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Abstract: The modulation mode recognition of non-cooperative underwater acoustic (UWA) com-
munication signal faces great challenges due to the influence of the UWA channel and the demand
for efficient recognition. This work proposes a recognition method for UWA orthogonal frequency
division multiplexing (OFDM), binary frequency shift keying (2FSK), four-frequency shift keying
(4FSK), and eight-frequency shift keying (8FSK) by using spectral peak feature extraction combined
with random forest (RF). First, a new spectral peak feature extraction method is proposed. In this
method, pre-processing, waveform optimization, and feature extraction are used to ensure that the
extracted feature maintains high robustness in the UWA channel. Then, we designed an RF classifier
that can meet the demand for high-efficiency recognition and good performance. Finally, simulation
and experimental results verified the feasibility of the recognition method.

Keywords: underwater acoustic communication; modulation mode recognition; feature extraction;
random forest

1. Introduction

With the increasing number of underwater acoustic sensor networks (UWSNs) (Figure 1)
deployed in underwater environments to perform certain tasks, such as remote control, sub-
marine assistance, intelligent monitoring, and marine data acquisition [1,2], the modulation
mode recognition technology of non–cooperative underwater acoustic (UWA) communi-
cation signals [3,4] has gradually become a research hotspot. The traditional modulation
mode recognition method of a non-cooperative communication signal can be divided into
feature extraction and classifier design.

The feature extraction methods in radio communication were presented in [5–8]. The
features of the high-order cumulant [5] and wavelet transform [6] show good performance
in the Gaussian channel, but poor performance in the multipath channel. The calculation
process of the cyclic spectral feature [7] is particularly complex, and a priori information
such as the carrier frequency is required before obtaining the instantaneous information
feature [8], so they cannot be directly applied in non-cooperative conditions. The feature
extraction methods in UWA communication were presented in [9–12]. Reference [9] used
high-order cumulant and continuous wavelet transform features to recognize multiple
modulation modes, but the modeled channel was a Gaussian channel. Reference [10]
extracted the spectral peak feature in the autocorrelation waveform to recognize orthogonal
frequency division multiplexing (OFDM) based on the character of the cyclic prefix (CP).
However, the extracted spectral peak feature will become unstable under a low signal-to-
noise ratio (SNR). Reference [11] extracted the feature in the frequency domain waveform
to recognize multiple modulation modes. However, the extracted feature is only effective
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in the ideal UWA channel. Reference [12] extracted the mean value and the variance of the
spectral envelope as the features to recognize M-ary frequency shift keying (MFSK) and
the square spectrum envelope as the feature to recognize binary phase shift keying (BPSK).
However, this method does not consider the influence of the UWA multipath channel,
which is characterized by frequency-selective fading in the frequency domain.

Scholars have designed numerous classifiers, such as decision tree [13], support vector
machine (SVM) [14], and k-nearest neighbor (KNN) [15]. The decision tree classifier con-
tains the recognition order and multiple threshold settings, making it difficult to achieve
optimal performance. KNN has high complexity in processing a large amount of data. The
SVM classifier is mostly used in binary classification problems. The classifier is composed
of multiple SVM classifiers, and in the multi-classification problem, the performance will
be reduced and the complexity will increase. Deep learning has also become a popular
method for modulation mode recognition [16]. However, deep learning requires a substan-
tial amount of training data, which may be limited in application considering the great
difference in the channel environment in various sea areas.

