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Abstract: As part of the research for techniques to control the final energy reaching the receivers of
central solar power plants, this work combines two contrasting methods in a novel way as a first
step towards integrating such systems in solar plants. To determine the effective power reaching the
receiver, the direct normal irradiance was predicted at ground level using a total sky camera, TSI-880
model. Subsequently, these DNI values were used as the inputs for a heliostat model (Fiat-Lux) to
trace the sunlight’s path according to the mirror features. The predicted valuex of flux, obtained from
these simulations, differ of less than 20% from the real values. This represents a significant advance
in integrating different technologies to quantify the losses produced in the path from the heliostats to
the central receiver, which are normally caused by the presence of atmospheric attenuation factors.

Keywords: central solar power plant; sky cam images; flux simulation; solar plant control; remote
sensing; solar energy; image processing

1. Introduction

Climate change and pollution problems worldwide have led to an international com-
mitment to utilize renewable energy sources [1], such as solar energy, which provides an
infinite and reliable resource. Fundamentally, the de-carbonization of the planet requires
consolidated alternatives that can meet society’s energy demand [2].

Central Solar Tower Power (CSTP) plants have been constructed all around the world,
at a rate that has increased markedly over recent decades. Their function is to produce
electricity by concentrating the sunlight captured by heliostats onto a receiver located on
top of a central tower [3], generating the electricity in a rotary generator that drives a steam
turbine [4,5]. However, not all the radiation hitting the mirrors reaches the receiver [6].
In part, this is because most CSTP plants are located where there is a low-to-medium
probability of cloud occurrence but a high probability that episodes of high aerosol con-
centrations or dust intrusion may occur. Moreover, other phenomena like reflection losses,
beam enlargement, misalignments, dust, etc., cause a decreasing in the total flux that arrives
to the receiver.
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Attending to the the solar energy reflected off the concentrating mirrors, one can ensure
that is attenuated by the atmospheric constituents as it travels to the tower receiver [7–9].
Unfortunately, this atmospheric mirror-to-tower attenuation is given minimal importance
by the ray-tracing and plant optimization tools, the codes of which are mostly limited to
only two distinct turbidity conditions (DELSOL, MIRVAL, among others). Although this
attenuation problem limits the size and geometry of the heliostat field in these types of
plants, the above-mentioned tools tend to consider standard atmospheric conditions. That
is why it is necessary to include both factors in order to correctly evaluate and predict the
direct radiation values at the tower receiver [10,11].

Sky cameras have been used to characterize the atmosphere from a terrestrial perspec-
tive [12,13]. This technology can be installed in any geographical location, providing a
hemispheric view of the sky in real time. Subsequently, many researchers have utilized
these cameras for cloud detection [14–16]. Specifically, cloud prediction with ground-based
sky cameras has been used to determine when clouds might position themselves over
a solar field. With this information, CSTP plant operators can predict plant operation
strategies and adapt them to the weather conditions. Atmospheric constituents also play
an important role in radiation attenuation and must be taken into account in the solar
irradiance estimation [17]. Sky cameras have even been used to estimate and predict the
solar resource [18–21], particularly the Direct Normal Irradiance (DNI), to more accurately
measure the incidence level of solar radiation on the earth’s surface [22]. Intra-hourly DNI
forecasts have been carried out using adaptive clear-sky modeling and cloud tracking, in
which a short-term DNI prediction algorithm was developed to mitigate the effects of CSP
production intermittency [23].

Even if one knows the irradiance level over the solar field’s ground surface at a CSTP
plant, it would not be possible to determine the effective irradiance reaching the central
receiver without using a ray-tracing simulation code, as mentioned above. So far, there have
been few works combining irradiance prediction algorithms with ray tracing to predict the
short-term power flux on the receiver of the CSTP plant. In a general vision, a ray-tracing
software consider the solar irradiance measured at ground to simulate the sun reflection to
the central receiver.

In this work, a novel combination of methodologies is presented that predict the
power flux from the sun to the central tower of a CSTP plant. To do this, three consecutive
minute-by-minute images taken with a TSI-880 sky camera have been used, from which a
prediction is made of the irradiance at the solar-field level. From this prediction, the power
projected onto the focal point of the tower, located at a distance of 270 m, can be calculated
using the Fiat-Lux model.

