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Abstract: Visual object tracking for unmanned aerial vehicles (UAV) is widely used in many fields
such as military reconnaissance, search and rescue work, film shooting, and so on. However,
the performance of existing methods is still not very satisfactory due to some complex factors
including viewpoint changing, background clutters and occlusion. The Siamese trackers, which
offer a convenient way of formulating the visual tracking problem as a template matching process,
have achieved success in recent visual tracking datasets. Unfortunately, these template match-based
trackers cannot adapt well to frequent appearance change in UAV video datasets. To deal with
this problem, this paper proposes a template-driven Siamese network (TDSiam), which consists of
feature extraction subnetwork, feature fusion subnetwork and bounding box estimation subnetwork.
Especially, a template library branch is proposed for the feature extraction subnetwork to adapt to
the changeable appearance of the target. In addition, a feature aligned (FA) module is proposed as
the core of feature fusion subnetwork, which can fuse information in the form of center alignment.
More importantly, a method for occlusion detection is proposed to reduce the noise caused by
occlusion. Experiments were conducted on two challenging benchmarks UAV123 and UAV20L,
the results verified the more competitive performance of our proposed method compared to the
existing algorithms.

Keywords: unmanned aerial vehicles; visual object tracking; Siamese network; template library;
feature-aligned

1. Introduction

Visual object tracking is a typical problem in computer vision. It has been studied
for many years and applied in the fields of security monitoring, telemedicine, smart city,
and so on [1–4]. Different from traditional video sequences, the object in the video shot by
UAV has distinct characteristics: (1) smaller object size and more complex background, as
shown in Figure 1a; (2) targets often disappear because of occlusion, illustrated in Figure 1b;
(3) broader perspective and changeable appearance, shown in Figure 1c. Due to these
problems, visual object tracking in videos shot by UAV is still challenging [5–7].

Most of the visual object tracking methods for UAV are divided into two categories:
one is based on correlation filter, another is based on deep learning. The trackers [8–10]
based on correlation filter calculate a filter to maximize their response to the region of the
target. Due to their excellent speed performance, they have gradually become a popular
research topic in the field of visual object tracking. Recently, the trackers based on deep
learning have received extensive attention because of their superior performance [11–13].
The deep features are more robust than handcrafted features, leading to a considerably
improved tracking accuracy. However, due to the large computation of backpropagation,
even though many trackers train the network offline and fine-tune it in the tracking phase,
their tracking speed is still far from meeting the requirements of working in real time.
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Figure 1. Comparison of proposed tracker with other existed methods (SiamRPN [14], ECO [15],
SiamFC-3s [16], SRDCF [17]) on the bird1, car12 and truck1 from UAV123 [18].

Fortunately, the visual object tracking algorithms [14,16,19–23] based on Siamese
networks can well balance the accuracy and speed simultaneously, which has gradually
attracted people’s attention. The concise Y-shaped structure simplifies visual object tracking
into the template matching process. They train the network parameters in the offline
stage and fix the parameters in the inference stage. Therefore, the performance of these
template-based trackers depends mainly on the quality of the template. However, since the
appearance of the target in the video captured by UAV often changes, a fixed template is
obviously not enough to ensure the tracking stability of the whole video sequence. To solve
this problem, many efforts have been made. Bertinetto et al. proposed the SiamFC [16]
using a multiscale strategy to improve robustness. Li et al. combined the region proposal
network with the Siamese network to remove the multiscale test and improve the tracking
speed greatly [14]. Although significant success has been achieved, the performance of
visual object tracking for UAV is still not satisfactory. As shown in Figure 1, the performance
of SiamFC and SiamRPN will become worse in the case of complex background, occlusions,
and appearance changes commonly seen in the field of view of UAV.

In view of this, this paper proposes a template-driven Siamese network (TDSiam)
which is more suitable for UAV aerial video. The TDSiam can be divided into three
main parts: feature extraction subnetwork, feature fusion subnetwork and bounding
box estimation subnetwork. Additionally, the feature-aligned (FA) module is the key of
the feature fusion subnetwork. The FA module can more effectively fuse features from
multiple templates and the bounding box estimation subnetwork can more accurately
regress the parameters of the bounding box. In addition, the average peak-to-correlation
energy (APCE) [24] is applied to avoid distractors from polluting the template in the
inference stage. The experimental results show that the proposed method has competitive
performance. In addition, when AlexNet [25] is selected as the backbone, it reaches 180 fps,
and when ResNet [26] is selected as the backbone, it reaches 35 fps, both exceeding the
real-time requirements (speed > 20 fps). The main contributions of this work are as follows:

1. This paper proposes a template-driven Siamese network, which is more suitable for
the tracking task under the UAV’s vision. Compared with existing approaches, the
proposed template-driven Siamese network has concise forms and favorable properties;

2. A template library structure is proposed, which can effectively improve the tracking
performance combined with the new template updating strategy. In addition, a feature
alignment module is proposed to fuse template features more efficiently;

3. Detailed experiments show that the proposed method has competitive performance,
not only in accuracy but also in speed.

The structure of this paper is as follows: other works related to ours have been
reviewed in Section 2. A description of the framework of TDSiam has been given in Section 3.
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Tracking results obtained by applying the proposed method on UAV video benchmarks
are presented in Section 4. Along with a discussion on these results, conclusions from this
work are presented in Section 5.

2. Related Works
2.1. The Siamese Trackers

Thanks to outstanding performance, the trackers [16,19,20,22,23] based on the Siamese
network have attracted people’s increasing attention in recent years. These trackers simplify
the target tracking problem into a template matching process and realize the tracking by
matching the similarity between deep features. They train the network offline by using a
large amount of data and distinguish whether a pair of images belong to the same category
or not by learning a similarity map.

