors so
as to capture the feedback loop between them. Thirdly, the SD model was interactively
coupled with the CA model, and the simulated land-use pattern was output only when the
spatially allocated area of the CA model reached the requirements of the SD model. Finally,
when the model accuracy was valid, the inputs of the two sub-models were updated using
future data to obtain the land-use pattern in the future.
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Figure 6. Flow chart used in this study.

2.4.1. SD Model

The SD model for LUCC was mainly used to describe the quantitative conversion
between different land-use types to achieve quantitative demand forecasting [10,51]. The re-
lationship of quantitative transformation requires consideration of the market, investment,
policies, and climate adaptation strategies from a macro perspective [8]. By understanding
the impact of the internal factors of the macro system on LUCC, a top-down quantitative
model can be formed [12].

The SD model was built using the Vensim PLE software (Figure 7). The simulation
period of the SD model was 1984–2084 and the time step of the model was one year.
It included the following two stages: (1) 1984–2014 was the model test stage, and the
historical data were used to set the parameters, adjust the model, and validate the model;
(2) 2014–2084 was the prediction stage, and the future land-use demand under different
scenarios could be simulated.

To simulate the quantitative demand by considering both human and natural effects,
the SD model in our study consisted of the following five subsystems: population, economy,
productivity, climate, and land use. As the main social factor, the population influences
the land-use system in many aspects. The economy has strong influences on population
and land use such as gross domestic product (GDP), which affects the change in fixed-asset
investments, thereby driving economic investment in various land-use types. The produc-
tivity mainly includes food and aquatic products; the amount of productivity indirectly
determines the increase and decrease in cultivated land and water bodies. The climate
subsystem involves temperature and precipitation, which have various influences on the
growth and regeneration capacity of vegetation, leading to changes in cultivated land and
forest land. The land-use subsystem includes the increment or decrement of each land-use
demand. The change in each land-use type is constrained by the integrated influences of
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socioeconomic and climate conditions as well as by the interactions among the various
land-use types.
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The values of the level variables (e.g., total population, GDP) for each year are obtained
based on the annual growth rate for that year compared to the previous year. Under
different development scenarios, the annual growth rates are set differently, and the land-
use demand outputs obtained by relevant formulas will also be greatly different.

2.4.2. BPNN_CA Model

The CA model is the most common and widely used model for LUCC spatial sim-
ulations. Based on the Python language programming, the CA model can be integrated
with BPNN as the BPNN_CA model. Whether a cell state changes is not only related to
external factors (land suitability) but also depends on the interrelationships between vari-
ous land uses (e.g., neighborhood effects, land inheritance) and stochastic occurrences [26].
Therefore, the transition rules of the model can be expressed as follows:

Statei,t+1 = f
(

Prot
i,k

)
(1)

where Statei,t+1 is the land-use type of a cell i at time t + 1. f is the land-use transition rule
that decides the change of a cell i from the state (Statei,t) at time t to the state (Statei,t+1) at
time t + 1. Prot

i,k is the overall probability of the cell i being occupied by a specific land-use
type k at time t, which is defined as follows:

Prot
i,k = Lsi,k ×Ωt

i,k × It
k × (1− Cs→k) (2)

(1) Lsi,k is the land suitability probability of a cell i being occupied by land-use type
k, which represents the impact of the driving factors on land-use transition. The collected
driving factors (Figure 3) normalized to the range of [0,1] were selected to establish the
BPNN model. The BPNN had the following four layers: an input layer, two hidden layers,
and an output layer, with the corresponding numbers of neurons set to (19, 30, 14, 6).
Simultaneously, the sigmoid function was selected as the activation function to ensure that
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Lsi,k fell within [0,1]. A total of 6 million randomly selected samples were divided into a
training set and a test set in a ratio of 7:3. The training set was used to train the neural
network, while the test set was used to evaluate its performance. The minibatch gradient
descent method (Algorithm 1) was adopted to input the training set into the BPNN module
in batches to train and optimize the parameters of the network. In the algorithm, the
number of iterations (K) was 200, and the initial learning rate was 0.0005. In each iteration,
the loss function of the mean square error (MSE) was used to compute the gradients (grad),
and the adaptive optimization of Adam was used to automatically adjust the learning rate
(lr) after training a batch of images. The training of the BPNN stopped after K passed
through the data set.