On the basis of the above references, this work optimized the autocorrelation and fre-
quency domain waveforms to obtain a high robustness spectral peak and directly extracted
multiple local maximums as the spectral peak features from optimized waveforms to form
a feature set for training the classifier. A low-complexity random forest (RF) classifier
was designed to meet the demand of high-efficiency recognition in the underwater envi-
ronment. Finally, an effective recognition of orthogonal frequency division multiplexing
(OFDM), binary frequency shift keying (2FSK), four-frequency shift keying (4FSK), and
eight-frequency shift keying (8FSK) was realized. The proposed method can effectively
reduce the influence of a low SNR and multipath in the UWA channel. In addition, the
complexity of the classifier is low. The structure of this paper is as follows: The Section 2 of
this paper mainly describes the system model. In the Section 3, we propose the extraction
method of the spectral peak feature. In the Section 4, we mainly describe the design of the
RF classifier. In the Section 5, we analyze the simulation data. In the Section 6, we analyze
the experimental data. In the Section 7, we summarize the full paper.
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Figure 1. UWSNs.

2. System Model

Assuming that the transmitted signal is s(n), the received signal can be expressed
as follows:

x(n) = s(n) ∗ h(n) + w(n), (1)

where h(n) is the channel impulse response (CIR), w(n) is the channel noise, and ∗ repre-
sents the convolution operation. In this work, we assumed that the modulation mode of
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the received signal is one of OFDM, 2FSK, 4FSK, or 8FSK. This study aimed to recognize
the modulation mode of the received signal.

3. Proposed Spectral Peak Feature Extraction Method

In this section, we aim to optimize the autocorrelation and frequency domain wave-
forms, so that the optimized waveforms only have a large local maximum at the spectral
peak, while the local maximums in other areas are small. The optimized autocorrelation
and frequency domain waveforms of different modulation modes have obvious differences
in the amplitude of local maximums. Accordingly, these local maximums can be directly
extracted to realize the recognition of modulation modes. The process of the spectral peak
feature extraction method is shown in Figure 2, which includes three steps. The first step
is to pre-process the signal by the autocorrelation and Fourier transform. We can obtain
the autocorrelation and frequency-domain waveforms containing spectral peaks. The
second step is to optimize the autocorrelation and frequency-domain waveforms, including
the absolute value acquisition, spectral peak enhancement, moving average filtering, and
Gaussian fitting. The third step is to find local maximums. Each step is described in
detail below.

Received signal

 Autocorrelation Fourier transform

 Absolute value acquisition

Spectral peak Enhancement 

Moving average filtering

Gaussian fitting

Finding local maximums

Local maximums

Step 1:
Pre-processing

Step 2:
Waveform optimization

Step 3:
Feature extraction
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Figure 2. The process of the spectral peak feature extraction method.

3.1. Pre-Processing

Assuming that the length of the received signal x(n) is N, the autocorrelation process
of x(n) can be expressed as follows:

Rxx(k) =
N−1

∑
n=0

x(n + k)·x(n), k = 0, 1, . . . , N − 1, (2)

where Rxx(k) is the autocorrelation output and · represents the multiplication operation.
UWA OFDM uses the CP to resist the interference of the multipath channel, and the CP is
the copy of partial OFDM symbols. Accordingly, the autocorrelation operation in OFDM
will form another correlation peak other than the main peak. We removed the main peak
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according to the empirical value. This notion means that we only extracted the spectral
peak feature in the areas outside the main peak.

The frequency domain waveform represents the frequency distribution of the signal.
The N-point discrete Fourier transform (DFT) of x(n) can be expressed as follows:

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N kn, k = 0, 1, . . . , N − 1, (3)

where X(k) is the frequency-domain output. According to the characteristics of the DFT,
we only took the first N/2 points for processing. 2FSK, 4FSK, and 8FSK have significantly
different frequency-domain waveforms. 2FSK has two spectral peaks; 4FSK has four
spectral peaks; 8FSK has eight spectral peaks; obvious spectral lines will appear in the
spectral peaks at each modulation frequency.

3.2. Waveform Optimization
3.2.1. Absolute Value Acquisition

We use A(q) to represent Rxx(k) and X(k) for the convenience of formula derivation.
We assumed that the length of A(q) is Q. We took the absolute value of A(q) to obtain
the better spectral peaks from the autocorrelation and frequency-domain waveforms. The
output waveform after the absolute value operation can be expressed as follows:

B(q) = |A(q)|, (4)

where |·| represents the absolute value operation.