By learning the invariance of the object, the Siamese instance search for tracking
(SINT) algorithm can robustly deal with the possible shape changes of the object in the
form of template matching [19]. At the same time, Bertinetto et al. proposed the SiamFC
algorithm, which has a two-branch architecture: one is a template branch, the other is the
search branch [16]. The former contains information about the tracked object, the latter is
used to provide a search area containing the target to be tracked. These features extracted
from two branches are cross-correlated to generate a similarity map. Li et al. combined
the region proposal network with a Siamese network to remove multiscale test steps and
greatly improve the tracking speed [14]. Since then, many improvements have been made
to SiamRPN. Zhu et al. introduced a series of strategies to enhance the generalization
of deep features for the imbalance of training data, and introduced a long-time tracking
strategy to improve the tracking performance after the target disappears [23]. SiamDW [27]
and SiamRPN++ [28] were proposed to investigate the utilization of a deep network for
Siamese tracking in different aspects. The SiamAttn [29] incorporates self-attention and
cross-attention to help trackers adapt well to complex situations. Zhang et al. proposed
UpdateNet [30], which trains a small network to learn the best template for the next
frame prediction.

Recently, the anchor-free architecture has been combined with Siamese networks, e.g.,
Xu et al. provided four guidelines for designing the modern tracker and proposed the
SiamFC++ [31] which has favorable performance. Guo et al. proposed a parallel center-
ness branch to reduce the impact of poor-quality bounding boxes far from the target [32].
Chen et al. proposed SiamBAN [33] to reduce hyperparameters by using the anchor-free
framework and provided a new method of distinguishing positive and negative samples.
These Siamese tracking algorithms have achieved great success because of their higher
accuracy and faster speed. Although some invariance can be learned in the offline training
process using a large amount of data, its performance is still not satisfactory due to frequent
changes in the appearance of the target in the UAV video scene.

2.2. Trackers for UAV Videos

Recently, in visual object tracking, there have been many tracking algorithms that
can achieve good results on UAV benchmarks. They have been optimized from different
aspects and tested on UAV datasets. Huang et al. proposed a new tracking method which
can effectively suppress the distortion while solving the boundary effect [34]. Zhang et al.
proposed UpdateNet, which used three different templates and fused them to obtain a more
powerful template [30]. Yao et al. proposed the Lucas–Kanade network and integrated
it into the Siamese network to enable learning of aligned feature representations [35].
Li et al. proposed the SiamRPN++ [28], which has better robustness thanks to increasing
its network depth. Zhu et al. proposed the DaSiamRPN [23] to reduce the influence of
interferents via a distractor-aware module. They have been tested on UAV datasets and
achieve relatively good performance. However, the performance in some UAV tracking
scenarios is not satisfactory. As shown in Table 1, there is room for further improvement
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and developing these algorithms under BC (Background Cluster), FOC (Full Occlusion),
POC (Partial Occlusion) and SV (Scale Variation) attributes.

Table 1. Comparisons of the success rate between the proposed approach and the existing approaches
including SiamRPN++, DaSiamRPN and SiamRPN on the UAV123 dataset.

Algorithms

Attributes
Overall BC FOC POC SV

SiamRPN++ 0.618 0.448 0.411 0.539 0.595

DaSiamRPN 0.569 0.444 0.379 0.493 0.544

SiamRPN 0.535 0.427 0.332 0.441 0.512

Ours (TDSiam_Res50) 0.643 0.498 0.520 0.600 0.639

In this paper, we propose a new tracking approach based on a Siamese network
for UAV. Firstly, the concept of template library is proposed to solve the problem of the
appearance of the target changing frequently. Furthermore, to make more efficient use of
the template feature, we construct the FA module. Finally, the APCE is used to prevent
dictators from entering the template library in the inference stage.

3. Template-Driven Siamese Network

Figure 2 illustrates the framework of TDSiam—it consists of three main parts: feature
extraction subnetwork, feature fusion subnetwork and bounding box estimation subnet-
work. The feature extraction subnetwork is divided into two main branches: template
library branch and searching branch. For more useful information, the template library
contains strong template T0, weak template Tacc and Ti. The feature fusion subnetwork
is responsible for merging information from the template library. In particular, the FA
module is the core of the template feature fusion subnetwork, which is responsible for
template feature alignment. The bounding box estimation subnetwork adopts the RPN
network proposed in Faster RCNN [36], which decomposes the tracking into two tasks:
classification and regression. Based on the success of target and background classification,
the bounding box is regressed more finely.

Bounding

Box

Estimation

Subnetwork

Classfication Score

Regression Score

+

FA

0
T

acc
T

i
T

Feature Extraction 

Subnetwork
Feature Fusion 

Subnetwork

Template Library

0

0

Figure 2. Schematic of the TDSiam framework. On the left is the feature extraction subnetwork. The
feature fusion subnetwork is depicted in the middle, which is responsible for fusing the information
from the template library. On the right is the bounding box estimation subnetwork, which has
two branches, one is in charge of foreground–background classification, and the other is used for
bounding box regression.
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Next, the proposed TDSiam will be introduced in detail. Firstly, we will illustrate the
feature extraction subnetwork in Section 3.1. Secondly, the feature fusion subnetwork is
proposed in Section 3.2. Finally, we will introduce the bounding box estimation subnetwork
in Section 3.3 and the inference stage in Section 3.4, respectively.

3.1. The Feature Extraction Subnetwork

In order to obtain diversified target appearance information, we designed the template
library (TL) structure in Siamese network with reference to Updatenet [30]. The template
library contains three templates: T0, Ti and Tacc, where T0 is the strong template cropped
according to the ground-truth from the first frame, Ti is obtained from the prediction result
of the current frame, and Tacc represents the last accumulated template.

Tacc =
N

∑
i=1

Ti (1)

where T0 is the initial ground-truth template and contains highly reliable information. Ti is
used to adapt to the changes of the target appearance during the tracking phase. Moreover,
by integrating the historical appearance information of the object under consideration, the
last accumulated template Tacc can increase the robustness against model drift.

The feature extraction is accomplished by a deep convolutional neural network. The
AlexNet [25] and ResNet [26] are chosen as the backbone of TDSiam in the experiment. The
former is more concise, which can make the tracking speed faster. The latter can stack the
network deeper and obtain higher tracking accuracy. The tracking process is transformed
into two tasks: classification and regression. The classification task is responsible for
identifying whether the candidate area contains targets, and the regression task is in charge
of refining the classification results. The detailed optimization process will be described in
Section 3.3.

