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Abstract: In recent years, more and more researchers have used deep learning methods for super-
resolution reconstruction and have made good progress. However, most of the existing super-
resolution reconstruction models generate low-resolution images for training by downsampling
high-resolution images through bicubic interpolation, and the models trained from these data have
poor reconstruction results on real-world low-resolution images. In the field of unmanned aerial
vehicle (UAV) aerial photography, the use of existing super-resolution reconstruction models in
reconstructing real-world low-resolution aerial images captured by UAVs is prone to producing some
artifacts, texture detail distortion and other problems, due to compression and fusion processing of
the aerial images, thereby resulting in serious loss of texture detail in the obtained low-resolution
aerial images. To address this problem, this paper proposes a novel dense generative adversarial
network for real aerial imagery super-resolution reconstruction (NDSRGAN), and we produce image
datasets with paired high- and low-resolution real aerial remote sensing images. In the generative
network, we use a multilevel dense network to connect the dense connections in a residual dense
block. In the discriminative network, we use a matrix mean discriminator that can discriminate the
generated images locally, no longer discriminating the whole input image using a single value but
instead in chunks of regions. We also use smoothL1 loss instead of the L1 loss used in most existing
super-resolution models, to accelerate the model convergence and reach the global optimum faster.
Compared with traditional models, our model can better utilise the feature information in the original
image and discriminate the image in patches. A series of experiments is conducted with real aerial
imagery datasets, and the results show that our model achieves good performance on quantitative
metrics and visual perception.

Keywords: remote sensing; aerial imagery; super-resolution reconstruction; deep learning; generative
adversarial network

1. Introduction

Unmanned aerial vehicle (UAV) aerial remote sensing images can provide information
about the Earth’s surface quickly, but medium- and low-resolution UAV aerial imagery
has limitations regarding extraction of high-precision features, map updates and target
detection. The development of high-resolution UAV aerial imagery makes the in-depth
application of aerial imagery possible, thus providing favourable conditions for GIS data
updates [1] and GIS applications [2]. It is also important for map updates [3], semantic seg-
mentation [4] and target detection [5]. Computer vision technology has been widely applied
in many fields such as multi-target recognition [6] and seismic performance evaluation [7].
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In the field of aerial photography, obtaining high-resolution aerial images is diffi-
cult due to the influence of imaging technology and photographic equipment [8], which
often requires UAVs to perform ultra-low-altitude aerial photography, a process that is
both labour-intensive and costly. As a result, techniques to achieve super-resolution (SR)
reconstruction of images from an algorithmic point of view have become an important
research topic in various fields such as image processing and computer vision [9]. However,
most of the existing super-resolution reconstruction models generate low-resolution im-
ages for training by downsampling high-resolution images through bicubic interpolation,
and the models trained from these data have poor reconstruction results on real-world
low-resolution images.

To solve this problem, we propose NDSRGAN. Unlike previous GAN-based image
SR reconstruction models, this model has a dense connection in the residual dense block
(DCRDB) in the generative network, which consists of multilevel dense connections (MDC)
and residual connections [10]. Multiple DCRDBs are then connected by a multilevel dense
network to form a generative network, which is optimised to enable the generative network
to fully utilise the feature information of real aerial images. The discriminator is specially
designed using a matrix mean discriminator (MMD) network, which discards the full
connection of the last layer of the traditional discriminator and outputs a discriminator
matrix instead, where each value of the matrix represents a piece of the receptive field in
the image. In the objective function, we use smoothL1 loss instead of the L1 loss used in
most image SR reconstruction models. This can better accelerate the convergence of the
model to reach the global optimum [11].

Most existing image SR reconstruction models use LR images generated by bicubic
interpolation using HR images, which are very different from the low-resolution images
obtained by actual photography. To ensure that our model met the requirements of practical
applications, we did not use LR images generated by bicubic interpolation paired with HR
images for training. Instead, we created the dataset by using LR images and HR images of
the real shots to perform training. In the reconstruction of the real aerial imagery dataset
and benchmark dataset, our model achieved the best SR reconstruction results, compared
with representative image SR reconstruction models.

Specifically, the main contributions of this work are as follows:

• We produce a new image dataset with paired high- and low-resolution real aerial
remote sensing images, which are both obtained by actual photography.

• We propose a novel dense generative adversarial network for real aerial imagery
super-resolution reconstruction (NDSRGAN). In the generative network, we use
a multilevel dense network to connect the dense connections in a residual dense
block. In the discriminative network, we use a matrix mean discriminator that can
discriminate the generated images locally. We also use smoothL1 loss to accelerate the
model convergence and reach the global optimum faster.

The rest of the paper is organised as follows. Related studies on super-resolution
are introduced in Section 2. In Section 3, we detail our NDSRGAN. The datasets and
experimental results are given in Section 4, and we discuss our method on an open-source
dataset in Section 5. Finally, we conclude our work and discuss future research directions
in Section 6.