3.2.2. Spectral Peak Enhancement

We propose a new spectral peak enhancement method by using the energy difference
between two sliding windows. We established two sliding windows with different lengths
centered on the sampling point q of B(q) and obtained the gain coefficient c(q) through
calculating the energy difference between the two sliding windows. c(q) can be expressed
as follows:

c(q) = Eswin − (Elwin − Eswin), (5)

where:

Eswin =
q+swin

∑
i=q−swin

|B(i)|2, (6)

Elwin =
q+lwin

∑
i=q−lwin

|B(i)|2, (7)

where swincorresponds to a short sliding window, with the window length being 2swin + 1,
and lwin corresponds to a long sliding window, with the window length being 2lwin + 1. A
relationship of lwin = 2swin can be observed. Eswin is the energy of the short sliding window,
and Elwin is the energy of the long sliding window. In addition, we made c(q) = 0 directly
in the special case of c(q) < 0, q− swin ≤ 0, q− lwin ≤ 0, q + swin > Q or q + lwin > Q. The
output waveform after spectral peak enhancement can be expressed as follows:

C(q) = B(q) · c(q). (8)

Therefore, the waveform at the spectral peak is amplified, and the those in other areas
are suppressed. The length of the sliding window should include the spectral peak as much
as possible, but it should not be considerably long. 2FSK, 4FSK, and 8FSK have multiple
spectral peaks. A particularly long sliding window will lead to multiple spectral peaks in
the window. In addition, if the length of the sliding window is considerably short, then the
ability to resist interference will also be weakened.
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3.2.3. Moving Average Filter

We performed moving average filtering on waveform C(q). This step can reduce the
random noise and obtain the envelope of the spectral peak. The output waveform after
moving average filtering can be expressed as follows:

H(q) =
1

2U + 1

q+U

∑
i=q−U

C(i), (9)

where the length of the moving average filter is 2U + 1. A large number of pseudo envelopes
will form if the length of the moving average filter is considerably short. An amount of
useless information will be generated if the length of the moving average filter is long. We
set the length of the moving average filter to be consistent with the length of the short
sliding window to effectively obtain the envelope of the spectral peak waveform [17,18]. In
addition, we made H(q) = C(q) directly in the special case of q−U ≤ 0 or q + U > Q.

3.2.4. Gaussian Fitting

We performed Gaussian fitting on waveform D(q). This step can further smoothen
D(q) [19], which is conducive to the subsequent finding of local maximums. The Gaussian
window function can be expressed as follows:

G(q) = e−
1
2

(
α

q
(L−1)/2

)2

= e−q2/2σ2
, (10)

where the length of the Gaussian window is L, −(L− 1)/2 ≤ q ≤ (L− 1)/2, and α is
inversely proportional to the standard deviation σ = (L− 1)/2α of the Gaussian window
function. We set the length of the Gaussian window to be consistent with the length of
the short sliding window and the length of the moving average filter to effectively fit the
waveform. The output waveform after Gaussian fitting can be expressed as follows:

V(q) =
1
L

q+(L−1)/2

∑
i=q−(L−1)/2

H(i) · G(i). (11)

In addition, we made V(q) = D(q) directly in the special case of q− (L− 1)/2 ≤ 0 or
q + (L− 1)/2 > Q. Finally, we normalized V(q) to obtain an optimized waveform.