2. Materials and Methods

In this section, we present the resources employed to carry out the simulation for
predicting the direct normal irradiance at the central tower receiver of a solar thermal
power plant. The site chosen was the Plataforma Solar de Almería (PSA), Spain, at 37.10◦N,
2.36◦W and 460 m above sea level.

2.1. Data Collection

A total sky camera with a rotational shadow band (namely, a TSI 880 model) was used
for the solar radiation forecasting. The hemispheric view was represented in JPEG (joint
photographic expert group) images, as the output of TSI-880, with a 352 × 288 pixel-image
resolution. Each pixel can have a value between 0 and 255, meaning a pixel resolution
of 8 bits. All the images were collected at one-minute intervals when the solar altitude
(in degrees) was higher than 5◦—this was to avoid image processing problems derived
from atmospheric variations. The camera was installed at the northernmost end of the PSA
site, collecting one hemispherical view of the sky every minute. The camera siting was
chosen to avoid interferences with the tower and the mirrors, or with any other buildings
or systems. Figure 1 shows a picture of the sky camera emplacement and the solar field.
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Figure 1. The TSI-880 sky camera placed at the northern end of the PSA site.

2.2. DNI Forecasting Approach

The main objective of this work is to predict the direct normal irradiance (DNI) at the
top of the central tower of the CESA central solar power plant. For this purpose, images
from the TSI-880 sky camera have been used. With the sky camera, it is possible to predict
the global horizontal irradiance (GHI) up to 2 h ahead, and then make a projection of the
irradiance reaching the receiver of the central solar tower power plant by means of a model
that simulates the ray tracing between the heliostats and the central receiver, i.e., that which
occurs after the sunlight arrives at the heliostat mirrors. The general schema for the system
based on these two principles is defined in Figure 2.

A new sky
cam image

(initial point)

DNI estimation
at pixel level

3
consequtive

images

Yes

No

Motion of
pixels

DNI forecastingFiat-Lux model

Flux
forecasting in

the central
receiver

Cloud motion
vectors (CMV)

Figure 2. Flowchart of the process used for the DNI forecasting at the PSA site.
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The flowchart shows the various steps necessary to carry out the DNI prediction at the
central tower receiver. These actions will be presented in more detail in the subsections below.

2.3. DNI Estimation at the Pixel Level

In order to estimate the irradiance at the pixel level, it is necessary to work with the
image’s digital information obtained via the red (RD), green (GR) and blue (BL) channels
that make up the RGB color space. Moreover, the digital value for each pixel is converted to
the HSV space, where H is the ‘Hue’, S is the ‘Saturation’ and V is the ‘Value’. Specifically,
the methodology presented by Alonso and Batlles 2015 [14] has been followed, where a
correlation between the ND (digital level) and the DNI values is performed. This correlation
depends on the position of each pixel in the image, using the sun as the reference point,
for each moment of the day.

The digital pixel levels in the image behave differently depending on their proximity
to the solar area. Therefore, knowing the distance between each pixel and the “sun pixel”
is the key to processing the digital values. The solar pixel is obtained using the solar
height and azimuth functions. These two geographic variables define the sun’s position
in the image. So, to measure the distance from the pixels in the image to the “sun pixel”,
the Euclidean distance is calculated according to trigonometric functions. The distance is
applied to all the image pixels, resulting in a matrix made up of distances. As presented
in the work of Alonso et al. [24], the area around the sun appears more saturated (too
large amount of radiation), progressively diluting out towards the rest of the image. After
observing different times of the day, different dates and different times of the year, it was
determined that this area varied depending on the time of day. Therefore, the radius that
defines it is dynamic and depends on the solar altitude. After an adjustment is made for the
different images, this radius is obtained from the following expression, proposed in [14]:

Radius = −0. 9646α + 99. 2986 (1)

Three different areas are formed in the image: area 1—closest to the sun; area 2—an
intermediate zone; and area 3—the area farthest from the sun. This division was proposed
in a previous paper [14], according to the pixel level (digital level) of the pixels in an image.
Concretely, this paper studies the composition of an image, discovering that the pixels
near to the sun position appeared with higher RGB values than pixels that were farther.
Therefore, we decided to use the same method, where, depending on the moment of the
day, the areas have different dimensions. Hence, to treat each pixel, it is necessary to know
its position with respect to the sun.

