
����������
�������

Citation: Liu, J.; Fu, L.; Cheng, G.; Li,

D.; Zhou, J.; Cui, N.; Chen, Y.F.

Automated BIM Reconstruction of

Full-Scale Complex Tubular

Engineering Structures Using

Terrestrial Laser Scanning. Remote

Sens. 2022, 14, 1659. https://

doi.org/10.3390/rs14071659

Academic Editors: Joon Heo,

Changjae Kim, Minkoo Kim and

Riccardo Roncella

Received: 26 February 2022

Accepted: 28 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Automated BIM Reconstruction of Full-Scale Complex Tubular
Engineering Structures Using Terrestrial Laser Scanning
Jiepeng Liu 1,2, Lihua Fu 1,2 , Guozhong Cheng 1,2,*, Dongsheng Li 3 , Jing Zhou 4, Na Cui 1,2 and Y. Frank Chen 5

1 Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University,
Ministry of Education, Chongqing 400045, China; liujp@cqu.edu.cn (J.L.); fulihua@cqu.edu.cn (L.F.);
nacui@cqu.edu.cn (N.C.)

2 School of Civil Engineering, Chongqing University, Chongqing 400045, China
3 College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China;

lds@cqu.edu.cn
4 China MCC5 Group Corporation Ltd., Chengdu 610000, China; 20165494@cqu.edu.cn
5 Department of Civil Engineering, The Pennsylvania State University, Middletown, PA 17057, USA;

yxc2@psu.edu
* Correspondence: chengguozhong@cqu.edu.cn

Abstract: Due to the accumulation of manufacturing errors of components and construction errors,
there are always deviations between an as-built complex tubular engineering structure (CTES) and its
as-designed model. As terrestrial laser scanning (TLS) provides accurate point cloud data (PCD) for
scanned objects, it can be used in the building information modeling (BIM) reconstruction of as-built
CTESs for life cycle management. However, few studies have focused on the BIM reconstruction
of a full-scale CTES from missing and noisy PCD. To this end, this study proposes an automated
BIM reconstruction method based on the TLS for a full-scale CTES. In particular, a novel algorithm is
proposed to extract the central axis of a tubular structure. An extended axis searching algorithm is
applied to segment each component PCD. A slice-based method is used to estimate the geometric
parameters of curved tubes. The proposed method is validated through a full-scale CTES, where the
maximum error is 0.92 mm.

Keywords: complex tubular engineering structure; BIM reconstruction; terrestrial laser scanning;
central axis-based modeling; central axis-based segmentation

1. Introduction

Complex tubular engineering structures (CTESs) consisting of straight and curved
tubes have been widely used in stadiums, landmark towers, etc., because of their reason-
able force distribution, high structural rigidity, aesthetic appearance, and good economic
benefits [1,2]. The tubular components are connected to each other by cylindrical joints,
presenting a uniform and attractive structure. However, due to the complex geometric
shape of the CTES, the manufacturing and construction of tubular components are very
difficult. The accumulation of the manufacturing errors of components and construction
errors leads to deviations between an as-built CTES and its as-designed model. Therefore,
to achieve life cycle management (LCM), such as construction quality assessment and
component maintenance management [3–5], there is an increasing need for the building
information modeling (BIM) reconstruction of as-built CTESs.

Recently, terrestrial laser scanning (TLS) technology with fast data acquisition ca-
pability and millimeter-level accuracy has been extensively used in BIM reconstruction
applications in the architecture, engineering, and construction (AEC) industry [6–9]. TLS
can be adopted to rapidly and accurately capture the point cloud data (PCD) of CTESs.
Furthermore, BIM reconstruction can be performed based on the obtained PCD. Typically,
the BIM reconstruction of as-built models based on PCD includes data segmentation and
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object reconstruction. For the data segmentation, feature-based methods such as region
growing [10] and random sample consensus (RANSAC) [11] are most commonly used.
These methods allow for the segmentation of PCD based on the geometric features of
scanned objects, which is applicable to CTESs with a single component type. However, due
to the limited space available for the scanner to be set up at the construction site and the
presence of occluding components, the obtained PCD may be missing and noisy (Figure 1),
which will seriously affect the performance of feature-based methods. For object recon-
struction, the geometric parameter estimation of the structure is essential to the existing
BIM reconstruction studies of full-scale structures [12–14]. For a tubular component, the
central axis and cross-sectional radius are the two critical geometric parameters, based on
which an as-built model of a tubular component can be generated [15]. To estimate the
central axis, it is necessary to first determine the points on the central axis and then connect
these points to obtain the central axis [15–17]. To estimate the cross-sectional radius, the
PCD of the tubular component is usually sliced onto the plane orthogonal to the central
axis, to realize the estimation of the cross-sectional radius on the two-dimensional (2D)
plane [15]. It is worth noting that the estimation of both the central axis and cross-sectional
radius rely on local information from the PCD. The accuracy of the geometric parameter
estimation can be significantly affected by the missing and noisy PCD of CTESs. Therefore,
a BIM reconstruction method that can extract the accurate geometric parameters from
the missing and noisy PCD of tubular components is urgently required. Moreover, few
studies have conducted the BIM reconstruction of a full-scale CTES. The segmentation of
straight tubes was conducted in [16,17], which is not suitable for segmenting a full-scale
CTES with curved tubes. These normal-based region growing methods [15] are suitable for
segmenting a full-scale CTES with curved tubes. However, computation of normal vectors
is subject to noisy or missing data. Therefore, this study attempts to fill these voids.
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Figure 1. The obtained PCD with missing and noisy data.