We took OFDM, 2FSK, 4FSK, and 8FSK as examples to illustrate how the proposed
waveform optimization method works for clarity. The channel used in the simulation was
the same as the channel in Section 5. The bandwidth of each modulation mode was 4 kHz,
and the center frequency was 12 kHz. An optimal performance was difficult to achieve
by setting the same parameters because these modulation modes have different spectral
peak structures. Accordingly, we set the length of the short sliding window of OFDM as
200 sampling points, the length of the short sliding window of 2FSK as the frequency point
length corresponding to the 600 Hz bandwidth, the length of the short sliding window
of 4FSK as the frequency point length corresponding to the 400 Hz bandwidth, and the
length of the short sliding window of 8FSK as the frequency point length corresponding
to the 200 Hz bandwidth according to the empirical value. Figures 3–6 show the process
of OFDM, 2FSK, 4FSK, and 8FSK waveform optimization. After the absolute value of the
waveform is multiplied by the gain coefficient, the spectral peak is enhanced. Subsequently,
the spectral peak envelope is formed after moving average filtering. Then, the envelope is
further smoothed by Gauss fitting. At this time, only a local maximum exists at the spectral
peak, while the local maximum is small or even tends to zero in other areas. Therefore, we
can extract these local maximums directly in the optimized waveform as the spectral peak
feature to realize the modulation mode recognition.
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Figure 3. Waveform optimization of OFDM. (a) Waveform after absolute value acquisition, (b) gain
coefficient, (c) waveform after spectral peak enhancement, (d) partial enlargement of the waveform
after moving average filtering, (e) partial enlargement of the waveform after Gaussian fitting, and
(f) partial enlargement of (e).
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Figure 4. Waveform optimization of 2FSK. (a) Waveform after absolute value acquisition, (b) gain
coefficient, (c) waveform after spectral peak enhancement, (d) partial enlargement of the waveform
after moving average filtering, (e) partial enlargement of the waveform after Gaussian fitting, and
(f) partial enlargement of (e).
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Figure 5. Waveform optimization of 4FSK. (a) Waveform after absolute value acquisition, (b) gain
coefficient, (c) waveform after spectral peak enhancement, (d) partial enlargement of the waveform
after moving average filtering, (e) partial enlargement of the waveform after Gaussian fitting, and
(f) partial enlargement of (e).
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Figure 6. Waveform optimization of 8FSK. (a) Waveform after absolute value acquisition, (b) gain
coefficient, (c) waveform after spectral peak enhancement, (d) partial enlargement of the waveform
after moving average filtering, (e) partial enlargement of the waveform after Gaussian fitting, and
(f) partial enlargement of (e).

3.3. Feature Extraction

First, we extracted all the local maximums of the optimized waveform. Then, we
sorted the local maximums according to the amplitude of the local maximum. Finally,
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we extracted the corresponding number of local maximums according to the modulation
mode. In the above simulation, we extracted the second local maximum because it is
relatively small when the modulation mode is OFDM. We extracted the second and third
local maximums because the former is greater than zero, while the latter tends to zero
when the modulation mode is 2FSK. We extracted the local maximums from the second
to the fifth because the local maximums from the second to the fourth are all greater than
zero, while the fifth local maximum tends to zero when the modulation mode is 4FSK. We
extracted the local maximums from the second to the ninth because the local maximums
from the second to the eighth are all greater than zero, while the ninth local maximum tends
to zero when the modulation mode is 8FSK. However, we did not know the modulation
mode of the received signal in the actual processing. Accordingly, we extracted the spectral
peak features according to the following process. First, we assumed the modulation mode
of the received signal. Then, we extracted the corresponding local maximums by setting
the parameters in the waveform optimization method according to the modulation mode.
Hence, a total of 15 local maximums were extracted. Finally, we used these extracted local
maximums to form a feature set.

4. RF Classifier
4.1. Classifier Principle

The RF classifier is composed of multiple decision trees. Assuming that the number
of features in the feature set is F, each decision tree node of the RF will randomly select
K features from the feature set, and an optimal feature is selected from the K features for
division. We used the CART decision tree [20] to illustrate how the optimal feature is
selected. CART decision tree uses the Gini index to select the optimal feature. We assumed
that a feature set called D contains M modulation modes, and the purity of D can be
measured by the Gini value. The Gini value can be expressed as follows:

Gini(D) = 1−
M

∑
m=1

pm pm, (12)

where pm(m = 1, 2, . . . , M) represents the proportion of modulation mode m. Equation (12)
illustrates that the smaller Gini(D) is, the higher the purity of D will be. D will be divided
into K branches with K features randomly selected by each decision tree node of the RF.
Any feature is assumed to be the kth feature, which divides D into D1

k and D2
k. The Gini

index of the kth feature can be expressed as follows:

Gini_index(D, k) =

〈
D1

k
〉

〈D〉 Gini
(

D1
k
)
+

〈
D2

k
〉

〈D〉 Gini
(

D2
k
)

, (13)

where 〈·〉 represents the number of samples in the feature set. Finally, the CART decision
tree selects the feature that minimizes the Gini index for division. The training process
of the RF classifier is shown in Figure 7. Assuming that the number of decision trees of
the RF is Q, feature sets D1 ∼ DQ are generated by the bootstrap sampling method [20],
and each decision tree is trained by the corresponding feature set. Figure 8 demonstrates
the decision process of the RF classifier. We summarize the recognition results generated
by each decision tree and screened out the modulation mode that frequently appeared in
the results.

4.2. Complexity Analysis

The RF classifier has less computational complexity, compared with common SVM
and KNN classifiers. The computation of linear SVM is proportional to the product of
the number of support vectors and the dimension of the feature set [14] when linear
SVM realizes the modulation mode recognition of a single signal for binary classification
problems. The computation of linear SVM will increase accordingly for multi-classification
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problems. In order to realize the modulation mode recognition of a single signal, by using
the KNN classifier, we needed to calculate the distance between the signal and all training
data to obtain its nearest neighbor, of which the computation was the highest among the
three classifiers. Assuming that the types of modulation modes to be classified are P,
in order to realize the modulation mode recognition of a single signal, the RF classifier
needs Q(P− 1) comparators at most in the decision process and Q− 1 adders and P− 1
comparators in the final voting process when there are Q decision trees. In addition, no
complex multiplication operation exists in the classification process of the RF classifier.
We can see from the comparison that the complexity of the classification process by using
the RF classifier was relatively lower. In practical applications, the modulation mode
recognition of non-cooperative UWA communication signals requires real-time monitoring.
Therefore, using the RF classifier can meet the needs of efficient recognition.
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Figure 8. The decision process of the RF classifier.

5. Results
5.1. Simulation Data Analysis
5.1.1. Parameter Setting

The sampling rate of the simulation system was 48 kHz. The UWA channel in the
simulation was cited from Reference [21]. Assuming the path number of channels was
10, the delay difference of adjacent paths followed an exponential distribution with an
average of 2 ms, and the average multipath delay spread was 20 ms. In order to satisfy the
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time-varying characteristics of the UWA channel, the multipath channel was generated
randomly when the communication signal was generated. We can see from Figure 9 that
when 100 communication signals were generated, 100 channels were randomly generated.
Because the number of signals with different modulation modes under each SNR was
150, and we had 41 SNRs and 4 modulation modes, and the total number of signals with
different modulation modes under all SNR was 24,600. The parameter setting of the
simulated signals is shown in Table 1.

Table 1. Parameter setting of the simulated signals.

Modulation Mode Center Frequency Bandwidth CP Length SNR Range
Number of

Signals Under
Each SNR

20 ms 50

OFDM 12 kHz 4 kHz 30 ms −20 dB–20 dB,
1 dB increment 50

40 ms 50
3 kHz 50

2FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 50

5 kHz 50
3 kHz 50

4FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 50

5 kHz 50
3 kHz 50

8FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 50

5 kHz 50

5 10 15 20 25 30

Time delay (ms)
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40

60

80

100
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e
r

Figure 9. CIR of 100 channels.