Once we had the three areas defined in the last stored image, for each type of sky
condition (cloudy or cloudless pixel), the channels’ digital values were correlated with the
solar height for Area 1, to determine the digital levels (ND). Area 1 is considered the most
representative in terms of beam irradiance since it covers the solar area; thus, any clouds
that might be in the way of the sun will have an immediate effect on the digital level of the
pixels in this area, varying their values. The other areas better define the diffuse and global
irradiance components, thus giving further sky characterization since these components
are more global and help to estimate the irradiance values more accurately. Table 1 shows
the final correlations, following the criteria used in [14], where GR represents the pixel
value in the green channel.

Table 1. Determination of the best correlations of digital image levels based on the solar altitude (ND)
and the sky condition.

Area 1

Sky Condition Digital Level (ND)

Area 1 Cloudless (GR/RD) sin(α)
Overcast (V/RD) sin(α)
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In all cases, the product between the correlations and the sine of the solar altitude are
necessary for a closer relationship between the correlations and the solar irradiance. Based
on the pixel type (cloudless or overcast), the next step consists of determining the solar
irradiance value for each image pixel.

To do this, Table 2 shows the polynomial coefficients (following the expression
ax6 + bx5 + cx4 + dx3 + ex2 + fx + g) establishing a solar radiation value for cloudless and
overcast skies, as a function of ND. This methodology has been carried out according
to [14], where the DNI value of a pixel is established by using the polynomials presented
on the table.

Table 2. Polynomial coefficients for determining the DNI based on ND, for cloudless (Cloudl.) and
overcast (Overc.) skies at the pixel level.

Sky Condition Coefficients (a, b, c, d, e, f, g)

Area 1 Cloudless −2.35, 4.37, 5.86, 14.39, −83.44, 120.70, 805.70
Overcast 0.32, −3.63, 6.37, 24.92, −17.14, 20.86, 116.40

However, to choose the correct polynomial (for cloudless or overcast skies), it is
necessary to know if the pixel is covered or not by clouds. For this, a methodology is used
to identify clouds based on sky camera imaging processing [18]. In the article, the authors
presented a method for identifying clouds from the pixels of a sky camera image, combining
the different color spaces. To define whether or not there are clouds in a pixel, the ND value
is applied to the corresponding polynomial (cloudless or overcast) to give a numerical
radiation value for all the pixels.

2.4. Determination of the Cloud Motion Vectors (CMV)

To make a prediction, it is necessary to have a sequence of consecutive images. Specifi-
cally, three images from the sky camera (a total of 3 min) are used to establish a correlation
between them and to determine the cloud movement behavior pattern. For this, the spheri-
cal image of the sky camera is split into different sectors to study the cloud motion in each.
By applying the Maximum Cross-Correlation method, the cloud motion vector is calculated
for each sector [25]. This method produces a pixel maximum between two consecutive
images compared, obtaining the representative cloud motion. Given several consecutive
images, in our case 3, the method goes through all the pixels to find an identical pixel
between two consecutive images. If a displacement is observed in the pixel, it means that
there is movement, in which case it is the movement of the clouds. Therefore, the image is
divided into sectors, 23 to be precise, according to the work carried out in [22], to check
that the movements are spatially and temporally coherent. Subsequently, we apply differ-
ent quality tests to ensure the correct cloud motion determination. The purpose of these
quality tests is to detect erroneous movements. For this purpose, it is ensured that between
images 1 and 2, images 2 and 3, and images 1 and 3, there is a concordance of movements
(spatial and temporal). From this, we can determine the representative movement of each
sector so that it can be applied to the last image to estimate future pixel movements.

Nonetheless, in this work, we do not intend to move clouds but to move irradiance
indices. To do so, it will be necessary to estimate the global component at the pixel level in
order to move the pixels and then the global irradiance value assigned to each pixel.

2.5. Motion of Pixels and DNI Forecasting

The CMV is applied to the last image received, from 1 to 120 times, thus representing
the pixel motion from the first minute up until the 120th minute. At each pixel, we have
estimated the DNI, so the purpose is to move the pixels according to the cloud movement
described by the CMVs. Specifically, what we are applying are the vectors to the estimated
direct normal irradiance levels; that is, we are moving the pixels and, therefore, the DNI
values. Figure 3 shows a scenario identifying the CMVs in a point image.
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Figure 3. Representation of the CMV determination in each sector of the sky-camera image.