3.2. The Feature Fusion Subnetwork

The weighted sum is a simple but efficient way of fusing these templates. However,
the object might not always be at the center of the template Ti because of tracking error.
The direct fusion of the misaligned features will result in the aliasing effect [37]. Therefore,
a feature-aligned (FA) module has been proposed to obtain the central-aligned features.

Figure 3a,b present the templates cropped from the predicted results during the
tracking process. The red cross indicates the center of the image, but they belong to
different targets. If we fuse them according to their linear weights, interference will be
introduced into the template. Fortunately, we notice that features with the same appearance
have high cosine similarity, as seen in Figure 3c, where the red region indicates a high value.
Thus, we have proposed an FA module to reconstruct the misaligned template features
based on their cosine similarity.

(a) (b) (c)

Figure 3. Visualization of the cosine similarity. (a) is the original template image, (b) is the image
cropped by the tracking result in the subsequent, and (c) is the cosine similarity added into the image
patch. The red region represents the high value.



Remote Sens. 2022, 14, 1584 6 of 23

The goal of the FA module is to ensure that the same spatial position on the recon-
structed feature map belongs to the same part by reconstructing each misaligned feature
map. It can be considered as a matching task between two feature maps. The detailed
construction of the FA module is shown in Figure 4. The T0 and Ti indicate the feature map
extracted from the initial ground-truth and the predicted results, respectively, both their
dimensions are H ×W × C. The cosine similarity (CS) between each position of T0 and Ti
can be calculated as follows:

CS(m,n) =
T0(m,n) · Ti(m,n)∥∥∥T0(m,n)

∥∥∥ · ∥∥∥Ti(m,n)

∥∥∥ (2)

where (m, n) is the position in the feature map. Then, the whole cosine similarity map can
be calculated as follows:

CS =
T0 · Ti

‖T0‖ · ‖Ti‖
(3)

The Equation (3) can be simplified as follows:

CS = l2(T0) · l2(T1) (4)

where the l2 indicates the normalization process and the symbol · represents the dot product.
The shape of the cosine similarity map is HW × HW, each of its rows corresponds to the
cosine similarity between each feature in T0 and all features in Ti.

Since the scales of the same object in a video sequence can be different, one position in
the template T0 can have several corresponding pixels in the template Ti and vice versa.
Therefore, we cannot simply shift the features to the corresponding position, all pixels that
have the same appearance should be included. Therefore, we obtain new features y(m,n)
by weighted summation of features with similar appearance, which can be formulated
as follows:

y(m,n) =
H

∑
m=1

W

∑
n=1

sigmoid(CS(m,n))Ti
′
(m,n) (5)

where H and W are the size of the feature map, and the sigmoid function maps the weight
parameters to a range of 0 to 1.

The object might become incomplete during the tracking process, in which case the
feature map Ti cannot align well with T0. Thus, in order to avoid errors caused in such a
case, we use a spatial attention mask to determine the correctness of matching as shown
in Figure 4. The Conv is implemented by a 1× 1 convolution and � is the element-wise
multiplication. The mask produced by Conv indicates the semantic similarity between T0
and the reconstructed feature.

L2 normal 

&Transpose

L2 normal 

Cosine 

similarity map

Reshape

Conv
H W C´ ´

H W C´ ´

Reshape to

HW HW´

1H W´ ´

H W C´ ´

HW C´

Reshape to HW C´

i
T

0T

'
i
T

Spatial attention mask

H W C´ ´

y

z

Figure 4. The feature-aligned (FA) module has two inputs: T0 indicates the initial template feature
and Ti is extracted from the predicted target location. The feature-reconstructed network is on the left
and the spatial attention network is on the right.
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3.3. The Bounding Box Estimation Subnetwork

The main part of the bounding box prediction subnetwork is the RPN network, which
is composed of a classification and regression subnetwork. Firstly, a few anchors with
different scales are defined. Inspired by SiamRPN [14], the number of anchors is set to
5. Since the target does not scale considerably between adjacent frames, we only adopt
one scale with different ratios [0.33, 0.5, 1, 2, 3]. After feature extraction, we can obtain ϕ(z)
and ϕ(x), which denote the template library branch feature and searching branch feature,
respectively. The classification and regression scores can be calculated as follows:

Acls
w×h×2k = [ϕ(x)]cls ∗ [ϕ(z)]cls (6)

Areg
w×h×4k = [ϕ(x)]reg ∗ [ϕ(z)]reg (7)

where the ϕ(z)cls and ϕ(x)cls are applied to the classification subnetwork, which are
from the template image and the search area, respectively. Similarly, the results of cross-
correlation operation between ϕ(z)reg and ϕ(x)reg are used to regress the finer bounding
box, and ∗ denotes the cross-correction operation.

After cross-correlation operation, we can obtain Acls
w×h×2k and Areg

w×h×4k. The Acls
w×h×2k

represents the confidence score of target and background classification of each candidate
box, and Areg

w×h×4k represents the refined parameters of each candidate box. For classification
subnetwork, a so f tmax function is applied to monitor the classification loss.

IOU is used as an indicator to distinguish positive and negative samples. Positive
samples indicate that the IOU between anchor boxes and their ground truth is greater than
0.6, and the negative samples indicate that the IOU is less than 0.3. Therefore, for a single
sample, the loss function is defined as:

l(y, v) = log[(1 + exp(−yv)] (8)

where y represents the label and v represents the classification score of network prediction.
For a set of anchors, y and v will be vectors. Thus, the corresponding loss function is

Lcls =
1
|D| ∑

u∈D
log(1 + exp(−y(u)v(u))) (9)

where D denotes a sample space, u is the sample serial number and |D| is the size of sample
space. The process of training the network is constantly searching for the appropriate θ to
minimize the classification loss:

arg min
θ

1
|D| ∑

u∈D
log(1 + exp(−y(u)v(u))) (10)

For the regression task, the parameters of the bounding box need to be refined by
the regression network. In order to obtain a more stable regression training process, the
regression parameters are standardized:

δ[0] = Tx−Ax
Aw

, δ[1] = Ty−Ay
Ah

δ[2] = ln( Tw
Aw

), δ[3] = ln( Th
Ah

)
(11)

where Ax, Ay, Aw and Ah represent the central coordinates (x, y), width and height of bound-
ing box predicted by the current frame, respectively. Similarly, Tx, Ty, Tw and Th represent the
central coordinates (x, y), width and height of annotation of the current frame, respectively.