5.1.2. Robustness Analysis of Spectral Peak Features

Figure 10 shows that these 15 local maximums changed with the increase of the
SNR under the four modulation modes of OFDM, 2FSK, 4FSK, and 8FSK, and each local
maximum in the figure was obtained by averaging 150 signals. We can find from Figure 10
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that these extracted local maximums can remain stable with the increase of the SNR and
have a different distribution.
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Figure 10. The variation of the extracted local maximum with the increase of the SNR. (a) OFDM,
(b) 2FSK, (c) 4FSK, and (d) 8FSK.

We show the distribution of these 15 local maximums under different modulation
modes by using boxplots [22] (Figure 11). Firstly, we found out the upper and lower
edges, the median, and two quartiles of the local maximums in the feature set. Then,
we connected two quartiles to form the box. Finally, we connected the upper and lower
edges with the box. What we need to pay attention to is that the red line in the box is
the median, and feature values outside the upper and lower edges are outliers. We can
find from Figure 10 that these local maximums’ distribution tended to be stable when
SNR ≥ −10 dB. Therefore, we only used the simulation data when SNR ≥ −10 dB in
Table 1 in the following simulation. We can find only the second local maximum of OFDM
was small, while the second local maximum of other modulation modes was large from
Figure 11a. We can find that the second and the third local maximum of 2FSK had different
distributions compared to the other modulation modes and that the third local maximum
tended to zero from Figure 11b,c. We can find that the second to the fifth local maximum of
4FSK had different distributions compared to the other modulation modes and that the
fifth local maximum tended to zero from Figure 11d–g. We can find that the second to the
ninth local maximum of 8FSK had different distributions compared to the other modulation
modes and that the ninth local maximum tended to zero from Figure 11h–o. We can find
that these extracted local maximums had different distributions under different modulation
modes from the simulation results, as shown in Figures 10 and 11.
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Figure 11. Distribution of 15 extracted features under different modulation modes. (a) The second
local maximum of OFDM, (b) the second local maximum of 2FSK, (c) the third local maximum of
2FSK, (d) the second local maximum of 4FSK, (e) the third local maximum of 4FSK, (f) the fourth
local maximum of 4FSK, (g) the fifth local maximum of 4FSK, (h) the second local maximum of
8FSK, (i) the third local maximum of 8FSK, (j) the fourth local maximum of 8FSK, (k) the fifth local
maximum of 8FSK, (l) the sixth local maximum of 8FSK, (m) the seventh local maximum of 8FSK, (n)
the eighth local maximum of 8FSK, and (o) the ninth local maximum of 8FSK.

5.1.3. Parameter Determination of the Classifier

We determined the parameters of the RF classifier based on the recognition rate. The
sample in the simulation was 18,600 groups of signals when SNR ≥ −10 dB in Table 1. The
recognition rate was calculated by tenfold cross-validation. The classification process of the
RF classifier needs to determine two parameters: the number of decision trees Q and the
number of randomly selected features K.

Firstly, we determined parameter Q by setting K = log2F [20]. Figure 12a shows
the influence of parameter Q on the recognition rate after 50 Monte Carlo simulations.
We can find that the recognition rate tended to be stable with the increase of Q and that
the highest recognition rate was about 95% when Q was higher than 60 from Figure 12a.
Figure 12b shows the influence of parameter K on the recognition rate after 50 Monte Carlo
simulations. We can find from Figure 12b that the recognition rate increased first and then
decreased with the increase of K and that the highest recognition rate was 95.4% when
K = 8. Finally, we determined Q = 60 and K = 8 according to the simulation results in
Figure 12.
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Figure 12. Parameter determination of the classifier. (a) Number of decision trees and (b) number of
randomly selected features.

5.1.4. Performance Analysis of The Proposed Method

We analyzed the recognition performance of these extracted features combined with
the SVM, KNN, and RF classifiers. The SVM, KNN, and RF classifiers were trained on
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18,600 groups of signals with SNR ≥ −10 dB in Table 1. The validation data were newly
generated, and there were 1500 signals of different modulation modes under each SNR. The
multipath channel was generated randomly when the communication signal was generated.
The parameter setting of the validation set is shown in Table 2.