Finally, each movement corresponds to 1 min of prediction. As the pixels have moved,
the average of the irradiance values has to be calculated following the pixel movement
in Area 1. Consequently, to estimate a single beam solar radiation value, the beam solar
radiation values from the pixels in Area 1 are averaged [22].

2.6. Fiat-Lux Simulation

After the DNI on the ground has been predicted using the method developed for the
sky camera, the next step consists of analyzing the losses in the path between the heliostats
(on the ground) and the receiver (on top of the central tower). The main idea is to control
the primary errors resulting from the simulation process for predicting the DNI on the
tower’s receiver.

Normally, the optical losses are computerized using past data and a model able to
control enough of the variables involved in characterizing the sunlight’s path [26,27]. In this
work, the flux density, in W/m2 is predicted on the tower receiver (located 82 m above
ground level) using the predicted DNI data and the Fiat-Lux model [28]. Fiat-Lux is a ray-
tracing code developed in Matlab© environment by PSA in 1977 for simulating the optics
of heliostat prototypes and later extended to heliostat fields. Its main feature is that it uses a
real sunshape as input signal in the sun specular reflection process on the heliostat surface.
The sunshape picture is captured by a high resolution imaging device and transformed in a
matrix representative of the relative gray-scale sun intensity. The known spatial calibration
of the camera, i.e., angle subtended by adjacent pixels, plus the simultaneous measurement
of a pyrheliometer, provide a sun image whose pixels are calibrated both geometrically and
in terms of direct solar irradiance coming from the solar disk. This calibrated sunshape
matrix is projected onto the target by a previously modeled heliostat reflecting surface,
following the reflection law. For a single heliostat the reflecting surface is initially modeled
using 11 parameters enough to describe morphology, geometry and mirror waviness. This
heliostat was selected from the CESA-I PSA solar field, and consists of a 39.9 m2 twelve-facet
heliostat with a focal distance of 260 m and a solar weighted reflectance of 0.94. The final
projection of the sun shape reflected by the mirror is made using the ray-tracing technique.
After applying the Fiat-Lux code, an estimation of the total irradiance distribution reaching
the receiver is obtained.

3. Results

In this section, we present the DNI prediction results for the central tower receiver
at the CESA-1 plant. The total flux on the PSA’s central tower receiver was predicted for
different time intervals, following the purpose of this work to include the DNI forecasting,
from the TSI images, in the Fiat-Lux model, to compare the predictions with real DNI
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values. As the DNI forecasting from the TSI-880 is performed up until 120 min, at one-
minute intervals, we carried out the flux prediction for 30, 60 and 120 min, as representative
meteorological prevision values.

To be able to perform the ray tracing correctly, the sun’s position at instant m (at
which the prediction is made) is taken into account. In this work, different moments
have been simulated, with different solar altitudes, over two full days, where the DNI
prediction method is combined with the flow modeling in the tower using the Fiat-Lux
model. Specifically, the days of 9 and 10 March 2017 were analyzed.

Since the purpose of this work is to quantify the error propagation of the methods
used for predicting the flux on the tower receiver, two consecutive cloudless days at the
PSA were selected as the most appropriate for these studies; this is because atmospheric
attenuation is easier to identify under clear sky conditions than under overcast skies,
avoiding uncertainties provide by clouds, like prediction, composition, etc. The 9 and
10 March 2017 were considered cloudless according to the DNI curves, as they appear in
Figure 4.

Figure 4. DNI measured on 9 and 10 March 2017 at the PSA site.

Therefore, the first step is to determine the DNI forecasting at ground level using
the sky camera. To analyze how successful the DNI prediction at the PSA is (from 1 to
120 min), certain statistical indicators were used, such as the normalized mean bias error
(Equation (2)), the normalized root-mean-square error (Equation (3)) and the correlation
coefficient (Equation (4)), used in different studies [14,22,24].