Algorithm 1: Train BPNN with the minibatch Adam optimization algorithm.

initialize (net)
for epoch = 1, . . . , K do

for batch = 1, . . . , # images/b do
images← uniformly sample batch− size images
X, y← preprocess(images)
Lsi,k ← forward (net, X)
MSE← loss (Lsi,k, y)
lr, grad← backpropagation (MSE)
update (net, lr, grad)

end for
end for

(2) Ωt
i,k is the neighborhood effect of land-use type k on grid cell i at iteration time t

affected by the surrounding neighborhood at iteration time t− 1, which is given as follows:

Ωt
i,k =

∑N×N(Statei,t−1 = k)
N × N − 1

(3)

where ∑N×N(Statei,t−1 = k) is the total number of grid cells occupied by land-use type k at
iteration time t− 1 within the N× N window. In this study, the 5 × 5 Moore neighborhood
was adopted.

(3) It
k is the inertia coefficient of land-use type k at iteration time t. If the development of

a specific land-use type contradicts the future quantitative demands, the inertia coefficient
would dynamically control the inheritance of the land-use type to increase or decrease to
rectify the changing trend in the next iteration, which is expressed as follows:

It
k =


It−1
k , i f

∣∣∣Dt−1
k |5|Dt−2

k

∣∣∣
It−1
k × Dt−2

k
Dt−1

k
, i f Dt−1

k < Dt−2
k < 0

It−1
k × Dt−1

k
Dt−2

k
, i f 0 < Dt−2

k < Dt−1
k

(4)

where Dt−1
k Dt−2

k are the differences between the quantitative demand and the allocated
amount of land-use type k until the iteration times of t− 1 and t− 2, respectively. Based on
the ratio of the two values, the model updates It

k in real time.
(4) Cs→k is the conversion cost, which is the difficulty of converting a specific grid

pixel from land-use type s to the target land-use type k. It is a constant parameter, the
value of which is fixed within [0,1] (Table 4). Additionally, larger values indicate more
difficult conversions.
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Table 4. The conversion cost of different land-use types from 2004 to 2084.

Types UL WB CL BLF CF BF

UL 0 0.85 0.7 0.99 0.99 0.99
WB 0.8 0 0.8 0.9 0.9 0.9
CL 0.3 0.7 0 0.5 0.4 0.5
BLF 0.9 0.9 0.7 0 0.6 0.5
CF 0.9 0.9 0.6 0.5 0 0.6
BF 0.9 0.9 0.7 0.6 0.6 0

(5) The f for this study was a roulette-wheel selection mechanism [52], which assumes
that the probability of selection is proportional to the fitness of a sector. Let us consider N
sectors, each characterized by its fitness pt

i,k > 0 (n = 1, . . . , N). As shown in Algorithm 2,
one constructs a line segment of length 1 out of consecutive sectors of length pt

i,k, generates a
uniformly distributed random number rt

i such that rt
i ≤ qt

i,n, and locates the corresponding
sector, thus selecting the respective label Typen to assign to the state (Statei,t+1) at time t + 1.
In this paper, n = k = 1, . . . , 6 and Typen = (UL, WB, CL, BLF, CF, BF). Spatial allocation
using this mechanism not only ensures the possibility of all events occurring but also
ensures the dominance of high probability events, therefore ensuring the randomness and
fairness in the allocation and effectively reducing the uncertainty of LUCC.

Algorithm 2: Using a roulette-wheel selection mechanism to allocate the probability.

input: Prot
i,k

pt
i,k ← Prot

i,k/ ∑N
n=1 Prot

i,k
qt

i,n ← ∑n
k=1 pt

i,k
rt

i ← a uniformly distributed random number ranging from 0 to 1
for n = 1, . . . , N do

if rt
i ≤ qt

i,n then
Statei,t+1 ← Typen
break

else
continue

end for

2.4.3. Interactive Integration of the BCS Model

Many integrated models are loosely coupled with the quantitative model and the
spatial model based on the final land-use demands so that the accuracy is not as high as
with the interactive coupling model [9]. Thus, to strengthen the mutual feedback between
the SD and BPNN_CA sub-models, the two sub-models in the BCS model are interactively
coupled during the study time series.