Table 2. Parameter setting of the validation set.

Modulation Mode Center Frequency Bandwidth CP Length SNR Range
Number of

Signals Under
Each SNR

20 ms 500

OFDM 12 kHz 4 kHz 30 ms −20 dB–20 dB,
1 dB increment 500

40 ms 500
3 kHz 500

2FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 500

5 kHz 500
3 kHz 500

4FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 500

5 kHz 500
3 kHz 500

8FSK 12 kHz 4 kHz - −20 dB–20 dB,
1 dB increment 500

5 kHz 500

The simulation results are shown in Figure 13, and we can find that RF classifier
performed best from the simulation results. The poor performance of the KNN classifier was
mainly due to the problem of insufficient performance when processing high-dimensional
data [23], and the performance of the linear SVM classifier will decline when the variance
of the feature set is large. Therefore, we focused on the performance of the RF classifier
here. We found that the recognition rate of OFDM reached 90% when the SNR was higher
than −6 dB and that the recognition rate of OFDM was stable at 98% when the SNR was
higher than 5 dB from Figure 13a. We found that the recognition rate of 2FSK reached
93.4% when the SNR was higher than −9 dB and that the recognition rate of 2FSK was
stable at 98% when the SNR was higher than −6 dB from Figure 13b. We found that the
recognition rate of 4FSK reached 92.27% when the SNR was higher than −8 dB and that the
recognition rate of 4FSK was stable at 96.5% when the SNR was higher than −3 dB from
Figure 13c. We found that the recognition rate of 8FSK reached 92.47% when the SNR was
higher than −6 dB and that the recognition rate of 8FSK was stable at 95% when the SNR
was higher than 3 dB from Figure 13d. This was because the higher the recognition rate, the
better the recognition performance of the classifier was. Therefore, we can know that the
recognition performance of 8FSK was the worst and that of 2FSK was the best. Because the
UWA channel in the simulation was randomly generated, the simulation results verified
the effectiveness of the proposed recognition method. The simulation results also showed
that the proposed spectral peak feature extraction method can reduce the influence of the
UWA channel effectively.
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Figure 13. Comparison of the recognition rate under different classifiers. (a) OFDM, (b) 2FSK,
(c) 4FSK, and (d) 8FSK.

5.2. Experimental Data Analysis

The experimental data were acquired in Bohai Sea. The depth of the transducer was
about 10 m, the depth of the hydrophone about 22 m, and the distance between transducer
and hydrophone about 1.5 km. The experimental diagram is shown in Figure 14a. The data
collection equipment used in the experiment is shown in Figure 14b. The emission source
level was about 170 dB, and the SNR of the received signal was about 12 dB in band. The
CIR measured during the experiment is shown in Figure 14c. We can find from Figure 14c
that there were obvious multipaths in the channel. The SVM, KNN, and RF classifiers were
trained on 18,600 groups of data with SNR ≥ −10 dB in Table 1. The sampling frequency
of the system was 100 kHz. The parameter setting of the experimental signals is shown in
Table 3.

Table 3. Parameter setting of the experimental signals.

Modulation Mode Center Frequency Bandwidth CP Length SNR Range
Number of

Signals Under
Each SNR

OFDM 12 kHz 4 kHz 32 ms 12 dB 240
2FSK 12 kHz 4 kHz - 12 dB 240
4FSK 12 kHz 4 kHz - 12 dB 240
8FSK 12 kHz 4 kHz - 12 dB 240

Table 4 shows the comparison of the recognition rates of the SVM, KNN, and RF
classifiers, and we can see the classification performance of the RF classifier was the
best among them from Table 4. The recognition rate of OFDM was 91.25%, that of 2FSK
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100%, that of 4FSK 97.08%, and that of 8FSK 96.25%. We can find from the experimental
results that the RF classifier trained on the simulation data realized a high recognition rate
classification result on the experimental data, which fully proves the effectiveness of the
proposed recognition method.
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Figure 14. Experimental environment. (a) Experimental diagram, (b) data acquisition equipment,
and (c) measured CIR.

