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Abstract: Road safety is important for the rapid development of the economy and society. Thus, it is
of great significance to monitor the dynamic changing processes of road diseases, such as cavities, to
provide a basis for the daily maintenance of roads and prevent any possible car accidents. The ground
penetrating radar (GPR) technology is widely used in road disease detection due to its advantages
of nondestructiveness, rapidness, and high resolution. Traditionally, one-time 2D GPR detection
cannot obtain the 3D spatial changes of subgrades. Thus, we developed a road subgrade monitoring
method based on the time-lapse full-coverage (TLFC) 3D GPR technique by focusing on solving the
key problems of time and spatial position mismatches in experimental data. Moreover, we used the
time zero consistency correction, 3D data combination, and spatial position matching methods, as
they greatly improve the 3D imaging quality of underground spaces. Finally, the time-lapse attribute
analysis method was used in the TLFC 3D GPR data to obtain detailed characteristics and an overall
rule of the dynamic subgrade change. Overall, this research proves that TLFC 3D GPR is an optimal
choice for road subgrade monitoring.

Keywords: time-lapse full-coverage (TLFC) 3D GPR; road disease monitoring; data processing; 3D
GPR imaging; attribute interpretation

1. Introduction

In recent years, road collapses, which are usually caused by the development of
cavities in road subgrades, have frequently occurred. They may affect traffic or cause
casualties and serious property losses. Therefore, it is necessary to dynamically monitor
road subgrade diseases.

Due to the GPR advantages of rapidness, high resolution, and nondestructiveness, it is
widely used in road layer thickness measurements [1–3], cavity and crack detection [4–6], as-
phalt layer quality assessment [7–9], the detection of moisture and water content changes [10–12].
However, most of these studies were performed based on 2D GPR detection, which has the
problems of false detection and missing detection, as the survey lines were sparse and the
acquired information was inadequate. Using 3D GPR for data acquisition and imaging can
well reveal underground structures [13]. Full-resolution 3D GPR imaging can be realized by
arranging 2D grids with a line spacing of less than one-quarter of the wavelength [14–16].
Unfortunately, the main limitation of this method is that it is time-consuming. As a result,
it is hard to perform the full-coverage detection of roads without affecting traffic. With the
appearance of multi-channel array antenna 3D GPR, the detection efficiency and accuracy of
the combination of survey lines have greatly been improved, making this method suitable
for the full-coverage detection of roads [17].
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Furthermore, road subgrades have the characteristics of dynamic change under the
action of vehicle rolling and underground engineering. Therefore, it is urgent to perform
short-interval periodic detection on roads based on 3D GPR so as to repair the areas where
road disasters may occur. At present, the application of GPR in the monitoring field is
mainly based on underground hydrological process monitoring [18–23], pollutant monitor-
ing [24,25], gas migration monitoring [26], road stripping monitoring [27], underground
facility monitoring [28], and railway monitoring [29].

Compared with the existing studies mentioned above, the full-coverage monitoring
of roads has the characteristics of long-term, less-known information, dense survey lines,
strong interference, and other uncertain factors. In addition, the differences between time-
lapse GPR data are weak, and some of them are caused by nonunderground changes,
which greatly increase the difficulty of data interpretation. Hence, it is particularly im-
portant to study data processing and interpretation methods. At present, the research on
time-lapse GPR data processing mainly focuses on amplitude normalization, time zero
correction, spatial position matching, four-dimensional grid interpolation, sampling rate
fluctuation correction, and abnormal amplitude correction [23,28,30–32]. Furthermore,
the interpretation methods of time-lapse data include difference [24,32], attribute analy-
sis [20,23], K-means clustering [28], amplitude analysis [33], and electromagnetic wave
velocity analysis [22,34]. In short, eliminating the differences caused by nonunderground
changes and searching the changed areas in time-lapse GPR data are key problems of data
processing and interpretation.

In this paper, we present a road subgrade monitoring technology based on time-
lapse full-coverage (TLFC) 3D GPR. It relies on eliminating the differences caused by
nonunderground changes and analyzing the differences in the attributes between time-lapse
data. Through the design of a full-coverage road monitoring experiment, TLFC 3D GPR
data were acquired. Then, time zero consistency correction, 3D data combination, spatial
position matching, and interpretation based on a time-lapse attribute were performed on
the acquired data. The 3D imaging quality of the TLFC 3D GPR data to underground
space was significantly improved, and the changing area was highlighted. Finally, we
summarized the dynamic changing rule of subgrade and its causes are analyzed.