To address the above problems, this study proposes an automated BIM reconstruction
method to generate an as-built model for a full-scale CTES based on the TLS. The main
contributions of this study include: (1) A novel central axis extraction method for tubular
components is developed; (2) an extended axis searching algorithm based on the concept
of region growing is proposed to segment PCD of CTES with missing and noisy data.

The reminder of this paper is organized as follows. Section 2 describes the work
related to the PCD segmentation and BIM reconstruction of tubular components. Section 3
gives the details of the proposed BIM reconstruction method. Section 4 presents details of
the validation experiment. Finally, Section 5 summarizes and concludes this study.
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2. Related Work

The procedure of the BIM reconstruction from the scanned PCD usually includes data
segmentation and object reconstruction. For the data segmentation, software-aided and
semi-automatic techniques have dominated the PCD segmentation. Various standalone
computer programs (e.g., Trimble RealWork [18], Geomagic Wrap [19], and Edgewise [20])
allow users to manually segment PCD. However, the manual segmentation of PCD is time-
consuming and labor-intensive for CTES. Thus, there is a need to develop a more effective
automated PCD segmentation algorithm. Several algorithms such as random sample
consensus (RANSAC) [11], Hough transform [21], and region growing [22] have been
widely adopted in the automated PCD segmentation and object reconstruction of tubular
components. For example, Schnabel et al. [11] adopted the RANSAC algorithm to segment
the PCD of tubular components. This method overcomes the effects of noise by iteratively
estimating the best model. However, the method [11] relying on the parameters calculated
from the normal of the component surface is subject to missing data. Liu et al. [23] proposed
a circle fitting method to detect the tubular component in the projected ground plane, which
is not suitable for curved tubular components with a complex interlocking relationship.
Moreover, Kazuaki et al. [15] proposed a region growing algorithm based on the normal
of a component surface to extract the PCD of tubular components. However, the PCD
segmentation for a CTES based on the normal and curvature [3–5] is very sensitive to noise.
In addition, the missing data caused by the limited space available for the scanner to be set
up at the construction site and the presence of occluding components can lead to errors
in the estimation of normal and curvature, resulting in inaccurate segmentation results.
To avoid directly calculating the normal and curvature of the tubular components for the
PCD segmentation, Lee et al. [17] proposed extracting the central skeleton of the tubular
components and segmenting the PCD based on the central skeleton nodes, but the extracted
central skeleton will be shifted in the missing data, which cause errors in skeleton nodes.
Hence, more reliable algorithms for automated data segmentation based on the central axis
are needed.

For the object reconstruction, since the radius of the curved tubular components of
CTES will change with the length depending on the design requirements [24], the following
two critical geometric parameters are required: central axis and the cross-sectional radius.
As mentioned above, the RANSAC algorithm [11] can determine the linear vector direction
of the central axis of a tubular component by using the normal of the component surface, but
the missing data can affect the estimated normal and lead to an inaccurate central axis. The
classical Hough transform has been extended to the extraction of three-dimensional (3D)
geometric objects like cylinders [25]. The method of determining a geometric parameter by
iteratively fitting to update the parameter takes too much time. Patil et al. [26] proposed
an improved Hough transform method for estimating the geometric parameters from a
tubular component, which suggests that using the region-based adaptive method will
continuously limit the search area to reduce the number of iterations. However, the
execution time increases significantly as the PCD grows, in which is unsuitable for the
rapid model generation of large-scale PCD. To reduce the error of a normal estimation from
the missing data when extracting the geometric parameter, Guo et al. [27] developed the
fast minimum covariance determinant (FMCD) method to reduce the influence of outliers
when calculating the principal components, while it has a huge computational burden. The
data simplification can reduce the execution time, but the sampled missing data will result
in more information loss, which may cause a worse impact on the parameter estimation.
Kazuaki et al. [15] proposed slicing the tubular component data and projecting the data
onto a plane orthogonal to the central axis to perform cross-sectional radius estimation.
This method is effective, but the precision depends on the accuracy of the central axis
estimation. Jin et al. [16] proposed a rolling sphere algorithm to extract the central axis of
tubes, which obtains a central axis with a long execution time. The central axis obtained
by this method is noisy due to the missing data. Apart from this, a method based on the
Laplacian smoothing to extract the central skeleton [28,29] has recently been proposed,
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which has been used to quickly obtain the central axis of a tubular component and is robust
to the sampling of data [17]. However, the central skeleton extracted by the Laplacian
contraction algorithm will deviate to a certain extent when there is missing data. Therefore,
considering the issues mentioned above, it is desirable to propose an algorithm that can
quickly and accurately extract the central axis of a tubular component from the PCD with
missing and noisy data.