Therefore, the first step consisted in the determination of the DNI forecasting at ground
level using the sky camera. For analyzing the success of the DNI prediction in the PSA (from
1 to 120 min), some statistical indicators, like normalized mean bias error (Equation (2)),
normalized root-mean-square error (Equation (3)) and correlation coefficient (Equation (4)),
were used

nMBE(%) = [(

1
N

N
∑

i=1
(DNIest − DNImea)

DNImax − DNImin
)100] (2)

where N is the number of cases studied, DNIest is the estimated DNI, DNImea is the measured
DNI, DNImax represents the maximum DNI value and DNImin the minimum from the
measured values.

nRMSE(%) = [(

√
1
N

N
∑

i=1
(DNIest − DNImea)2

DNImax − DNImin
)100] (3)

r =
σDNIestDNImea

σDNIest σDNImea

, (4)
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where σDNIestDNImea is the covariance of the two input data sets (the estimated and measured
DNI), and σDNIest and σDNImea are the covariances of the estimated and measured DNI,
respectively. According to this, Table 3 shows the results of the DNI forecasting.

Table 3. Statistical errors of DNI forecasting on the ground for the two cloudless days selected.

Forecast Time nMBE (%) nRMSE (%) r

1 min −10.73 14.63 0.92
30 min −9.62 15.74 0.87
60 min −7.70 17.52 0.77
120 min −2.68 21.60 0.54

The DNI forecasting results at ground level present values below 20% nRMSE for all
the predictions, except that for 120 min, which increases a little. Furthermore, the nMBE
shows that the DNI is always underestimated, with values lower than 10% approximately,
whereas the r-value shows that the DNI is predicted with an r-value of 0.97 for one
minute and 0.87 for 30 min. As shown, the nMBE is higher in the first minute than for
120 min, the reason being that, in this temporal horizon, the prediction gives a higher
underestimation that is not easy to solve due to the saturation of pixels in the sun area.

Given the high computational cost of simulating the ray tracing, simulations have
been performed using the estimated and predicted DNI values. Specifically, for March 9th,
the predictions were carried out at 9:02 UTC (Universal Time Coordinated) and 12:02 UTC,
with time horizons at 1, 30, 60 and 120 min. For each prediction time, rays were plotted
according to the sun’s position, the reference heliostat and the focal point located in the
central tower. Figures 5 and 6 show the different scenarios analyzed for 9 March 2017.

Figure 5. Scheme of the DNI forecasting simulation on the target (9 March 2017 at 12:02 UTC).



Remote Sens. 2022, 14, 1602 9 of 17

Figure 6. Scheme of simulation for DNI forecasting on target (9 March 2017 at 12:02 UTC).

In each of the figures presented (Figures 5 and 6), there are four different scenarios.
Each scenario shows the ray-tracing simulation from the time the sun hits the reference
heliostat until it is projected onto the focal point of the tower’s receiver. Initially, the
prediction is made a minute before the time of the first scenario; for example, for Figure 5,
all the predictions are made at 9:02 UTC, with the first prediction being minute 1 (9:03
UTC), the second being minute 30 (9:32 UTC) and so on, for all the scenarios and figures
presented. Moreover, for each prediction time, the flux distribution at the focal point has
been calculated, using the actual irradiance and the irradiance predicted by the sky camera.
Specifically, an example can be seen in Figure 7, where the irradiance predicted at 120 min
from the sky cam was used in the simulation.

As one can observe, the concentration of the rays forms a non-perfect circle, with dif-
ferent irradiance levels depending on their position with respect to the center; these are
expressed on a scale in kW/m2. Figure 8 shows the horizontal and vertical flux distribu-
tion for the analyzed case in more detail, according to the proximity to the center of the
concentration.

As a graph, one can see how the irradiance is higher than 8 kW/m2 at the center of the
focal point, while lower at the ends, thus forming a Gaussian bell with the center at 0 m.

Furthermore, the day of 10 March 2017 was studied to quantify the prediction at
the flux focus under a clear sky. In this case, three times of the day were set: 7:17, 9:07
and 12:02 UTC. For each time, predictions were made from 1 min to 120 min, simulating
the projections with actual and predicted irradiance values to observe the differences.
Figures 9–11 show the different scenarios analyzed for 10 March 2017.
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Figure 7. Flux distribution on the target (9 March 2017 at 14:02 UTC).

Figure 8. Vertical and horizontal flux profile on the target (9 March 2017 at 14:02 UTC).
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Figure 9. Scheme of the DNI forecasting simulation on the target (10 March 2017 at 7:17 UTC).