2. Experimental Design and Data Acquisition
2.1. Experimental Area

We designed the periodic detection experiment on a sidewalk whose subgrade may
change. This area was rolled by engineering vehicles outside a subway construction site,
and it covers an area of 85 (17 × 5) m2 and has three backfill pits, as shown in Figure 1. The
red shaded area faces the gate of the construction site and belongs to the key rolling area.
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2.2. TLFC 3D GPR Data Acquisition

Mobyscan-V 3D GPR, which was produced by DECOD of Singapore, was used in this
monitoring experiment. A 2-GHz high-frequency array antenna that includes 16 pairs of
receiving and transmitting antennas was selected, forming 30 data channels with a spacing
of 5 cm (Figure 2a). Single group lines could cover a width of 1.5 m, and there was a 10 cm
gap between System A and System B. By designing four group lines on the sidewalk, full-
coverage of the rolling area was realized. There were 11 overlapping channels between the
adjacent group lines, which provided a guarantee for the accurate combination of different
group lines (Figure 2b). Furthermore, due to the frequent passing of engineering vehicles
on the sidewalks, we selected a short detection time interval, ranging from 8 to 14 days, to
clearly show the change process of the subgrade. Table 1 shows the acquisition parameters.
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and each system contains eight pairs of transceiver antennas to form 15 data channels. The spacing
between the two systems is 10 cm. (b) Layout of the survey lines. Four group lines were used to
achieve full-coverage of the experimental area.

Table 1. TLFC 3D GPR data acquisition parameters.

Parameters Values

Frequency (GHz) 2
Trace spacing (m) 0.02
Sampling points 512

Time window (ns) 15
Number of overlapping channels 11

Time-lapse detection times 5

3. Data Processing and Imaging

Reasonable data processing is crucial for ensuring the reliability of detection results,
and it greatly improves the imaging quality of underground 3D spaces. The key problems
of TLFC 3D GPR data processing include two aspects. First, for the full-coverage 3D GPR
data acquired on the same date, we mainly solve the inconsistency of time zero and the
dislocation of multiple group lines. Second, for the time-lapse data acquired on different
dates, the main purpose is to eliminate the differences between survey line positions and
accurately obtain the repeated parts. Therefore, the designed processing scheme for moni-
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toring experimental data includes (1) preprocessing, (2) time zero consistency correction,
(3) 3D data combination of the adjacent group lines, and (4) spatial position matching.

3.1. Preprocessing

Due to the electromagnetic wave characteristics of high frequency and short wave-
length, classic processing methods should be selected to ensure the authenticity of reflected
waves. Using the ReflexW software, time zero correction, background removal, exponen-
tial gain, and bandpass filtering (using a Butterworth bandpass filter with a passband of
400–1500 MHz) are mainly performed. The GPR data profiles before and after preprocess-
ing are shown in Figure 3a,b. The clutter in the processed data was well eliminated, and
the events of the reflected wave from the underground interface became clearer.
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3.2. Time Zero Consistency Correction and Imaging

After preprocessing, we noticed that the events were rough and fuzzy, as shown in
Figure 3b. This is due to the shaking of the antenna during movement and the system
stability fluctuation. This problem introduces false anomalies into 3D GPR data, especially
in horizontal slices, which greatly reduces the reliability of interpretation results. To re-
alize high-quality imaging of the underground 3D structure and provide interpretation
guarantees, the time zero needed to be corrected to the same position before the prepro-
cessing process. Since the ground direct wave has a good correlation and belongs to strong
reflection, the most relevant position on the time axis could be found by calculating the
correlation sequence of each trace’s direct wave. The time zero correction includes the
following three procedures.

(1) Determining the reference trace

The reference trace credibility directly determines the accuracy of time zero position
normalization and correction. Hence, the one trace xre f (n) with a known direct wave travel
time is selected as a reference trace, and the other traces xmat(n) are corrected.

(2) Correction time calculation

The cross-correlation sequence of the direct wave between xre f (n) and xmat(n) is
calculated according to Equation 1, and the correction amount K is obtained when rrm
is maximum.

rrm(m) =
N

∑
n=1

xre f (n)xmat(n − m) (1)

(3) Correction
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If K = 0, there is no need to move the trace to be corrected. Otherwise (K > 0 or
K < 0), the trace to be corrected needs to move K sampling points, positive or negative,
along the time axis.