3. Methodology

In this study, an automated BIM reconstruction method is proposed to generate the
as-built model from the PCD of a CTES, which involves four steps: central axis extraction,
PCD segmentation, geometric parameter estimation, and model generation. The details of
each step are described in Section 3.1, Section 3.2, Section 3.3, Section 3.4, respectively. The
flowchart of the proposed method is shown in Figure 2.
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3.1. Central Axis Extraction

As described in Section 1, the central axis is one of the critical geometric parameters for
tubular components. The tubular components of the CTES in this study are so close to each
other that the scanned data have more missing data due to structural occlusions. Currently,
the central skeleton contraction algorithm [16] and rolling sphere algorithm [17] are widely
adopted to extract the central axis. However, the central skeleton contraction algorithm
is susceptible to missing and noisy data, and the computation cost of the rolling sphere
algorithm is very high for large-scale PCD. Therefore, a novel central axis extraction method
is developed by integrating the central skeleton contraction algorithm and rolling sphere
algorithm. Subsequently, a central axis refinement algorithm is developed. As shown
in Figure 2, the central skeleton contraction algorithm is first used to calculate the initial
candidates on the central axis. Then, taking these candidates as the center of a sphere, the
sliced PCD of the tubular component is selected and used to determine better candidates by
using the rolling sphere algorithm. Finally, the central axis refinement algorithm is adopted
to extract the accurate central axis.

3.1.1. Central Skeleton Contraction Algorithm

The skeleton of a 3D object is an abstract representation of the geometric and topo-
logical set of 3D shapes [30,31]. This study uses the method proposed by Cao et al. [28]
to extract the skeleton of the PCD of tubular components, including the one-ring neigh-
borhood construction, Laplacian matrix generation, and Laplacian contraction. The points
belonging to the skeleton are regarded as the initial candidates on the central axis.

One-ring neighborhood construction: To ensure the uniformity of the neighborhood
sampling, the neighborhood of each point is constructed by the k-nearest neighbors (kNN)
algorithm [32] with k = 0.012 × samples [28], where “samples” denotes the total number
of points. Denoting Nk(pi) as the kNN of a point pi, the principal component analysis
(PCA) algorithm [33] can be used for dimensional reduction, as shown in Figure 3a. Nk(pi)
can be projected onto the plane vertical to the principal component. Delaunay triangular
dissection [34] is then performed in the projection plane. Figure 3b shows the projected
points Proj(pi,1, pi,2, . . . , pi,k) in the Delaunay triangular dissection that constitute the
one-ring neighborhood of the projected point Proj(pi). Note that, as the iteration process
compresses, the neighborhood area gradually becomes smaller and makes the calculation
of the tangent plane difficult. Therefore, during the iteration, the corresponding points in
the original PCD of Nk(pi) should be found and the one-ring neighborhood is constructed
on the tangent plane that is calculated based on these points.
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Laplacian matrix generation: This study adopts the cotangent weighting scheme to
generate the Laplacian matrix from the constructed one-ring neighborhood. The scheme
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for calculating the cotangent weights of the Laplacian matrix presented in [35] is given
as follows:

Lij =


cotαij + cotβij i f i 6= j and (i, j) ∈ Γi

∑k
o=1−wio i f i = j

0 others
, (1)

where αij and βij are the opposite angles of the two triangles shown in Figure 3b, Γi is a
planar Delaunay triangulation of Proj(pi,1, pi,2, . . . , pi,k), and E is a triangular face piece in
the triangular dissection.