The regression branch is supervised by the loss function smoothL1, which can be
formulated as follows:
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smoothL1(x, σ) =

{
0.5σ2x2, |x| < 1

σ2

|x| − 1
2σ2 , |x| ≥ 1

σ2
(12)

The Lreg can be written as:

Lreg =
3

∑
i=0

smoothL1(δ[i], σ) (13)

The overall loss function is:

loss = Lcls + λLreg (14)

where the λ is the coefficient, it can be used to balance the loss of classification and regression.

3.4. Inference Phase: Template Updating

During the tracking phase, updating the template too frequently can not only lead
to error accumulation, but also affect the tracking speed. Partial- and full-occlusion phe-
nomena also occur sometimes. When the target in the template is blocked, adding it to
the template library will introduce a lot of adverse noise. To address the problem that
the target might be occluded during the tracking process, the APCE index was used to
measure the tracking result. Following the SiamFC [16], the response map R was calculated
by performing a cross-correction operation.

R = ϕ(z) ∗ ϕ(x) (15)

here, z and x represent the template image and the search area, respectively. The ∗ denotes
the cross-correction operation.

As shown in Figure 5, when the target is not occluded, there is only a particularly
high peak in the response graph, and the response value is several times greater than that
in other places. Otherwise, the response map will fluctuate intensely when the target is
occluded. Inspired by the LMCF algorithm [24], the APCE index is used to evaluate the
occlusion degree of the target, which can be calculated as follows:

APCE =
|Fmax − Fmin|2

mean
(

∑w,h (Fw,h − Fmin)
2
) (16)

where Fmax, Fmin represent the maximum and minimum values in the response map,
respectively. Fw,h is the corresponding value at (w, h). The numerator part reflects the
peak value in the response map and represents the reliability of the current response map,
whereas the denominator represents the average degree of fluctuation of the response map.
Once the target is occluded, the APCE will become smaller immediately, compared with its
previous level.

APCE=16.35 APCE=3.76

(a) (b)

Figure 5. Visualization of the response map. (a) When the target is not occluded, the response map
has only one peak and the value of APCE is larger. (b) When the target is occluded, the response map
has some peak with low strength and the value of APCE is smaller.
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In this paper, the historical average of APCE, i.e., APCEavg, is used as the criterion to
judge whether the target is occluded or not, i.e.,

APCEavg =
1
m

m

∑
i=1

APCEi (17)

where the APCEi represents the APCE value of the ith frame image, the m is the number
of frames that have been tracked. where the APCEi represents the APCE value of the ith
frame image, m is the number of frames that have been tracked. When APCE is less than
the APCEi, the target is considered as occluded and the tracker should stop updating the
template. The detailed tracking process is shown as Algorithm 1.

Algorithm 1: The proposed TDSiam algorithm
Input: The first frame I0 and the ground truth (x0, y0, w0, h0) of the object;
Output: The predicted bounding box (xi, yi, wi, hi) of the ith frame;

1 Crop the initial template region and extract the feature T0;
2 Initialization: Tf = T0;
3 for i = 1, 2, ..., n do
4 Crop the search region using the predicted result in the last frame and extract

the feature Si;
5 Compute the classification scores and regression boxes using Tf and Si;
6 Compute the response map Ri by cross-correlation operation between T0 and

Si using Equation (15), i.e., R = ϕ(z) ∗ ϕ(x) ;
7 Compute the APCE of the current frame using Equation (16);
8 if APCE >= APCEavg then
9 Crop the dynamic template image and extracted the feature Ti;

10 Perform feature alignment for Ti using FA module;
11 Fuse the features of T0, Ti and Tacc by element-wise summation using

Tf = T0 + Ti + Tacc;

12 else if Tacc exists then
13 Fuse the features of T0 and Tacc by element-wise summation using

Tf = T0 + Tacc;

14 Update the APCEavg using Equation (17).

4. Experiments

We selected three UAV video benchmarks, UAV123, UAV20L [18] and UAVDT, for
qualitative and quantitative experiments. The UAV123 consists of 123 shorter UAV aerial
videos, and UAV20L consists of 20 longer video sequences. Compared with UAV123,
UAV20L has more changes in appearance due to its long-time series, and there are many
scenes in which the target completely disappears or reappears.

Success plot and precision plot both are important indicators used in the evaluation of
this experiment. The success plot mainly reflects the overlap rate, that is, the proportion
of the overlap area between the bounding box predicted by the tracker and the ground
truth in the total area. When the overlap ratio exceeds this threshold, the tracking can
be considered successful. We count the proportion of successful tracking frames to the
total frames and draw the curve with this proportion as the ordinate. The precision plot
is responsible for measuring the distance between the prediction result and the center of
ground truth. When the distance between the center coordinate of the prediction result and
the real position is less than this threshold, the tracking can be considered successful.

The evaluation is divided into two parts: overall evaluation and attribute-based
evaluation. Attribute-based evaluation is responsible for evaluating the performance of
the algorithm under different attributes, including aspect ratio change (ARC), background
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cluster (BC), camera motion (CM), fast motion (FM), full occlusion (FOC), illumination
variation (IV), low resolution (LR), out of view (OV), partial occlusion (POC), similar object
(SOB), scale variation (SV), and viewpoint change (VC).

The UAVDT [38] dataset was proposed by Du et al. in 2018 for UAV video object
detection and tracking, in which 50 video sequences are used for single-object tracking.
There are eight attributes in UAVDT that are different from UAV123, including Camera
Rotation (CR), Large Occlusion (LO), Small Object (SMO), Object Motion (OM), Background
Clutter (BC), Scale Variations (SV), Illumination Variations (IV) and Object Blur (OB). The
evaluation methods and indicators are consistent with those of UAV123.

4.1. Implementation Details

Our tracker was implemented with the Pytorch toolkit, which runs on the hard-
ware environment with Intel(R) Xeon(R) Sliver 4110 2.1 GHz CPU and a single NVIDIA
RTX2080 GPU.