The schematic diagram of the coupling mechanism is shown in Figure 8. The future
70 year period from 2014 to 2084 was divided into the following 14 segments at 5 year
intervals: 2014–2019, 2019–2024, . . . , and 2079–2084. Using the actual classification in
2014 as input data, the process was as follows: (1) the land-use pattern was input to the
BPNN_CA to calculate land suitability and neighborhood effects, etc., while the area of each
land-use type was fed into the SD model; (2) the demand of each land-use type at the next
time was predicted through the configured SD model using the area at the previous time
combined with the effects of human and natural factors during this time interval; (3) the
demand was input to the BPNN_CA model as a constraint at the end of the model iteration,
and the CA model explored the local competition and interactions by adjusting the It

k
through multiple iterations; (4) the spatial distribution of the land-use pattern for the next
moment was generated until the area allocated by the BPNN_CA model met the demand
of the SD model. Looping steps (1)–(4) above, finally, the SD and BPNN_CA models would
exchange input/output information to generate the land-use pattern in 2019, 2024, . . . ,
2084 sequentially.
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2.4.4. Assessment Methods of the BCS Model

The performance evaluation of the BCS coupled model needs to verify its ability to
simulate the area and spatial pattern of land use.

For the area simulation, the determination coefficient
(

R2) and root mean square error
(RMSE) were calculated using predicted area and actual area to account for the fitness of
the SD model. The higher the R2 and the smaller the RMSE, the better the result. The R2

and RMSE are defined as follows:

R2 = 1−
∑N

i=1
(
yp − ya

)2
i

∑N
i=1
(
yp − ya

)2
i

(5)

RMSE =

√√√√ 1
N

N

∑
i=1

∣∣yp − ya
∣∣2
i (6)

where yp represents the simulated area, ya represents the actual area, ya represents the
average actual area, and N represents the number of land-use types, N = 6.

For the spatial simulation, not only were OA, Kappa, and PA used for the evaluation
but also a figure of merit (FOM) was introduced. The reason was that OA can only show
the overall consistency of the simulation results and the actual results, but it cannot show
the consistency of cell state changes, and the FoM index can directly show the ability of the
model to simulate changes [53]. The OA, Kappa, PA, and FOM are expressed as follows:

OA = a0 =
1
n

N

∑
k=1

akk (7)

Kappa =
a0 − ac

1− ac
, ac =

∑N
k=1

(
∑N

i=1 aki ∗ tk

)
n ∗ n

(8)

PAk = akk/tk (9)

FOM = Rights/(Rights + Misses + Faults + Extras) (10)

where n represents the total number of pixels; k and i represents the land-use type, k, i = 1,
2, 3 . . . N; akk refers to the number of the category k correctly simulated; aki is the number
of type i simulated as k; tk refers to the actual total number of category k; Misses is an area
of error due to the actual changes simulated as no change; Rights is an area of correctness
due to the actual changes consistent with the simulated changes; Faults is an area of error
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due to the actual change simulated as changing to an incorrect category; Extras is an area
of error due to the fact of no actual change simulated as change.

3. Results
3.1. Model Validations

The simulation for 2014 obtained through the BCS model is shown in Figure 9. Two
partial enlargements not only show that the result was consistent with the actual pattern but
also indicate that the spatial LUCC from 2008–2014 was also well simulated. However, there
were still some errors in local details, and not all changes could be simulated; therefore, we
quantitatively evaluated them to determine the performance of the BCS model.
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Based on the simulation results and the actual classification in 2014, we evaluated the
BCS model quantitatively, which consisted of the following four components: (1) the R2

and RMSE were used to evaluate the SD model for predicting land-use area. The high R2

(0.99) with the small RMSE (707 km2) demonstrates that the calibrated SD model provides
an important basis for the accurate prediction of future land-use area demand (Figure 10a);
(2) The receiver operating characteristic (ROC) curve and the area under the ROC curve
(AUC) values were used to quantify the BPNN’s performance. A larger AUC value cor-
responds to a better BPNN fitting performance [17]. The AUC values were all above 0.8
(Figure 10b), indicating that the land suitability fit for each land use can be strongly ex-
plained by the selected driving factors; (3) The normalized confusion matrix (Figure 10c)
was used to evaluate the spatial consistency of the two maps in 2014. The high OA (79.61%)
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and Kappa (75.53%) show that the BCS model simulation results in 2014 were in excellent
spatial consistency with the actual classification; (4) The FOM calculated from the simula-
tion results in 2014 and the actual classifications in 2008 and 2014 was 28.21%, representing
a large proportion of the area where the actual change was consistent with the simulated
change (Figure 10d). Pontius et al. [54] reported FOM ranging from 1 to 59%, most of
which were lower than 30%. Considering that our study area was a large region with
complex climatic conditions and significant regional differences, the simulation accuracy
was quite acceptable.
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In summary, the BCS coupled model can not only be used to simulate great land-use
spatial distributions but can also be used to show consistent LUCC between the simulated
results and the actual classification, guaranteeing an accurate simulation of the future
spatial distribution of land use.