Laplacian contraction: To obtain the skeleton of the PCD of tubular components P′, the
following quadratic energy function needs to be solved:

min
P′
‖WLLP′ ‖2 +∑i W2

H,i ‖ p′i − pi ‖, (2)

where L is a Laplacian square matrix of n × n with cotangent weights; WL and WH are the
n × n diagonal matrices controlling the forces of contracting and maintaining the original
position, respectively; and WL,i and WH,i are the ith diagonal element of WL and WH.
Solving Equation (2) is equivalent to iteratively solving the following linear system [29]:[

WL
WH

]
P′ =

[
0

WHP

]
. (3)

During the iterative process, WL is iteratively updated with WH by the following equations: Wt+1
L = sLWt

L

Wt+1
H,i = Wt

H,i ×
√

St
i

S0

, (4)

where sL is the update operator of contraction weights, Si
t is the current one-ring neigh-

borhood area of Proj(pi), and S0 is the mean of the initial one-ring neighborhood area of
Proj(pi). The iteration terminates when (Si

t+1 − Si
t)/S0 is less than a preset threshold. The

parameters are set as suggested by Cao et al. [28]. Figure 4 shows the extracted central
skeleton of the PCD of a tubular component after four iterations, where the extracted
central skeleton is affected by the missing data.
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3.1.2. Rolling Sphere Algorithm

Since the central skeleton extracted by the Laplacian contraction algorithm is deviated
in the case of missing PCD of tubular components (Figure 4), the rolling sphere algorithm
is adopted in this study to improve the accuracy of the candidates on the central axis. As
shown in Figure 5, applying the rolling sphere algorithm to estimate the central axis is
based on the centroid trace left by a sphere with the same radius as the tube rolling inside
the tubular component. A rolling sphere model can be defined as a mathematical model of
a sphere with a line, which is given as follows:

(x− x0)
2 + (y− y0)

2 + (z− z0)
2 − r2 = 0 (5)
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x− x0

a
=

y− y0

b
=

z− z0

c
= k, (6)

where (x0, y0, z0) and r are the center point and radius of the sphere, respectively; and
(a, b, c) is the linear direction of the center point.
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Figure 5. Central axis estimation using the trace of rolling sphere.

To determine the above parameters, the principal axis direction of each point on the
central skeleton can be first calculated using the PCA algorithm based on its neighboring
points. This principal axis direction is the rough linear direction (a, b, c) of the central point.
Then, the PCD of the tubular component can be sliced along (a, b, c). Finally, (x0, y0, z0)
and r can be estimated from the sliced data using the RANSAC algorithm, as shown in
Figure 6, in which the central skeleton is in blue, the PCD of the tubular component are in
gray, and the sliced data are in red. Since the minimum interval between two neighboring
tubular components is 1.5 R, r should be less than 1.5 R in this study. Moreover, the slice
length was set to 0.15 R to achieve a balance between computation time and accuracy, as
illustrated in Figure 7.

Remote Sens. 2022, 14, x 7 of 23 
 

 

axis. As shown in Figure 5, applying the rolling sphere algorithm to estimate the central 

axis is based on the centroid trace left by a sphere with the same radius as the tube rolling 

inside the tubular component. A rolling sphere model can be defined as a mathematical 

model of a sphere with a line, which is given as follows: 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 − 𝑟2 = 0 (5) 

𝑥−𝑥0

𝑎
=

𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐
= 𝑘, (6) 

where (x0, y0, z0) and r are the center point and radius of the sphere, respectively; and (a, 

b, c) is the linear direction of the center point.  

 

Figure 5. Central axis estimation using the trace of rolling sphere. 

To determine the above parameters, the principal axis direction of each point on the 

central skeleton can be first calculated using the PCA algorithm based on its neighboring 

points. This principal axis direction is the rough linear direction (a, b, c) of the central point. 

Then, the PCD of the tubular component can be sliced along (a, b, c). Finally, (x0, y0, z0) and 

r can be estimated from the sliced data using the RANSAC algorithm, as shown in Figure 

6, in which the central skeleton is in blue, the PCD of the tubular component are in gray, 

and the sliced data are in red. Since the minimum interval between two neighboring tub-

ular components is 1.5 R, r should be less than 1.5 R in this study. Moreover, the slice 

length was set to 0.15 R to achieve a balance between computation time and accuracy, as 

illustrated in Figure 7. 

 

Figure 6. An example of the proposed method for fitting the sphere from missing data. 

  
(a) (b) 

Figure 6. An example of the proposed method for fitting the sphere from missing data.

Remote Sens. 2022, 14, x 7 of 23 
 

 

axis. As shown in Figure 5, applying the rolling sphere algorithm to estimate the central 

axis is based on the centroid trace left by a sphere with the same radius as the tube rolling 

inside the tubular component. A rolling sphere model can be defined as a mathematical 

model of a sphere with a line, which is given as follows: 

(𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2 − 𝑟2 = 0 (5) 

𝑥−𝑥0

𝑎
=

𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐
= 𝑘, (6) 

where (x0, y0, z0) and r are the center point and radius of the sphere, respectively; and (a, 

b, c) is the linear direction of the center point.  