In the training phase, we adopted a two-stage training method. In the first stage,
we only trained the Siamese tracker without the FA module and the template library.
The sample pairs were picked from ImageNet VID [39], GOT10K [40] and YouTube-BB
datasets [41]. We chose the template patch and search region from the same video with an
interval of less than 100. The template was cropped to a size of 127 px× 127 px centered
on the target, and the search region was cropped to a size of 255 px× 255 px in the same
manner. In addition, the affine transformation was also adopted. In this stage, the Siamese
tracker was trained using the Adam [42] optimization algorithm with a batch size of
32 pairs in 20 epochs. The parameters of the feature extraction network were pretrained on
ImageNet, and the first three convolution layers were fixed. The initial learning rate was set
to 0.01, and there was no fine-tuning. In the second stage, the FA module and the template
library were integrated into the Siamese tracker and an end-to-end training process was
adopted. In this stage, pairs of input triplets (T0, Ti, Tacc) from the same video sequence
were required. The T0 and Ti can be obtained directly from the same video sequence. For
Ti, the ground truth was too accurate to reflect the predicted location in practice. Therefore,
we added a random shift to the object so that it is not exactly at the center of the image.
Tacc could be obtained by a standard linear update, three historical frames before Ti were
selected for feature extraction and fusion. This can be formulated as follows:

Tacc = Ti−1 + Ti−2 + Ti−3 (18)

In addition, we use two backbones, AlexNet and ResNet, to obtain more fair results.
The backbones in the feature extraction networks of TDSiam_Res50 and TDSiam_Alex are
ResNet and AlexNet, respectively.

4.2. Experiments on the UAV123 Benchmark

We compared our method with SiamRPN [14], SiamRPN++ [28], DaSiamRPN [23],
SiamFC-3s [12] and a few methods provided on the UAV123 benchmark, which include
SRDCF [17], MEEM [43] and SAMF [44].

Overall Evaluation: The success plots and precision plots of the one-pass evaluation
(OPE) are shown in Figure 6. TDSiam_Alex is observed to achieve a success score of 0.586
and a precision score of 0.776. Compared to the SiamRPN, TDSiam_Alex significantly
outperforms in terms of the success score as well as precision score. In addition, we replaced
the backbone of TDSiam with ResNet for performance comparison with SiamRPN++. The
TDSiam_Res50 outperforms SiamRPN++ in terms of both metrics, TDSiam_Res50 achieves
a substantial gain of 4% in terms of the success score.

Attribute-Based Evaluation: The performance in the 12 attributes is shown in Figures 7 and 8,
from which it can be seen that TDSiam_Res50 achieves superior performance. On the one
hand, as for the precision score, our method achieves better results, including ARC (0.845),
BC (0.713), CM (0.881), FM (0.802), FO (0.775), LR (0.701), OV (0.839), PO (0.806), SO (0.798),
SV (0.821), VC (0.865). On the other hand, as for the success rate, our method also yields the
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best performance, including ARC (0.652), BC (0.498), CM (0.682), FM (0.615), FO (0.520), IV
(0.602), LR (0.485), OV (0.650), PO (0.600), SO (0.601), SV (0.639), VC (0.692). In particular,
in several scenarios, ARC, CM and VC, our method achieved more significant performance
gain, with 9.7%, 4.5%, 5.3% in precision score and 13%, 5.9%, 7.8% in success rate. To
sum up, the attribute-based evaluation proves that the proposed method can significantly
improve the performance in the scene where the appearance of the target changes.
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Figure 6. Experimental results of different methods on UAV123 dataset.The proposed algorithm
TDSiam_Res50 performs favorably against other trackers. (a) Precision plots; (b) Success plots.
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Figure 7. Cont.
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Figure 7. Precision plots corresponding to some typical scenarios. The UAV123 dataset was used
for the evaluation. (a) Aspect Ratio Change; (b) Background Clutter; (c) Camera Motion; (d) Fast
Motion; (e) Full Occlusion; (f) Illumination Variation; (g) Low Resolution; (h) Out of View; (i) Partial
Occlusion; (j) Similar Object; (k) Scale Variation; (l) Viewpoint Change.
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Figure 8. Cont.
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Figure 8. Success plots corresponding to some typical scenarios. The UAV123 dataset was used
for the evaluation. (a) Aspect Ratio Change; (b) Background Clutter; (c) Camera Motion; (d) Fast
Motion; (e) Full Occlusion; (f) Illumination Variation; (g) Low Resolution; (h) Out of View; (i) Partial
Occlusion; (j) Similar Object; (k) Scale Variation; (l) Viewpoint Change.

4.3. Experiments on the UAV20L Benchmark

The UAV20L [18] dataset consists of 20 long-term challenging video sequences. There
are more appearance changes in the whole video sequence, especially the accumulation of
appearance changes for a long time. In the experiment, we compared our proposed method
with SiamRPN++ [28], SiamRPN [14], SiamFC-3s [12], SRDCF [17], MEEM [43], SAMF [44]
and Struck [45]. The indicators used in the evaluation are the same as those of UAV123.

Overall Evaluation: As can be seen from Figure 9, the TDSiam_Res50 achieves the
best performance in terms of precision score and success rate, which are 0.764 and 0.589.
In particular, compared to the SiamRPN, our proposed method TDSiam_Alex achieves a
substantial gain of 4.5% in terms of the success score.