3.2. Future Land Use Demand Projection

According to the four scenarios described in Section 2.3, the SD model with the interaction
mechanism was used to predict the land-use demands for the next 70 years (Figure 11).

Figure 11a shows that the UL area will increase constantly from 2014 to 2084 under
all scenarios due to the population increase. In the SD_Scenario and FD_Scenario, it will
grow to 1.28 × 104 km2 and 1.63 × 104 km2 in 2084. Compared to the area in 2014, it will
increase by 10% and 15% (+10% and +15%), respectively. The area in the BD_Scenario and
HD_Scenario is in between that in the first two scenarios.

Figure 11b shows that there will be slight WB area changes in the future. It is between
2250 and 2750 km2 in the next 70 years under each scenario.

Figure 11c shows that the CL area will gradually decrease in the future. In the
SD_Scenario and FD_Scenario, it will be reduced to 2.08 × 104 and 2.37 × 104 km2 in
2084 (–28% and –18%), respectively. The area in the BD_Scenario and HD_Scenario was in
between that in the first two scenarios.

Figure 11d shows the BF area has slowly increased since 1984. Its differences between
different scenarios were small in 2014–2054, while the differences started to become appar-
ent after 2054. By 2084, in the FD_Scenario, it will reach 1.25 × 104 km2 (+37%), which is
1217 km2 more than that in the SD_Scenario.

Figure 11e shows the BLF areas have increased obviously over the past 30 years, while
in the future 70 years, they will fluctuate between 2.25 × 104 km2 and 3 × 104 km2, with
minor differences and changes among different scenarios.

Figure 11f shows the CF area varied clearly under different scenarios. In the FD_Scenario,
it will have a decreasing trend after 2019, decreasing to 2.04 × 104 km2 in 2084, indicating that
the urbanization and other development in Zhejiang Province under this scenario will have a
strong negative effect on the development of the CF area. While in the SD_Scenario, it will
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reach 2.72 × 104 km2 (+13%), revealing that the ecological focus and better protection of CF
under this scenario has led to an increase rather than a decrease in CF area.
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Figure 11. Areas of each land-use type in Zhejiang Province over the past 30 years and that over the
next 70 years under different scenarios: (a) urban land area; (b) water body area; (c) cultivated land
area; (d) bamboo forest area; (e) broad-leaved forest area; (f) coniferous forest area.

3.3. Future Spatiotemporal Land-Use Pattern

Based on the BCS coupled model, future land-use patterns in 2084 were simulated. To
demonstrate the differences between different scenarios, two enlargements of the simulation
results are shown in Figure 12.
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3.4. Analysis of Future Land-Use Conversion

With a total of six land-use types in this study, there were 36 possibilities for future land
conversion. The Sankey diagrams (Figure 13) were used to show the land-use conversion
from 2014 to 2084 under four scenarios, and the top five highest change amplitudes of all
land uses are marked on the diagrams.

In both the SD_Scenario and HD_Scenario, the land-use types with the largest area
outflow is BLF, with 4.8 × 103 km2 (18.61%) and 6 × 103 km2 (23.37%) of BLF will convert to
CF in 2084 as a result of different climate changes and anthropogenic disturbances, respectively,
and therefore the CF area will increase under both scenarios (Figure 13a,b). However, in the
BD_Scenario and FD_Scenario, the percentage of CL outflow was both the highest due to the
rapid urban development, and 5.2 × 103 km2 (18.11%) and 5.7 × 103 km2 (19.74%) of CL will
convert to UL, respectively. These demonstrate a contrast between the ecological conservation
scenarios and the urban development scenarios.