 

Figure 5. Central axis estimation using the trace of rolling sphere. 

To determine the above parameters, the principal axis direction of each point on the 

central skeleton can be first calculated using the PCA algorithm based on its neighboring 

points. This principal axis direction is the rough linear direction (a, b, c) of the central point. 

Then, the PCD of the tubular component can be sliced along (a, b, c). Finally, (x0, y0, z0) and 

r can be estimated from the sliced data using the RANSAC algorithm, as shown in Figure 

6, in which the central skeleton is in blue, the PCD of the tubular component are in gray, 

and the sliced data are in red. Since the minimum interval between two neighboring tub-

ular components is 1.5 R, r should be less than 1.5 R in this study. Moreover, the slice 

length was set to 0.15 R to achieve a balance between computation time and accuracy, as 

illustrated in Figure 7. 

 

Figure 6. An example of the proposed method for fitting the sphere from missing data. 

  
(a) (b) 

Figure 7. Algorithm parameter analysis of the length of the slice: (a) accuracy of fitted radius with
different values of the parameter; (b) the computation time with different values of the parameter.

3.1.3. Central Axis Refinement

Although fitting the sphere using the RANSAC with sliced data can overcome the
effects of missing data and noise, the obtained spherical centers will still show dispersion.
To obtain an accurate central axis, a central axis refinement algorithm is developed to
optimize the candidates obtained in the last step.
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The aim of the central axis refinement is to update the position of candidates that
are consistent in the linear direction. Hence, the linear direction of each candidate is first
calculated through its kNN, as shown in Figure 8a. Then, the neighboring points with
the same linear direction as the calculated candidate are found in the 2k neighborhoods
of each candidate. The position of the new candidate is the average of these points that
has the same direction as the calculated candidate, as shown in Figure 8b. The central axis
refinement result of a tubular component is shown in Figure 8c, and the pseudocode of the
central axis refinement algorithm is given in Algorithm 1, where the angle threshold α is
set to 20◦ according to Jin et al. [16].

Algorithm 1: The pseudocode of the central axis refinement algorithm.

input: central axis candidates C = {ci|i = 1, . . . , n}; angle threshold α; k
output: refined central axis Ω
1 initialize refined central axis set Ω = ∅
2 compute the neighborhood candidates {Nk(ci)} and {N2k(ci)}
3 compute the linear direction vectors {vi} based on {Nk(ci))}
4 for i = 1, . . . , n
5 initialize Cm = ∅
6 for j = 1, . . . , 2k
7 compute the vector angle θij between vi and vi,j
8 if θij ≤ α

9 Cm = Cm ∪
{

ci,j

}
10 end if
11 end for
12 if card(Cm) > 1
13 compute the average si of Cm
14 Ω = Ω ∪ {si}
15 end if
16 end for
17 return Ω
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3.2. PCD Segmentation

Since feature-based segmentation algorithms are time-consuming and have poor
robustness to noisy and missing data, this study proposes to segment the PCD of each
tubular component based on the obtained central axis, which completely records the overall
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shape of the entire CTES. Therefore, the PCD segmentation of CTES in this study consists
of the following two steps: central axis segmentation and component data segmentation.

3.2.1. Central Axis Segmentation

There are two main types of central axis of curved tubes, which are circular and
noncircular. It is worth noting that the central axis with circular shape can be easily
segmented using the RANSAC algorithm to extract the sphere from the points on the
central axis. Therefore, this section focuses on the extraction of noncircular central axis.

In this study, an extended axis searching algorithm based on the concept of region
growing [22] is proposed for the segmentation of the noncircular central axis. The algorithm
starts from a random point si (green), shown in Figure 9a. Its neighboring points Nk(si)
iteratively expand from both ends within a certain radius, as shown in Figure 9b,c, in which
Nk(si) is in red and the expanded points are in yellow and blue at different ends. A point
is added when its linear direction coincides with the linear direction of the endpoint, as
shown in Figure 10. The angle θij between two linear direction vectors vi and vj is calculated
as follows:

θij = arccos

(
vi × vj

‖ vi ‖‖ vj ‖

)
. (7)
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It is worth noting that the search radius needs to be large enough since the central
axis is usually discontinuous due to missing data. The points on the central axis that are
in a different linear direction from the endpoints can be filtered out by an angle threshold.
The iteration terminates when the number of points of the segmented central axis stops
changing. Algorithm 2 presents the pseudocode for the extended axis searching algorithm.
In this study, the angle threshold is set to 20◦ and the search radius is set to 1.5R empirically.
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Algorithm 2: The pseudocode for the extended axis searching algorithm.