Attribute-Based Evaluation: As shown in Figures 10 and 11, our proposed method
TDSiam can performs better than other recent methods in some typical scenarios under
aerial version. As for the precision score, our method TDSiam_Res50 also achieves better
results, including ARC (0.705), CM (0.751), FM (0.777), FO (0.547), LR (0.590), OV (0.792),
PO (0.738), SO (0.792), SV (0.751), VC (0.728). As for the success rate, our method also yields
the best performance, including ARC (0.537), CM (0.576), FM (0.650), FO (0.360), LR (0.424),
OV (0.611), PO (0.564), SO (0.643), SV (0.584), VC (0.589). However, in both scenarios, BV
and IV, the performance of our method is still unsatisfactory. The reason for this may be
that the template-matching methods such as SiamRPN++, SiamRPN and SiamFC do not
have good tracking performance in complex backgrounds.
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Figure 9. Experimental results of different methods on the UAV20L dataset. The proposed al-
gorithmTDSiam_Res50 performs favorably against state-of-the-art trackers. (a) Precision plots;
(b) Success plots.
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Figure 10. Precision plots corresponding to some different scenarios. The UAV20L dataset was used
for the evaluation. (a) Aspect Ratio Change; (b) Background Clutter; (c) Camera Motion; (d) Fast
Motion; (e) Full Occlusion; (f) Illumination Variation; (g) Low Resolution; (h) Out of View; (i) Partial
Occlusion; (j) Similar Object; (k) Scale Variation; (l) Viewpoint Change.
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Figure 11. Success plots corresponding to some different scenarios. The UAV20L dataset was used
for the evaluation. (a) Aspect Ratio Change; (b) Background Clutter; (c) Camera Motion; (d) Fast
Motion; (e) Full Occlusion; (f) Illumination Variation; (g) Low Resolution; (h) Out of View; (i) Partial
Occlusion; (j) Similar Object; (k) Scale Variation; (l) Viewpoint Change.

4.4. Experiments on the UAVDT Benchmark

In the experiment, the algorithms involved in the comparisons are SiamRPN [14],
SiamRPN++ [28], SiamFC [12], and some methods provided by the UAVDT benchmark,
including MDNet [13], ECO, GOTURN[20], CFNet [21], SRDCF [46], C-COT [47], KCF and
SINT [19].

Overall Evaluation: The precision plots and Success plots are shown in Figure 12. Our
proposed method TDSiam achieved better performance under both the AlexNet and ResNet
backbones. The TDSiam_Alex achieved a success rate of 0.562 and a precision score of 0.787.
Compared with the SiamRPN, the success rate is improved by 4.9% and the precision score
is improved by 3.1%. In addition, TDSiam_Res50 also achieved the best results. The success
rate and precision score exceeded SiamRPN++, reaching 0.615 and 0.826, respectively.
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Attribute-Based Evaluation: The performance is evaluated under eight attributes and
the comparison results are shown in Figures 13 and 14. In terms of success rate, the TD-
Siam_Res50 achieved the best performance under all the attributes, which were BC (0.548),
CM (0.587), IV (0.66), LO (0.521), OB (0.627), OM (0.600), SMO (0.610), SV (0.616). In partic-
ular, compared with SiamRPN++, the success rate under CM, SMO and IV was increased
by 9.3%, 6.3% and 5.3%, respectively. In addition, compared with the baseline tracker
SiamRPN, the TDSiam_Alex also achieved better performance under all the attributes. As
for precision score, the TDSiam_Res50 achieved the best performance under six attributes,
which were BC (0.750), CM (0.788), LO (0.676), OM (0.811), SMO (0.879), SV (0.808), respec-
tively. In addition, compared with the baseline tracker SiamRPN, TDSiam_Alex achieved
better performance under all the attributes.
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Figure 12. Experimental results of using different methods on the UAVDT dataset. (a) Precision plots;
(b) Success plots.
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Precision plots of OPE - camera motion (30)
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Figure 13. Cont.
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Figure 13. Precision plots corresponding to some different scenarios. The UAVDT dataset was used
for the evaluation. (a) Background Clutter; (b) Camera Motion; (c) Illumination Variations; (d) Large
Occlusion; (e) Object Blur; (f) Object Motion; (g) Small Object; (h) Scale Variations.
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Figure 14. Success plots corresponding to some different scenarios. The UAVDT dataset was used for
the evaluation. (a) Background Clutter; (b) Camera Motion; (c) Illumination Variations; (d) Large
Occlusion; (e) Object Blur; (f) Object Motion; (g) Small Object; (h) Scale Variations.

4.5. Qualitative Evaluation

In order to present the tracking performance more intuitively, we carried out qualita-
tive experiments with the other algorithms, including SiamRPN++ [28], DaSiamRPN [23],
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SiamRPN [14] and SiamFC-3s [12], in the UAV123 dataset. We selected five typical video
sequences in UAV123 for analysis, as shown in Figure 15, including VC, CM, IV, SV and
other common attributes.

boat3: The boat3 video sequence contains a typical view-changing scene. At the 114th
frame, the performance gap of all tracking algorithms is not obvious. From the 331st to
the 871st frame, the appearance and the scale of the target change slowly, our proposed
method TDSiam_Res50 can still track the target stably, while the tracking performance of
other methods has declined.

car2_s: This video sequence is a process of continuous rotation and rolling of a vehicle,
and the appearance of the target changes dramatically due to the change of illumination in
the scene. In the first 48 frames, the appearance of the target has not changed significantly,
and all methods can track continuously. However, in the 176th and 275th frames, other
algorithms have failed to trace completely due to rotation and illumination changes, but
our method can still locate the target effectively.

car4: The car4 sequence shows the whole process of a car being blocked and then
reappearing. In the 404th frame, all trackers lost their target due to occlusion and the
DaSiamRPN even drifted to another car. In the rest of the video sequence, only our method
TDSiam_Res50 can find the target again and track it continuously.

car12: In this video sequence, a car passes through a straight road, which is blocked by
many trees. In the whole video sequence, only our method can continuously complete the
tracking, and other algorithms cannot track after losing the target. In the 174th frame, the
DaSiamRPN finds the target again, but the scale estimation is not accurate.

truck2: The scale of the target in the truck2 sequence is small, and the scene also
contains many similar buildings. From the 112nd frame, the tracking performance of other
algorithms is no longer stable, especially after the occlusion of the 189th frame, the other
algorithms even lose the target. Fortunately, our method TDSiam_Res50 can recover the
tracking performance more quickly.

Figure 15. Qualitative evaluation of the proposed TDSiam_Res50 and other state-of-art trackers on
the UAV123 [18] dataset. From left to right and top to down are the tracking results on the videos of
boat3, car2_s, car4, car12 and truck2.
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4.6. Ablation Study

To further verify the effectiveness of the each module, we conducted an ablation
study using the UAV123 dataset. It aims to show which module contributes to the overall
performance of the tracker. As shown in Table 2, the symbol Xrepresents that a particular
module has been used, whereas the symbol × indicates that the module has not been used.

Table 2. Ablation study of the proposed tracker on UAV123. We compared the performance of partial
module deactivation, Xand × represent module in use or not, respectively.