2. Related Work

The main SR methods are divided into three categories, which are discussed in the
following subsections.

2.1. Interpolation-Based Methods

Interpolation-based methods calculate the value of a point according to a certain
formula by using the values of several known points around the point and the relationship
between the surrounding points and the location of this point. Interpolation-based methods
are simple, efficient and easy to understand, but they are also prone to blurring and
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jaggedness when recovering images, and they cannot recover image details because no new
information is generated during the interpolation process. Common interpolation-based
methods include nearest neighbour [12], bilinear [13] and bicubic [14] methods.

2.2. Reconstruction-Based Methods

Reconstruction-based methods establish an observation model for the process of con-
verting high-resolution (HR) images into low-resolution (LR) images, and then achieve
SR reconstruction by solving the inverse problem of the observation model. Typical
reconstruction-based methods are nonuniform interpolation [15], iterative inverse pro-
jection [16], maximum posterior probability [17] and convex set projection [18] methods.

2.3. Learning-Based Methods

A learning-based image SR algorithm learns the mapping relationship between LR
and HR images by training the image dataset to predict the missing details of feature infor-
mation in LR images to reconstruct high-quality images. Learning-based SR methods are
the mainstream research direction at present, and they achieve the best results. Commonly
used learning-based SR methods include the neighbour embedding method [19], sparse
representation [20] and deep learning [21].

In recent years, with the rapid development of artificial intelligence technology [22],
the use of deep learning methods to achieve SR reconstruction has become mainstream,
and many deep-neural-network-based models have made good progress in the field of SR
reconstruction. The methods using deep learning for single-image SR reconstruction [23]
can be further divided into two categories: convolutional neural network (CNN)-based SR
reconstruction and generative adversarial network (GAN)-based SR reconstruction.

2.3.1. CNN-Based SR Reconstruction Methods

A simple SRCNN was proposed by Dong et al. [24], which used a simple three-
layer CNN [25] to achieve SR reconstruction and obtained better reconstruction results
than traditional methods. However, due to the large size of the convolutional kernel
and the shallow depth of the network, the reconstructed image was too smooth, and the
reconstruction details were lost.

To overcome this shortcoming, Dong et al., proposed a fast SR reconstruction CNN
(FSRCNN) [26], which uses smaller convolutional kernels than SRCNN to complete feature
extraction and nonlinear mapping of images, and abandons the initial interpolation of
low-resolution images for enlargement, instead directly inputting low-resolution images
and finally performing deconvolution [27] to amplify the image. After this series of
optimisations, FSRCNN obtained a higher evaluation score and better reconstruction effect
than SRCNN. However, the reconstruction details still require improvement because the
network structure is too simple.

Following the wide application of residual networks (ResNet) [28] in the field of target
detection and target recognition, Lim et al. applied ResNet to the field of image SR recon-
struction and proposed an enhanced SR reconstruction residual network (EDSR) [29]. In
this network, the authors removed the batch normalisation (BN) layer from the ResNet [30]
and increased the number of residual layers from 16 to 32. The BN layer consumes the
same amount of memory as its preceding convolutional layers. Thus, after this operation
step is removed, EDSR can stack more network layers, so that more features are extracted
per layer with the same computational resources, resulting in a better performance.

These CNN-based SR network models have made good progress in continuous opti-
misation and improvement. However, a common loss function for CNN-based SR network
models is the mean squared error (MSE), which causes the generated images to have a high
signal-to-noise ratio but lack high-frequency detail and have an over-smoothed texture.
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2.3.2. GAN-Based SR Reconstruction Methods

Compared with traditional CNNs, the biggest difference and success of GANs is the
discriminator, which can be trained to discriminate the input generated images. In the
field of aerial photography, the image complexity in aerial images is greater than that
in natural images [31]. Conventional discriminators are prone to local discriminative
errors in discriminating images. They cannot make correct discriminations based on
the correlation of surrounding features, thus seriously affecting the quality of generated
high-resolution images.

The main structure of a GAN consists of a generator and a discriminator. The generator
generates fake images that deceive the discriminator, and the discriminator discriminates
whether the input image is from a real image or a fake image generated by the generator, to
achieve Nash equilibrium [32] by alternately training the generator and the discriminator,
finally determining the network model parameters [33].

Ledig proposed a single-image SR reconstruction method using GANs (SRGAN) [34],
which was the first application of GANs in image SR reconstruction, to solve the shortcom-
ings of MSE in CNN-based SR reconstruction models [35]. SRGAN uses perceptual loss as
an optimisation objective. Perceptual loss was proposed by Johnson et al., inspired by the
studies in [36,37], and consists of adversarial loss [33] and content loss. Adversarial loss
maps the image to a high-dimensional feature space and uses a discriminative network to
discriminate the reconstructed image from the original image, and content loss is based on
receptive similarity rather than pixel similarity [38].