Figure 10. Scheme of the DNI forecasting simulation on the target (10 March 2017 at 9:07 UTC).
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Figure 11. Scheme of the DNI forecasting simulation on the target (10 March 2017 at 12:02 UTC).

In these images, and in the scenarios analyzed, one can see how the position of the sun
varies throughout the day and how it influences the ray tracing from the heliostat to the
focal point located on the central tower at CESA-1. Figure 12 shows the flux distribution
on the target located at the top of the tower, 259.53 m from the reference heliostat, for the
prediction made at 9:07 UTC for 2 h ahead (11:07 UTC).

The concentration differs from that seen in Figure 7, as the ellipse is defined in another
direction, according to the sun’s position with respect to the reference heliostat and the
tower. Figure 13 shows the horizontal and vertical flux distribution for the analyzed case in
more detail.

As one can observe, the plots showing the flux distribution on the two axes are quite
similar and are only conditioned by the level of concentrated irradiance, which is why only
two specific cases have been presented from all the simulations.

Subsequently, for each minute of prediction, we obtained a flux value on the receiver
that compared with the flux value should the real DNI have been used. For each prediction,
several variables were obtained, such as the predicted and measured DNI, the predicted
and real total available power (PTAP and RTAP, respectively) at ground, the predicted and
real total power on target (PTPT and RTPT, respectively), the average cosine factor (ACF),
the predicted irradiance peak (PIP) and the real irradiance peak (RIP). Table 4 summarizes
the values obtained in the experiment carried out at the PSA site on 9 and 10 March 2017,
in which we have analyzed moments with low solar altitude angles (early moments) and
high altitude angles (midday approximately).
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Figure 12. Flux distribution on the target (10 March 2017 at 11:07 UTC).

Figure 13. Vertical and horizontal flux profile on the target (10 March 2017 at 11:07 UTC).
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Table 4. Representation of the results obtained during the experiment performed in the solar field at
the PSA, where the first column represents the date and hour of the prediction and the second column
shows the time of the prediction; the other columns represent the numerical variables considered in
the study. DNI predicted and DNI measured (in W/m2), the predicted and real total available power
(PTAP and RTAP, respectively) at ground, the predicted and real total power on target (PTPT and
RTPT, respectively), the average cosine factor (ACF), the predicted irradiance peak (PIP) and the real
irradiance peak (RIP).

Date of
Prediction

Forecast DNI DNI PTAP
(kW)

RTAP
(kW)

PTPT
(kW)

RTPT
(kW) ACF

PIP
(kW/m2)

RIP
(kW/m2)

Time Predicted Measured
(UTC) (W/m2) (W/m2)

9 March 1 min 849.9 912.0 33.7 36.7 28.9 31.1 0.86 7.5 8.1
2017 30 min 848.0 949.0 33.6 37.6 29.5 33.0 0.88 7.7 8.6
9:02 60 min 846.0 975.0 33.6 38.7 30.0 34.6 0.89 8.9 9.1

120 min 845.5 1004.0 33.5 39.8 31.0 36.6 0.92 8.1 9.7

9 March 1 min 862.0 1015.0 34.2 40.3 31.9 37.5 0.93 8.4 9.9
2017 30 min 861.0 1013.0 34.2 40.2 31.9 37.5 0.93 8.4 9.9
12:02 60 min 860.9 1008.0 34.2 39.9 31.8 37.2 0.93 8.4 9.8

120 min 861.0 993.0 34.5 39.4 31.4 36.2 0.92 8.3 9.5

10 March 1 min 826.0 659.0 32.8 26.1 25.3 20.2 0.78 6.3 5.0
2017 30 min 826.3 798.2 32.8 31.7 26.2 25.3 0.80 6.6 6.4
7:17 60 min 826.0 881.0 32.8 35.0 27.0 28.8 0.82 6.9 7.4

120 min 826.0 983.0 32.8 39.0 28.4 33.8 0.87 7.4 8.8

10 March 1 min 851.8 973.0 33.8 38.6 29.1 33.2 0.86 7.6 8.6
2017 30 min 851.8 1002.0 33.8 39.8 29.7 35.0 0.88 7.8 9.1
7:17 60 min 851.8 1024.0 33.8 40.6 30.3 36.4 0.90 7.9 9.5