ID TL APCE FA Success Precision

1© × × × 0.618 0.808
2© X × × 0.598 0.802
3© X X × 0.630 0.815
4© X X X 0.643 0.828

As shown in the second row of Table 2, the performance of the proposed template-
driven Siamese network is worse than that of baseline because the interference is easy to
introduce once the target is occluded. In other words, the template-driven Siamese network
using the polluted template may harm the tracking performance. To solve this problem, we
propose an effective template updating strategy in this paper. By adding the APCE index,
the template-driven Siamese network can recognize whether the target is occluded or not.
When the target is not occluded, the template library can bring performance gains to the
tracker by updating the template. This strategy is indispensable for the template-driven
Siamese network and guarantees that the introduced template is not polluted. On the
contrary, the tracking performance will be worse than the baseline if the template library
does not use the template updating strategy with the APCE index.

APCE boosts the performance significantly with a score of 0.630 in terms of success
rate, exceeding baseline by 1.3%. As shown in the last row of the table, on incorporating
the FA module, our proposed method achieves a success score of 0.643 and a precision
score of 0.828, which leads to a performance improvement of 4% and 2.5%, respectively.
Experimental results show that template library (TL), feature aligned module (FA) and
average peak-to-correlation energy (APCE) all play an important role in the algorithm.

4.7. Speed Performance

Figure 16 shows the speed performance of different methods, including SiamRPN++ [28],
DaSiamRPN [23], SiamRPN [14], SiamFC-3s [12], SRDCF [17], MEEM [43] and SAMF [44].
Due to the addition of template library, the tracking speed of our proposed method de-
creases slightly compared with the SiamRPN++ and SiamRPN. Although our method
TDSiam_Res50 is not the fastest, it can still meet the real-time requirements and reach
35 fps.
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Figure 16. Speed performance of the proposed method and other state-of-art trackers on the
UAV123 dataset.

5. Conclusions

To improve the performance of the visual object tracking in unmanned aerial vehicle
videos, this paper has proposed a template-driven Siamese network (TDSiam), in which a
template library has been integrated into the Siamese network for solving the problem that
the appearance of the target in UAV videos often changes. A feature alignment module
is proposed to fuse the features from the template library more efficiently. Moreover, we
have designed a template updating strategy to guarantee the effectiveness of templates
in the inference stage. Performance comparisons on three challenging UAV video bench-
marks, including UAV123, UAV20L and UAVDT, have demonstrated that the proposed
approach can bring significant performance improvement. It also provides help for the
application of UAVs in practical tracking scenarios. However, there are some problems,
such as the long-term tracking performance degradation, which still need to be solved.
To summarize, the proposed approach has room for development and improvement, and
future research should focus on exploring the trajectory prediction and redetection strategy
for UAV tracking.

Author Contributions: All authors participated in devising the tracking approach and made signifi-
cant contributions to this work. L.S. and Z.Y. devised the approach and performed the experiments;
J.Z. and Z.F. provided advice for the preparation and revision of the work; and Z.H. helped with the
experiments. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Thirteen-Five Equipment Pre-Research Founda-
tion of China (No. 61403120207), the Aeronautical Science Foundation of China (No. 20185142003),
Natural Science Foundation of Henan Province, China (No. 222300420433), the Science and Technol-
ogy Innovative Talents in Universities of Henan Province (No. 21HASTIT030) and Young Backbone
Teachers in Universities of Henan Province (No. 2020GGJS073).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2022, 14, 1584 22 of 23

References
1. Fu, C.; Lin, F.; Li, Y.; Chen, G. Correlation filter-based visual tracking for UAV with online multi-feature learning. Remote Sens.

2019, 11, 549. [CrossRef]
2. Zhang, S.; Zhuo, L.; Zhang, H.; Li, J. Object tracking in unmanned aerial vehicle videos via multifeature discrimination and

instance-aware attention network. Remote Sens. 2020, 12, 2646. [CrossRef]
3. Zhuo, L.; Liu, B.; Zhang, H.; Zhang, S.; Li, J. MultiRPN-DIDNet: Multiple RPNs and Distance-IoU Discriminative Network for

Real-Time UAV Target Tracking. Remote Sens. 2021, 13, 2772. [CrossRef]
4. Xue, X.; Li, Y.; Dong, H.; Shen, Q. Robust correlation tracking for UAV videos via feature fusion and saliency proposals. Remote

Sens. 2018, 10, 1644. [CrossRef]
5. Wu, Y.; Lim, J.; Yang, M.H. Online object tracking: A benchmark. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418.
6. Zhu, Z.; Wu, W.; Zou, W.; Yan, J. End-to-end flow correlation tracking with spatial-temporal attention. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 548–557.
7. Zhang, K.; Zhang, L.; Yang, M.H. Fast compressive tracking. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2002–2015. [CrossRef]

[PubMed]
8. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550.

9. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the circulant structure of tracking-by-detection with kernels.
In Proceedings of the European Conference on Computer Vision, Proceedings of the Computer Vision–ECCV 2012, 12th European
Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 702–715.

10. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2014, 37, 583–596. [CrossRef] [PubMed]

11. Wang, N.; Yeung, D.Y. Learning a deep compact image representation for visual tracking. In Proceedings of the Advances in
Neural Information Processing Systems, Harrahs, NV, USA, 5–10 December 2013; pp. 809–817.

12. Wang, L.; Ouyang, W.; Wang, X.; Lu, H. Visual tracking with fully convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3119–3127.

13. Nam, H.; Han, B. Learning multi-domain convolutional neural networks for visual tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 4293–4302.

14. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High performance visual tracking with siamese region proposal network. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8971–8980.

15. Danelljan, M.; Bhat, G.; Shahbaz Khan, F.; Felsberg, M. Eco: Efficient convolution operators for tracking. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6638–6646.

16. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking.
In Proceedings of the European Conference on Computer Vision, Computer Vision–ECCV 2016 Workshops, Amsterdam, The
Netherlands, 8–10 and 15–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 850–865.

17. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Convolutional features for correlation filter based visual tracking.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 58–66.

18. Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the European Conference on
Computer Vision, Computer Vision–ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016;
Springer: Cham, Switzerland, 2016; pp. 445–461.