The time zero consistency correction could be completed by performing the above
method so that all the traces could be corrected. In the inline profile, after the time zero
correction and preprocessing steps, the jitter interference on both sides of the events was
eliminated. Also, the imaging quality was greatly improved, as shown in Figure 4.
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3.3. 3D Data Combination and Imaging

The data interpretation accuracy could be significantly improved by using multiple
parallel-group lines to perform full-coverage detection of roads, especially when abnormal-
ities appear at the edge of group lines.

In this experiment, due to the location, differences among the adjacent group lines
in the inline direction exist. If the adjacent group lines are directly combined, imaging
dislocation occurs. As shown in the yellow marked-area in Figure 5a, the two backfill
pit areas in the horizontal slice are misplaced. Therefore, the 3D GPR data combination
algorithm that is based on cross-correlation was studied. This algorithm includes three
aspects as follows.
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(1) Determining the reference lines from the overlapping area

Select the profile of one group lines in the overlapping area as a reference profile. Then,
the profile corresponding to the position in the other group lines is the profile to be spliced.

(2) Calculating the relative offset of different group lines
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Calculate the correlation coefficient of all the traces between the profile to be spliced
and the reference profile according to Equation (2).

ρrc(mr, mc) =
∑N

n=0 xr(mr, n)xc(mc, n)[
∑N

n=0 xr2(mr, n)∑N
n=0 xc2(mc, n)

]1/2 (2)

where mr and mc are the trace numbers, N is the number of sampling points of each trace,
and xr(mr, n) and xc(mc, n) denotes the trace of the reference profile and the profile to be
spliced, respectively. When the maximum value of ρrc(mr, mc) is obtained, it is considered
that the trace mc in xc corresponds to the same position of the trace mr in xr, and the trace
number of mc and mr are recorded as Mi and i, respectively. Subtract and average the
trace numbers corresponding to the same position according to Equation (3) to obtain the
relative offset.

∆n =
1
M

M

∑
i=1

(Mi − i) (3)

(3) 3D data volume combination and imaging

When ∆n = 0, data combination can be performed without moving the profiles. When
∆n > 0 or ∆n < 0, the profile is moved to be spliced along with the inline positive or
negative direction by ∆n traces. Then, the data is combined.

The horizontal slice after the accurate combination of the adjacent group lines is
shown in Figure 5b. The misplaced backfill pits were restored to the rectangular and the
accurate 3D imaging of the underground space was realized. This shows that the proposed
data combination algorithm in this paper is effective and accurate when there is enough
overlapping data between adjacent group lines.

3.4. Spatial Location Matching

In large-area road time-lapse monitoring, it is hard to ensure the complete consistency
of survey line positions. The location differences between the TLFC 3D GPR data caused
the reflection from the same underground object to appear at different positions in the
time-lapse GPR profiles (Figure 6a,b). Similar to a previous processing technique, the cross-
correlation method was used to calculate the relative offset of the start and end positions
of the time-lapse data. Then, the overlapping part of the time-lapse data was extracted to
realize spatial position matching. Specifically, it includes the following three procedures.

(1) Determining the reference data

The position differences between group lines at different acquisition dates are within
40 cm. To ensure the universal applicability of the reference data, the data after cutting
40 cm from the head and tail in the inline profile of the first time acquired are selected as
reference data xr. Then, the subsequent acquired time-lapse data is used as the data to be
matched xc.

(2) Calculating the position offset

Use Equation (2) to find the trace most similar to xr in xc and then obtain the position
offset of the time-lapse data according to Equation (3).

(3) Extract the data with the same survey line position
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ter matching.

The spatial position matching of time-lapse GPR data can be realized by moving the
data to be matched according to the relative offset and deleting the remaining traces that
have no correspondence with the reference data.

The time-lapse GPR data after the matching process is shown in Figure 6c,d. The reflec-
tion feature with good correspondence on the left remained, and the poor correspondence
on the right was improved after the spatial position matching process. In addition, the red
shaded area on the right of Figure 6c,d indicates that the time-lapse data have the same
survey line terminus; however, this was inconsistent before the data matching process.