Table 4. Classification results of the experimental data.

Predicted
Actual OFDM 2FSK 4FSK 8FSK

SVM: 217(90.42%) SVM: 1 SVM: 6 SVM: 16
OFDM KNN: 208(86.67%) KNN: 1 KNN: 7 KNN: 24

RF: 219(91.25%) RF: 3 RF: 4 RF: 14
SVM: 0 SVM: 240(100%) SVM: 0 SVM: 0

2FSK KNN: 0 KNN: 231(96.25%) KNN: 7 KNN: 2
RF: 0 RF: 240(100%) RF: 0 RF: 0

SVM: 0 SVM: 11 SVM: 224(93.33%) SVM: 5
4FSK KNN: 0 KNN: 13 KNN: 222(92.50%) KNN: 5

RF: 0 RF: 3 RF: 233(97.08%) RF: 4
SVM: 0 SVM: 4 SVM: 34 SVM: 202(84.17%)

8FSK KNN: 5 KNN: 11 KNN: 58 KNN: 166(69.17%)
RF: 2 RF: 0 RF: 7 RF: 231(96.25%)
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6. Discussion
6.1. Significance of the Proposed Method

The spectral peak extraction method proposed in this work provides a new idea
for UWA communication signal feature extraction. After preprocessing and waveform
optimization, the spectral peak features can maintain high robustness in the UWA chan-
nel. The feature with high robustness can greatly improve the recognition rate of UWA
communication signals.

The proposed spectral peak feature extraction method can be further applied to the
estimation of the carrier frequency of the UWA FSK signal. The multipath of the UWA
channel will lead to frequency-selective fading. Hence, the carrier frequency of the FSK
signal is difficult to estimate based on the traditional method. The position of the frequency
point corresponding to the spectral peak is the estimated frequency in the proposed method.

The designed RF classifier can greatly ensure the efficiency and performance of recog-
nition. In practical applications, the recognition performance of the RF classifier will be
higher with the addition of more experimental data to train the RF classifier.

The application scenario of the proposed method is to realize the recognition of non-
cooperative UWA communication signals in sea areas. After realizing reliable recognition,
parameter estimation and blind demodulation can be further achieved. Therefore, the
proposed method can be used as the basis for subsequent research.

6.2. Limitations of the Proposed Method

The setting of the empirical values in the spectral peak feature extraction method
proposed in this work is not applicable to FSK signals with all bandwidths. If the bandwidth
of FSK signals is small or large, then the performance of the spectral peak extraction method
may be reduced. In the practical application of the proposed method, the bandwidth of the
signal should be estimated first. Then, the corresponding empirical value should be set
according to the bandwidth to achieve the optimal performance of the proposed method.

7. Conclusions

This work presented an efficient recognition method for different modulation modes,
including OFDM, 2FSK, 4FSK, and 8FSK, in the UWA channel. First, the autocorrelation
and frequency-domain waveforms of the communication signal are easily affected by the
UWA channel, resulting in the spectral peak feature instability. To solve this problem, we
proposed a new spectral peak feature extraction method to obtain a high robustness feature,
which contains pre-processing, waveform optimization, and feature extraction. Then, we
designed an RF classifier that can meet the needs of efficient recognition. Finally, we
realized effective recognition by combining the extracted features with the RF classifier. We
verified the proposed method through simulation and experimental data. The simulation
results showed that the recognition rate of OFDM reached 98% when the SNR was higher
than 5 dB, that of 2FSK reached 98% when the SNR was higher than −6 dB, that of 4FSK
reached 96.5% when the SNR was higher than −3 dB, and that of 8FSK reached 95% when
the SNR was higher than 3 dB. Although the RF classifier was trained by the simulation
data, the recognition rate of all modulation modes can still reach more than 90% according
to the experimental results.
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