input: central axis S = {si|i = 1, . . . , n}, angle threshold criterion θ, the search radius rs
output: segmented central axis Sg
1 initialize segmented central axis set Sg= ∅
2 compute the neighborhood points {Nk(si)} of each point on the central axis
3 compute the linear direction vectors based on {Nk(si)}
4 c = 1
5 while S 6= ∅
6 select a random point si and Nk(si)
7 remove si from S
8 initialize Rc = Nk(si), change_point = 1, t = 1
9 while change_point > 0
10 extract two ends si1, si2 of Rc
11 compute the extended points E(si1), E(si2) based on rs
12 compute the angle from each point in E(si1) to si1 and from each point in E(si2) to si2
13 find the points Rct on the central axis that their angles are less than θ

14 upgrade Rc = Rc ∪ Rct, change_points = card(Rct), t = t+ 1
15 end while
16 if card(ψc) > k
17 record the category of current segmented central axis Rc as c
18 add the labelled Rc to Sg
19 remove Rc from S
20 c = c + 1
21 end if
22 end while
23 Return Sg

3.2.2. Component Data Segmentation

After realizing the central axis segmentation, the PCD of each tubular component can
be segmented by searching the neighborhood in the overall PCD with the points on the
central axis according to a certain search radius. However, there are some noisy data in the
overall PCD. To improve the accuracy of the geometric parameter estimation of tubular
components, the noisy data need to be filtered while performing a data segmentation.

As shown in Figure 11, the PCD of a tubular component P can be selected according
to the following equation:

P = {pi|(di < ω× r)&|ηi| < ε} (8)

di = |pi − si| − r, (9)

where r is the radius of the fitted sphere whose center si is on the central axis, di is the
distance from pi to the fitted sphere calculated by Equation (9), and ηi is the angle between
the normal vector ni and the unit vector

→
si pi. In Equation (8), the first term is the distance

control condition, and the second term is the angle control condition. In this study, ω is set
to 0.05 and ε is set to 0.1 according to [36].
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3.3. Geometric Parameter Estimation

To obtain a solid model of a tubular component, the curve of the central axis needs to
be obtained and the cross-sectional radius needs to be estimated.

3.3.1. Central Axis Curve Estimation

In this study, the Catmull–Rom algorithm [37] is adopted to estimate the curve of the
central axis. Catmull–Rom splines give the tangent τ(pi+1 − pi−1) at each point pi with the
previous point pi−1 and next point pi+1. Consider a single curve segment p(u) between pi−1
and pi. In a 3D space, it can be expressed by a cubic function p(u) = ∑3

k=0 ckuk, where u
is an independent variable that is the ratio of the distance from a point on p(u) to pi−1 to
the distance from pi to pi−1; and ck is a coordinate point in the 3D space. The slope of pi−1
is determined by pi−2, pi and the slope of pi is determined by pi−1, pi+1. Therefore, p(u)
can be defined by four points, pi−2, pi−1, pi, and pi+1; and ck can be calculated from a linear
combination of these four points. Therefore, p(u) is obtained from a linear combination of
the four points by the following equation:

p(u) = uT Mp =
[
1 u u2 u3

]
0 1 0 0
−τ 0 τ 0
2τ τ − 3 3− 2τ −τ
−τ 2− τ τ − 2 τ




pi−2
pi−1

pi
pi+1

, (10)

where the parameter τ is known as “tension,” which affects how sharply the curve bends
at the four points. According to [37], τ is set to 0.2 in this study.

Before applying the Catmull–Rom algorithm, the order of the points on the central
axis needs to be determined for the curve configuration. To determine the order of the
points on each segmented central axis, the points can be arranged along the direction of the
first principal axis. Then, the Catmull–Rom algorithm can be used for the curve estimation.
Figure 12 shows the estimated central axis curve (blue) of the central axis points (red) of a
tubular component.
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3.3.2. Cross-Sectional Radius Fitting

To accommodate the tubular components with variable cross sections, a slice-based
method is adopted to estimate the cross-sectional radius, as shown in Figure 13. The PCD
is cut along the central axis curve and the slice is perpendicular to the central axis curve,
as shown in Figure 13a. Figure 13b shows that the cross-sectional radius is estimated in a
two-dimensional (2D) plane using the PCA and RANSAC algorithms. Finally, the model
of the tubular component generated from the estimated parameters is shown in yellow in
Figure 13c.
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3.4. Model Generation

The results of the geometric parameter estimation of tubular components, including
the cross-sectional radius r, linear direction vector v, and centers s of slices with 5 cm, are
sorted in a text file. A solid-based family is adopted to create tubular components through
the Revit application programming interface (API) [38]. The coordinates of two ends of
a slice can be calculated based on s and v. The command “sweep” in the API is used to
create a straight cylinder with both ends as the origin and terminal points respectively. The
as-built model of the CTES can be automatically generated from these straight cylinders,
and can then be applied to the subsequent LCM.