4. Data Interpretation
4.1. Time-Lapse Attribute Analysis Method

Although the TLFC 3D GPR data were acquired and processed with great considera-
tion, there were still some problems caused by acquisition and processing. If we simply
performed difference processing on the time-lapse data, the wavelet characterization of
the data could be preserved in the difference profile. Thus, it would be difficult to clearly
show the underground changing area (Figure 7). The time-lapse attribute analysis method
proposed by Allroggen et al. has achieved satisfactory results in the time-lapse 2D GPR data
of subsurface flow process monitoring [20,23]. Therefore, we used it for the interpretation
of the TLFC 3D GPR road subgrade monitoring data. It includes a contrast similarity (CS)
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attribute and a structural similarity (SS) attribute. The former mainly reflects the areas
where the reflected wave energy is different, and the latter mainly highlights the areas
where the shape of the events changes. The CS and SS attributes are respectively defined
as follows:

CS(x, y) =
2σxσy + a

σ2
x + σ2

y + a
(4)

SS(x, y) =
2cxy + a
σxσy + a

(5)

where σx and σy denote the standard deviations within the selected window, cxy denotes a
normalized zero-lag cross-correlation after subtracting the window means, and a denotes a
stable term for avoiding numerical instability when σ approaches 0. The specific expression
is as follows:

σx = (
1

N − 1

N

∑
i=0

(xi − µx))

1
2

(6)

µx =
1
N

N

∑
i=1

xi (7)

cxy =
1

N − 1

N

∑
i=1

(xi − µx)
(
yi − µy

)
(8)

where x and y are the windowed sequences. The normalized similarity attribute (NSA) of
the time-lapse data could be obtained by multiplying the CS and SS attributes [23].
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Before calculating the attributes, it is necessary to normalize the amplitude in the
selected window, and the value of a is usually 10% of the amplitude variation range in
the window after amplitude normalization. During attribute calculation, the window size
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is the key parameter. With a too-small window, many wavelet features can be retained.
Otherwise, it will excessively smooth out the areas with small attribute values. Through
parameter experiments, we concluded that the optimal window size for the time-lapse
data in this experimental area is 30 × 30. That is, a window contains 30 traces horizontally
and 30 sampling points vertically. Figure 8 shows the attribute calculation results of the
time-lapse data on 22 Jul. and 30 Jul. in Figure 7. A small attribute value denotes low
similarity of the time-lapse data, that is, underground changes may have occurred. The
SS attribute highlights the areas with different event shapes, and the regions shown in the
red and blue boxes in Figure 7 are highlighted in Figure 8a. The CS attribute highlights the
areas with different reflected wave energies, and the regions shown in the red and green
boxes in Figure 7 are highlighted in Figure 8b. NSA realizes the fusion of the regions with
low attribute values in Figure 8a,b, and it has a comprehensive display of the underground
changing areas.
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4.2. Interpretation Based on Attribute Differences

The NSA of the TLFC 3D GPR data was calculated, and 3D images of the results are
shown in Figure 9. Since there were still a few differences caused by nonunderground
changes after data processing, when the values of the CS and SS attributes were both
less than 0.6 or when any one of them was less than 0.4, we regarded the changes in the
data as from underground. Hence, only the parts with NSA values lower than 0.4 were
demonstrated, as shown in Figure 9. The red dotted circle in Figure 9 corresponds to the
near area of the backfill pit 2. Since this area faces the gate of the construction site, it belongs
to the key rolling area of the engineering vehicles. The changes in this area are explained
as follows.
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Figure 9. NSA value of the TLFC 3D GPR data: (a) 22 Jul. to 30 Jul.; (b) 22 Jul. to 8 Aug.; (c) 22 Jul. to
22 Aug.; (d) 22 Jul. to 30 Aug. The red dotted circle area faces the gate of the construction site, which
belongs to the key rolling area of the engineering vehicles.