Remote Sens. 2022, 14, 1698 21 of 27
Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 13. Predicted land-use conversion in 2014–2084 under 4 scenarios: (a) SD_Scenario; (b) 

HD_Scenario; (c) BD_Scenario; (d) FD_Scenario. Numbers: years; UL: urban land; WB: water body; 

CL: cultivated land; BLF: broad-leaved forest; CF: coniferous forest; BF: bamboo forest. For example, 

14BF represents bamboo forest in 2014. 

In both the SD_Scenario and HD_Scenario, the land-use types with the largest area 

outflow is BLF, with 4.8 × 103 km2 (18.61%) and 6 × 103 km2 (23.37%) of BLF will convert to 

CF in 2084 as a result of different climate changes and anthropogenic disturbances, re-

spectively, and therefore the CF area will increase under both scenarios (Figure 13a,b). 

However, in the BD_Scenario and FD_Scenario, the percentage of CL outflow was both 

the highest due to the rapid urban development, and 5.2 × 103 km2 (18.11%) and 5.7 × 103 

km2 (19.74%) of CL will convert to UL, respectively. These demonstrate a contrast between 

the ecological conservation scenarios and the urban development scenarios. 

3.5. Analysis of Land-Use Change Amplitude at the Administrative Level 

Based on the land-use pattern between 2014 and 2084, under different scenarios, the 

change amplitude of each land-use type at the Zhejiang Province administrative level was 

mapped as shown in Figure 14. The following three points are worth noting: (1) The BF 

area is in a state of growth in most of prefectures (+20% to +60%) under each scenario; (2) 

Figure 13. Predicted land-use conversion in 2014–2084 under 4 scenarios: (a) SD_Scenario; (b)
HD_Scenario; (c) BD_Scenario; (d) FD_Scenario. Numbers: years; UL: urban land; WB: water body;
CL: cultivated land; BLF: broad-leaved forest; CF: coniferous forest; BF: bamboo forest. For example,
14BF represents bamboo forest in 2014.

3.5. Analysis of Land-Use Change Amplitude at the Administrative Level

Based on the land-use pattern between 2014 and 2084, under different scenarios, the
change amplitude of each land-use type at the Zhejiang Province administrative level was
mapped as shown in Figure 14. The following three points are worth noting: (1) The BF
area is in a state of growth in most of prefectures (+20% to +60%) under each scenario;
(2) under the FD_Scenario, the CF area in northeast Zhejiang will be greatly reduced (–20%
to –95%); (3) the BLF area in Jiaxing will decrease under either scenario (–24% to –90%).
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4. Discussion
4.1. Future Enhancements of the BCS Model

The reasons for the great simulation results based on the BCS coupled model are as
follows: (1) the SD model considers complex factors such as social, economic, policy, and
planning, and the uncertainty in predicting the quantitative area is reduced, thus achieving
more accurate predictions than other quantitative models; (2) the CA model integrates
a BPNN to extract extremely accurate land suitability considering more comprehensive
driving data.

However, the model simulation still leaves some errors, mainly in the simulation of
three forest types. For BLF, CF, and BF, the accuracy was 0.75, 0.69, and 0.73, respectively.
Forest succession needs to take into account not only climate change and human disturbance
but also its own growth conditions [55]. How to incorporate the spatial distribution of
these factors for more accurate modeling and prediction is a challenge to overcome for our
future research. Furthermore, parameters, such as land suitability and conversion costs, in
the BCS coupled model are assumed to remain constant during the simulation, whereas
these parameters will change over time in realistic situations [26]. Studies have already
been conducted to predict the future spatial distribution of the population and economy on
the basis of which future land suitability can be predicted [56]. Therefore, we need to invest
more effort in improving the model based on the appropriate approach in future works.