4. Validation Experiment

To validate the proposed BIM reconstruction method for as-built CTES, a real-world
CTES was scanned using FARO S150 [39]. A total of five scans were captured at different lo-
cations. The scan resolution is 20,480 laser scan points per scanning profile. The PCDs were
registered using sphere targets, and the average error of the PCD registration was 0.31 mm,
within an acceptable range. The registered PCD of the CTES includes 22,213,417 points.
Section 4.1 presents the comparison test of the proposed central axis extraction method
with the rolling sphere algorithm. Then, Section 4.2 shows the experimental results of the
BIM reconstruction from the actual PCD of the CTES. The accuracy of the reconstructed
BIM is presented in Section 4.3. The application of construction quality assessment based
on the as-built model is given in Section 4.4. Section 4.5 shows an experiment of BIM
reconstruction of a similar CTES using the proposed method.

4.1. Comparison Test

A set of sampled missing and noisy PCD of a tubular component including 1157 points
was used in this test, as shown in Figure 14a. Table 1 lists the evaluation indicators of
the proposed central-axis extraction method and rolling sphere algorithm, including the
running time and average and variance of the radius for fitted spheres. The extraction
results for the candidates on the central axis by the two methods are shown in Figure 14b.
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PCD of a tubular component; (b) the candidates obtained by the two methods; (c) the statistical
histogram of the outliers from the candidates obtained by the two methods.

Table 1. The evaluation indicators for the proposed method and the rolling sphere algorithm.

Evaluation Indicators Rolling Sphere Algorithm The Proposed Method

Execution time (s) 208 165.47
Average of the radius for fitted spheres (m) 0.190 0.176

Variance of the radius for fitted spheres 0.073 0.0034

As indicated in Table 1, the execution time of the rolling sphere algorithm is about
1.3 times that of the proposed method. This is because the rolling sphere algorithm is
required to fit the sphere twice for each point to obtain the candidates. As shown in
Figure 14b, the extraction results of both methods are processed using a neighborhood-
based statistical filtering method [40]. The radius of the neighborhood is set to 0.1 m and
the threshold of the number of neighboring points is set to 10. If the number of neighboring
points is greater than the threshold, it is defined as an inlier, and as an outlier if vice versa.
The comparison of the outliers filtered from the candidates obtained by the two methods
is shown in Figure 14c. According to Figure 14b,c and the average and variance of the
radiuses for fitted spheres given in Table 1, the rolling sphere algorithm provides more
discrete results for the calculated candidates, suggesting a need for more smoothing of the
candidate points. As the ground truth of the cross-sectional radius of this tested tubular
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component is 0.175 m, the proposed method shows better efficiency and effectiveness for
missing and noisy data compared to the rolling sphere algorithm.

4.2. Experimental Results for the BIM Reconstruction

The input PCD of the CTES includes 22,213,417 points, as shown in Figure 15a. The
PCD is sampled using the voxel grid method [41], with the size being 0.1 m for rapid central
skeleton contraction. The proposed method is performed on a personal computer with
i7-7700k CPU @ 4.20 GHz. The execution time and number of points of each step are given
in Table 2. Figure 15 shows the processing results of each step and Figure 16 shows the
reconstructed as-built model in BIM.
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Figure 15. Experimental results for the segmentation based on the extracted central axis: (a) Input
PCD; (b) central skeleton contraction; (c) candidates on the central axis; (d) accurate central axis;
(e) central axis segmentation result; (f) PCD segmentation results.
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Table 2. The execution time of the 3D model generation procedure.

Procedure Steps Number of Points Execution Time

Central skeleton contraction 91,558 18,342.58 s
Central axis candidate extraction 91,558 5891.21 s

Central axis refinement 91,558 948.7 8s
Central axis segmentation 84,733 160.12 s

PCD segmentation 21,213,417 356.15 s
Central axis curve estimation 84,733 2873.21 s

3D modeling of CTES 21,213,417 359.67 s
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The sampled PCD with 91,558 points was processed by the central skeleton contraction
algorithm to extract the central skeleton, as shown in Figure 15b. Then, the candidates on
the central axis were calculated by the rolling sphere algorithm, as shown in Figure 15c. As
shown in Figure 15d, the accurate central axis was calculated by the proposed central axis
refinement algorithm, where k was set to 100 according to [16]. It is worth noting that the
number of points on the central axis was 84,733 when the central axis segmentation was
performed due to the filtering effect of the central axis refinement algorithm. The results of
the central axis segmentation and PCD segmentation are shown in Figure 15e,f, respectively.
After the PCD segmentation, 21 curved tubular components and 112 cylindrical joints were
obtained. Finally, the proposed geometric parameter estimation and model generation
method were used to realize the BIM reconstruction of the as-built CTES. The total running
time of the proposed method was about 8 h and 2.2 min, as shown in Table 2. The
reconstructed as-built model shown in Figure 16 demonstrates the effectiveness of the
proposed method.
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4.3. Accuracy of Reconstructed BIM