As time went by, the area with a low NSA value gradually expanded, indicating that
the passing of engineering vehicles on this area was continuous during the monitoring
period. In addition, according to the changing trend of the attribute value, this area was
almost invariable from 22 July to 30 July, and the subgrade was relatively stable. From
30 July to 8 August, the subgrade was dramatically changed, and changes occurred in
the southern part. The changing speed of the subgrade tended to ease from 8 August to
22 August, and mainly the northern region has changed. From 22 August to 30 August,
the subgrade greatly changed again, mainly in the northern part. It is speculated that the
reason for the above changes in the subgrade is that the flow of engineering vehicles was
rare before 30 July Thus, the subgrade could maintain its original structure to a certain
extent. From 30 July to 8 August, the original structure of the subgrade was damaged
and greatly changed due to the frequent passing of engineering vehicles. From 8 August
to 22 August, the damaged subgrade was compacted to form a new structure. It was
difficult for the engineering vehicles to make great changes in the subgrade structure again.
Therefore, although the time interval between Figure 9b,c is two weeks, the change in the
low attribute value area was small. From 22 Aug. to 30 Aug., relatively large changes took
place in the low attribute value area, which may be because the subgrade was damaged
again due to the passing of a large number of engineering vehicles.

5. Discussion

To overcome the disadvantages of 2D GPR (missing detection and inability to obtain
underground dynamic changing information), we proposed a new road subgrade monitor-
ing technology (TLFC 3D GPR), which transformed the traditional detection strategy into a
monitoring strategy. The main achievements of this paper are as follows. (1) We presented a
method of time zero consistency correction, thus eliminating jitter interference on both sides
of events and improving imaging quality. (2) 3D data combination was used in multiple
group lines to realize the full-coverage imaging of underground spaces. (3) Thorough
spatial position matching well solved the mismatch problem in the time-lapse data. (4) The
time-lapse attribute analysis method was applied to interpret the road subgrade monitoring
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data of TLFC 3D GPR, the wavelet characterization influence was eliminated, and subgrade
dynamic changing information was obtained.

Compared with the existing research, this paper mainly has three innovations. First,
most road disease studies are based on one-time detection [5,17]. Thus, we presented a full-
coverage monitoring method and proved its feasibility. Second, the previously proposed
time-lapse processing methods are usually based on 2D GPR data [28,30–32]. We realized
the data processing of TLFC 3D GPR and improved the imaging quality. Third, the time-
lapse attribute has achieved satisfactory results in monitoring the data of 2D GPR for fast
subsurface processes [20,23]. Thus, we applied it to long-term road subgrade monitoring
data with TLFC 3D GPR, and equally excellent results were obtained.

It is worth mentioning that there were still a few differences caused by the nonunder-
ground changes in the processed data, and they may be because of the following reasons.
(1) The sampling rate of the instrument fluctuates during data acquisition, resulting in
inconsistent time intervals of adjacent sampling points in each trace. (2) The trigger of the
ranging wheel may be affected by multiple factors, such as inaccurate encoder positioning,
slight topographic relief, and tire pressure changes, resulting in uneven trace spacing.
Because the specific impact of the above problems cannot be determined at present, there is
no targeted processing, which has caused some interferences to the time-lapse attribute
analysis. We could note that some low attribute value areas in Figure 9 only appeared at an
earlier time. Then, the range became smaller or even disappeared.

Moreover, by using TLFC 3D GPR for road monitoring, a massive amount of data
can be obtained. At present, manual data processing and interpretation need a lot of time.
Therefore, when developing data processing and interpretation methods for TLFC 3D GPR
in the future, we should not only pay attention to method accuracy but also to calculation
efficiency and automation.

To sum up, in the upcoming research, we will focus on eliminating the influence of
the irrelevant variables to ensure that the difference between time-lapse GPR data comes
from underground changes to realize the quick and high-precision processing of TLFC 3D
GPR data and the accurate characterization of underground 3D spatial changes.

6. Conclusions

In this study, we first put forward a road subgrade monitoring technology based on
TLFC 3D GPR. It is an optimal choice for road disease monitoring because of its advantages,
which include high data acquisition efficiency, wide-coverage, and the ability to obtain
dynamic changing information of underground 3D spaces.

Through time-zero consistency correction, 3D data combination, and spatial position
matching of TLFC 3D GPR data, full-coverage and accurate imaging of underground 3D
space could be achieved. Furthermore, a time-lapse attribute analysis was performed
for the TLFC 3D GPR data. Then, the change rule of the subgrade was comprehensively
mastered, and the rapid change period was determined and interpreted.

This paper proves the feasibility of applying TLFC 3D GPR to large-scale road sub-
grade monitoring, provides a reference for relevant data acquisition, processing, and
interpretation, and points out necessary directions for further research.
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