19. Tao, R.; Gavves, E.; Smeulders, A.W. Siamese instance search for tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1420–1429.

20. Held, D.; Thrun, S.; Savarese, S. Learning to track at 100 fps with deep regression networks. In Proceedings of the European
Conference on Computer Vision, Computer Vision–ECCV 2016, 14th European Conference, Amsterdam, The Netherlands, 11–14
October 2016; Springer: Cham, Switzerland, 2016; pp. 749–765.

21. Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H. End-to-end representation learning for correlation filter based
tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July
2017; pp. 2805–2813.

22. Wang, Q.; Teng, Z.; Xing, J.; Gao, J.; Hu, W.; Maybank, S. Learning attentions: residual attentional siamese network for high
performance online visual tracking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18–23 June 2018; pp. 4854–4863.

23. Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; Hu, W. Distractor-aware siamese networks for visual object tracking. In Proceedings of
the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 101–117.

24. Wang, M.; Liu, Y.; Huang, Z. Large margin object tracking with circulant feature maps. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4021–4029.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of
the Advances in Neural Information Processing Systems, Harrahs, NV, USA, 3–8 December 2012; pp. 1097–1105.

http://doi.org/10.3390/rs11050549
http://dx.doi.org/10.3390/rs12162646
http://dx.doi.org/10.3390/rs13142772
http://dx.doi.org/10.3390/rs10101644
http://dx.doi.org/10.1109/TPAMI.2014.2315808
http://www.ncbi.nlm.nih.gov/pubmed/26352631
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://www.ncbi.nlm.nih.gov/pubmed/26353263


Remote Sens. 2022, 14, 1584 23 of 23

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

27. Zhang, Z.; Peng, H. Deeper and wider siamese networks for real-time visual tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4591–4600.

28. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. Siamrpn++: Evolution of siamese visual tracking with very deep networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 4282–4291.

29. Yu, Y.; Xiong, Y.; Huang, W.; Scott, M.R. Deformable siamese attention networks for visual object tracking. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6728–6737.

30. Zhang, L.; Gonzalez-Garcia, A.; Weijer, J.v.d.; Danelljan, M.; Khan, F.S. Learning the model update for siamese trackers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June
2019; pp. 4010–4019.

31. Xu, Y.; Wang, Z.; Li, Z.; Yuan, Y.; Yu, G. Siamfc++: Towards robust and accurate visual tracking with target estimation
guidelines. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34,
pp. 12549–12556.

32. Guo, D.; Wang, J.; Cui, Y.; Wang, Z.; Chen, S. SiamCAR: Siamese fully convolutional classification and regression for visual
tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19
June 2020; pp. 6269–6277.

33. Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R. Siamese box adaptive network for visual tracking. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6668–6677.

34. Huang, Z.; Fu, C.; Li, Y.; Lin, F.; Lu, P. Learning aberrance repressed correlation filters for real-time uav tracking. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 2891–2900.

35. Yao, S.; Han, X.; Zhang, H.; Wang, X.; Cao, X. Learning Deep Lucas-Kanade Siamese Network for Visual Tracking. IEEE Trans.
Image Process. 2021, 30, 4814–4827. [CrossRef] [PubMed]

36. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

37. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

38. Du, D.; Qi, Y.; Yu, H.; Yang, Y.; Duan, K.; Li, G.; Zhang, W.; Huang, Q.; Tian, Q. The unmanned aerial vehicle benchmark:
Object detection and tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14
September 2018; pp. 370–386.

39. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

40. Huang, L.; Zhao, X.; Huang, K. Got-10k: A large high-diversity benchmark for generic object tracking in the wild. IEEE Trans.
Pattern Anal. Mach. Intell. 2019, 43, 1562–1577. [CrossRef] [PubMed]

41. Real, E.; Shlens, J.; Mazzocchi, S.; Pan, X.; Vanhoucke, V. Youtube-boundingboxes: A large high-precision human-annotated data
set for object detection in video. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 5296–5305.

42. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
43. Zhang, J.; Ma, S.; Sclaroff, S. MEEM: robust tracking via multiple experts using entropy minimization. In Proceedings of the

European Conference on Computer Vision, Computer Vision–ECCV 2014, 13th European Conference, Zurich, Switzerland, 6–12
September 2014; Springer: Cham, Switzerland, 2014; pp. 188–203.

44. Li, Y.; Zhu, J. A scale adaptive kernel correlation filter tracker with feature integration. In Proceedings of the European Conference
on Computer Vision, Computer Vision–ECCV 2014, 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Springer: Cham, Switzerland, 2014; pp. 254–265.

45. Hare, S.; Golodetz, S.; Saffari, A.; Vineet, V.; Cheng, M.M.; Hicks, S.L.; Torr, P.H. Struck: Structured output tracking with kernels.
IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 2096–2109. [CrossRef] [PubMed]

46. Danelljan, M.; Hager, G.; Shahbaz Khan, F.; Felsberg, M. Learning spatially regularized correlation filters for visual tracking.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4310–4318.

47. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond correlation filters: Learning continuous convolution operators for
visual tracking. In Proceedings of the European Conference on Computer Vision, Computer Vision–ECCV 2016, 14th European
Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; pp. 472–488.

http://dx.doi.org/10.1109/TIP.2021.3076272
http://www.ncbi.nlm.nih.gov/pubmed/33945475
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1109/TPAMI.2019.2957464
http://www.ncbi.nlm.nih.gov/pubmed/31804928
http://dx.doi.org/10.1109/TPAMI.2015.2509974
http://www.ncbi.nlm.nih.gov/pubmed/26700968

	Introduction
	Related Works
	The Siamese Trackers
	Trackers for UAV Videos

	Template-Driven Siamese Network
	The Feature Extraction Subnetwork
	The Feature Fusion Subnetwork
	The Bounding Box Estimation Subnetwork
	Inference Phase: Template Updating

	Experiments
	Implementation Details
	Experiments on the UAV123 Benchmark
	Experiments on the UAV20L Benchmark
	Experiments on the UAVDT Benchmark
	Qualitative Evaluation
	Ablation Study
	Speed Performance

	Conclusions
	References