To evaluate the accuracy of the proposed BIM reconstruction method, errors in height
and cross-sectional radius of components were calculated. Height error δh and radius error
δr were calculated as follows:

δh = | hε − ha | (11)

δr = | rε − ra | (12)

where ha and ra are the estimated height and cross-sectional radius of components by
the proposed BIM reconstruction method; hε and rε are the measured height and cross-
sectional radius of components by Geomagic Wrap [19]. Height errors of 16 curved tubular
components are illustrated in Figure 17, where the maximum error is 0.92 mm. Radius
errors are given in Figure 18, where the maximum error is 0.21 mm. According to the
Chinese code (GB 50205-2020) [42], the allowable error is about 3 mm, demonstrating that
the PCD-based results are acceptable in a real application.
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4.4. Construction Quality Assessment Using the As-Built Model

The as-built model of the CTES obtained can be used for construction quality assess-
ment. Since the shape of the CTES is usually irregular, the construction quality assessment
relies on a comparison with the as-designed model [43]. However, it is difficult to find
reference points to match the as-designed and as-built models of the CTES. Therefore, this
study proposes matching the central axis curve of the as-designed model with that of the
as-built model so that the construction quality can be assessed based on the deviation
between the nearest neighboring points on the two curves.

To align the as-built model with the as-designed model, the central axis curves of these
two models are discretized into points. The centers of circular central axis in these two
models are first extracted as shown in Figure 19a,b. Then, coarse alignment is realized
based on these extracted centers by using the Procrustes analysis technique [44]. The
quality of coarse alignment depends on the accuracy of center estimation. These two curves
need to be finely adjusted using the iterative closest point (ICP) algorithm [45] based on all
points on the curves, as shown in Figure 19c.
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Figure 19. The alignment for the central axis curves of the as-built and as-designed models: (a) the
centers (red) of circular central axis curve (blue) in the as-built model; (b) the centers (red) of circular
central axis curve (blue) in the as-designed model; (c) the alignment result of the as-built model (red)
with the as-designed model PCD (blue).
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As shown in Figure 19c, there is a significant deviation at the top of the CTES, when the
as-designed model matches perfectly with the as-built model. The color-coded deviation
map of the CTES is shown in Figure 20, which indicates a maximum deviation at the top of
361 mm. It can be seen that the deviation of the circular tubular component at the top of
CETS is relatively even, which is caused by the adjustment of the construction plan. The
construction company lowered the circular tubular component by 360 mm, implying that
the proposed method can identify deviations in the construction.
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4.5. Expanded Experiment

In this section, the above method is verified for a tower structure. The process of BIM
reconstruction for this CTES is presented as shown in Figure 21, proving the effectiveness
of the proposed method in the BIM reconstruction of other similar CTES.
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Figure 21. The BIM reconstruction of a tower structure: (a) input PCD; (b) central skeleton contraction;
(c) candidates on the central axis; (d) accurate central axis; (e) central axis segmentation results;
(f) PCD segmentation results; (g) geomatic parameter estimation; (h) the BIM reconstruction.

5. Conclusions

This study proposes an automated BIM reconstruction method for as-built CTESs using
terrestrial laser scanning, which includes the central axis extraction, PCD segmentation,
geometric parameter estimation, and model generation. The central skeleton of tubular
components is extracted first. Based on the points on the central skeleton, the rolling sphere
algorithm is used to obtain the candidates on the central axis. A proposed central axis
refinement algorithm is further used to obtain an accurate central axis, which can be used
for the PCD segmentation. Then, the Catmull–Rom algorithm is adapted for the central
axis curve estimation. Next, a slice-based method is used to estimate the cross-sectional
radius. Finally, Revit API is adopted to create the as-built model of the CTES in BIM. The
validation experiment is conducted on a full-scale CTES. Based on this study, the following
main conclusions can be drawn:

(1) A novel central axis extraction method for tubular components is developed and
demonstrated to be effective.

(2) An extended axis searching algorithm based on the concept of region growing is proposed,
which is suitable for the segmentation of PCD of CETS with missing and noisy data.

(3) The maximum error of the proposed BIM reconstruction method is 0.92 mm, which is
acceptable in a real application.
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