120 min 851.8 1051.0 33.8 41.7 31.1 38.3 0.92 8.2 10.1

10 March 1 min 863.6 1057.0 34.3 41.9 31.9 39.0 0.93 8.4 10.3
2017 30 min 863.6 1056.0 34.3 41.9 31.9 39.0 0.93 8.4 10.3
7:17 60 min 863.6 1052.0 34.3 41.7 31.9 38.8 0.93 8.4 10.2

120 min 863.6 1028.0 34.3 40.8 31.4 37.4 0.92 8.3 9.9

These insolation levels are translated into total available power, depending on the
heliostat properties, where the predicted and real values follow the same trend as the DNI.
By multiplying the available power and the ACF values, the power on target is obtained.
This variable represents the amount of insolation that reaches the target/receiver of the
central tower. In our case, the best results are presented for the first prediction minute on
9 March, where the difference between the real and predicted potential in the receiver is
below 8%.

In all the situations, the predicted DNI is always underestimated, as one can clearly
see. This means the predicted PTAP values are always lower than the RTAP values by
approximately 12%, matching the percentage difference between the average PIP and RIP
values. However, the difference between the PTPT and RTPT values increases slightly,
to 16%, probably due to the standard deviation that may occur in the simulation model,
which in this case is approximately 4.0%.

Normally, the predicted values are lower than the measured values due to several
processes, except at the early moments, as can be seen in the first predictions at 7:17
on 10 March, when the solar altitude was 9◦. In this moment, there is a peak, but it
is demonstrable that the predictions work better with higher solar altitudes (normally
above 10–15◦) [22]. For the other cases, we can observe that, as with the other variables,
the differences between the predicted and real power on target are always below 20%.
Finally, the irradiance peak allows us to quantify the peak of insolation that reaches the
receiver (per square meter). This value is very important for determining the distribution
of the heliostat reflection on the volumetric receiver. In this case, the values vary from 5.0 to



Remote Sens. 2022, 14, 1602 15 of 17

10.3 kW/m2 if the real flux is used, and from 6.3 to 8.9 if the radiation is predicted. In these
situations, the difference between the measured and predicted values is also below 20%.

Consequently, a model has been developed for predicting the flux on the target of
a central tower, detailing the differences that can occur in a prediction system when
estimating and predicting the solar resource, and when simulating the flux in the central
tower. For all cases, the difference was in the 12 to 16% range for clear sky conditions and
for different solar heights on the same day.

4. Conclusions

In this work, we have presented the results of an experiment carried out at the PSA site
to predict the flux on the receiver of the central tower. Two cloudless days were selected:
9 and 10 March 2017.

A model TSI-880 sky camera was installed in the PSA solar field to predict the short-
term DNI (nowcasting). The DNI was estimated and predicted using the maximum
cross-correlation method and the digital image levels. Specifically, the prediction was made
for several moments of the days, from one to 120 min, at one-minute intervals. To do this,
the sun area pixels were used to obtain the future radiation at ground level in real time.
In this work, periods of 1, 30, 60 and 120 min were used.

To project the DNI reaching the central tower receiver from the ground, the Fiat-Lux
model was employed to determine the sun’s trajectory and optical losses. Subsequently, the
experiment involved the simulation of the flux value on the receiver. In this way, real and
forecasted power-on-target values have been compared, by means of the combination of a
total sky camera and Fiat-Lux ray-tracing model.

Analyzing the results, we can state that the nRMSE differences between the real
measured values and those obtained from the sky camera predictions are below 16%
for 30 min of prediction. For the total available power and peak irradiance predictions,
the average difference between the actual and predicted values is 12% from 1 min to
120 min, while the Fiat-Lux simulation represents a 4% deviation over the value predicted
with the TSI-880 camera.

To summarize, in this work, we have defined a novel combination of solar irradiance
forecasting (using sky cams) and flux simulation in a CSTP plant environment. It has
been possible to work with real data from a ground-level DNI prediction, which has
served as input for flux simulations at a central tower receiver. We have detailed the steps
and numerical statistical errors that occur when predicting the solar flux on the receiver.
To improve this process, the next step would be to include mechanisms for detecting
atmospheric attenuation, which would help to optimize DNI forecasting techniques.
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