4.2. Future Strategy for Land-Use Management

Different scenarios have different levels of ecological protection and different shares
of investment in forestry; therefore, the forest coverage rate is higher in scenarios that
focus on ecological protection. Consequently, the areas of BLF and CF are higher in the
SD_Scenario and HD_Scenario than in the BD_Scenario and FD_Scenario after 70 years
(Figure 11e,f). However, the reasons why the area of BF is higher in the FD_Scenario than in
others are for the following two reasons: (1) The growth of BF is affected by the climate and
has certain requirements for precipitation and temperature. The annual total precipitation
required for BF growth is 1200–2500 mm, and the average daily temperature conducive to
BF growth ranges from 15–25 ◦C [45]. Despite the increasing radiation intensity after the
mid-21st century, in the FD_Scenario it results in increasing temperature and decreasing
precipitation, and the temperature and precipitation in Zhejiang Province eventually ranged
from 16.8–22.5 ◦C and 858.2–1693 mm, respectively (Figure 5a,b). Therefore, it can be
recognized that Zhejiang Province will still be a natural environment suitable for bamboo
forest growth in this future scenario. (2) In recent years, with the adjustment of the industrial
structure of Zhejiang Province, the economic benefits of BF have become prominent. Moso
bamboo and lei bamboo, with higher economic value, have become new growth points
in the regional economy. The management intensity of BF has increased, and the area of
BF has continued to increase. In the future FD_Scenario, the rapid development of the
social economy will expand the management and investment of BF to a certain extent.
The SD model feedback system takes this man-made activity into account; thus, the BF area
obtained by simulation was larger than that simulated in other scenarios.

In the four scenarios, the simulated future LUCC evolutions were consistent with
realistic changes. In the future, the proportion of each land-use type converted ranges from
0 to 23.27% (Figure 13), with the highest values being the conversion of BLF to CF in the
HD_Scenario (23.27%) and the conversion of CL to UL in the FD_Scenario (19.74%). In the
HD_Scenario, due to the impact of policies, in order to prevent the massive reduction of CF,
the planned goals are achieved by converting part of the BLF into CF. In the FD_Scenario,
the man-land contradiction will intensify, and CL will be mainly converted into UL, making
it difficult to achieve the goal of protecting CL and posing a serious challenge to the
ecological environment. LUCC is caused by complex and diverse factors, and the factors
we can consider are limited. Therefore, it is likely that the future change will exceed our
expectations; that is, the LUCC amplitudes simulated by the model may be smaller than
the actual future change.
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As seen in the future area change (Figure 11), the future spatial distribution (Figure 12),
the LUCC conversion (Figure 13), and the change at the prefecture level (Figure 14), the
SD_Scenario has less land-use change than the other scenarios, and this scenario is the
more ecologically friendly one. Without considering the promotion of social and economic
development, to maximize the restoration of forest ecology, and promote ecological protec-
tion, various indicators established in the SD_Scenario can be referred to for future land
planning and forest resource management.

5. Conclusions

In summary, the aim of this study was to develop a BPNN_CA_SD (BCS) coupled model
for future LUCC simulation and to analyze the LUCC of Zhejiang Province under different
scenarios from 2014 to 2084. The BCS coupled model consisted of the BPNN_CA model and the
SD model. The top-down SD model and the bottom-up BPNN_CA model were interactively
integrated during the simulation. The simulation results in 2014 showed a great OA (0.8), Kappa
(0.75), and relatively high FOM (>28%) value, indicating that the proposed model can simulate
LUCC accurately. Under different scenarios, the future evolution of the LUCC simulated by
the BCS model varied due to the different natural and human effects. By 2084, bamboo forests
would increase by 37% under the FD_Scenario, while coniferous forests would decline by 25%.
A comparison of the simulated subtropical forest area and spatial variation in the four scenarios
revealed that the SD_Scenario was favorable to forest ecology. We also analyzed the future
transfer area between land uses and the changes in each prefecture. These study results could
provide an effective reference for decision makers regarding sustainable forest development
and land-use planning under future climate conditions in Zhejiang Province.
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Abbreviations

Abbreviation Description
LUCC Land Use and Land Cover Change
UL Urban Land
WB Water Body
CL Cultivated Land
BLF Broad-Leaved Forest
CF Coniferous Forest
BF Bamboo Forest
CA Cellular Automata
SD System Dynamics
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BPNN Back Propagation Neural Network
BPNN_CA CA Model Integrated with the BPNN
BCS BPNN_CA Model Integrated with the SD
CLUE-S The Conversion of Land Use and Its Effects at the Small Regional Extent
OA Overall Accuracy
Kappa Kappa Coefficients
PA Producer’s Accuracy
ROC Receiver Operating Characteristic
AUC Area under ROC Curve
FoM Figure of Merit
SD_Scenario Slow Development Scenario
HD_Scenario Harmonious Development Scenario
BD_Scenario Base Development Scenario
FD_Scenario Fast Development Scenario
RCP Representative Concentration Pathway
CMIP5 Coupled Model Intercomparison Project 5
IPCC Intergovernmental Panel on Climate Change
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