An activated 19-layer VGG network [39] is used to obtain the feature maps of the
generated image and the original high-resolution image, and then to improve the quality of
the generated image by minimising the error between the generated image and the feature
maps of the original high-resolution image. However, because the generative network of
SRGAN partly uses ResNet, the generated image is usually not sufficiently natural and
contains some noise.

To address the shortcomings of SRGAN, Wang et al., proposed an enhanced SRGAN
(ESRGAN) [40]. This uses a multilevel network structure unit RRDB instead of ResNet in
the generative network of the SRGAN and removes the BN layer. Inspired by a relativistic
GAN, it allows the discriminator to predict the probability that the generated image is more
false, relative to the high-resolution image, rather than just the probability that the generated
image is false [41]. It also uses feature maps with stronger supervisory information before
activation, to constrain the perceptual loss function. After a series of optimisations, the
ESRGAN model achieved better visual quality in its reconstructed images but did not
reconstruct more desirable results for the edge contours of some features. Therefore, Ma
et al., proposed a gradient-guided SR reconstruction network model (SPSR) [42], which
adds a gradient branch and gradient loss to the ESRGAN network and can recover the
contour details of the original image to a great extent.

However, the overall visual effect of the image is still different from that of the original
image. Although the above research on GAN SR models has achieved great improvements
in the SR effect, the mainstream models usually use some more basic residual networks
and L1 loss, resulting in the inability to fully learn the features of the real aerial images,
while most models ignore the optimisation of the discriminator.

3. Method

This section focuses on the design of the generative network, discriminative network
and loss function of NDSRGAN.

3.1. Generative Network

The generative network architecture is shown in Figure 1. Firstly, we use one convolu-
tional layer to extract the original features in the LR image to obtain the original feature
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maps I f . I f is further input into multiple DCRDBs connected by a dense network. Then,
the input and output of the u-th DCRDB can be represented as follows:

Qu =


I f , ‖ u = 0

I f + α
u−1
∑

i=0
Ii , ‖ u ≥ 1

(1)

Iu = FDCRDB,u(Qu) (2)
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Figure 1. Network structure of NDSRGAN. ILR represents LR images and ISR represents the image
generated by the generative network. Fconv represents the convolutional layer. FDCRDB,u represents
the u-th DCRDB module. Fupnet denotes the upsampling network. IHR represents the original HR
image and ISR represents the output image of the generative network. In addition, k represents the
convolution kernel size, c represents the number of convolution kernels and s represents stride. The
arrows in the figure represent the flow of the feature map.

In Equation (1), I f represents the original feature maps of the LR image ILR after
convolution and α represents the residual scaling factor [43]. In Equation (2), Qu represents
the input of the u-th DCRDB, Iu represents the output of the u-th DCRDB and FDCRDB,u(·)
represents the composite network formed by the u-th DCRDB through dense connections.

The specific network structure of the DCRDB is shown in Figure 2a. Each DCRDB
consists of σ dense blocks (DB) and a convolutional layer, connected using a dense network.
These dense connections can ensure that the output feature maps of each dense block
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module can be reused in multiple levels, which can maximise the use of feature information
on LR images. The v-th DCRDB internal calculation formula can be described as follows:

Qu,v =


Qu , ‖ v = 0

Qu + α
v−1
∑

i=0
Iu,i , ‖ v ≥ 1

(3)

Iu,v = FDB,v(Qu,v) (4)
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represents the w-th CL module. The CL module consists of a convolutional layer and a LReLU
layer. Fconv represents the convolutional layer. The arrows in the figure represent the flow of the
feature map.

In Equation (4), Qu,v is the input of the v-th layer of the DB in the u-th DCRDB, Iu,v is
the output of the v-th layer of the DB in the u-th DCRDB and FDB,v represents the v-th layer
of the DB in the u-th DCRDB. After this, we sum the outputs of the σ DBs through the dense
connection and input them into the convolutional layer, which is calculated as follows:

IDBConv = Fconv

(
Qu + α

σ−1

∑
i=0

Iu,i

)
(5)

In Equation (5), Fconv(·) represents the last convolutional operation in the DCRDB and
IDBConv represents the output of the convolutional layer, immediately after which we access
a residual connection, calculated as follows:

Iu = Qu + IDBConv (6)

In Equation (6), Qu represents the input after the u-th DCRDB and Iu represents the
output after the u-th DCRDB.

The DB structure is shown in Figure 2b. Each DB is composed of a series of CL
modules and a convolutional layer, with dense connection. The CL module consists of a
convolutional layer and a leaky ReLU (LReLU) layer [44,45]. The internal computational
formula of the v-th DB in the u-th DCRDB can be described as

Qu,v,w =

{
Qu,v , ‖ w = 0

Tconcat(Qu,v,, Iu,v,0,, Iu,v,1 · · · · · ·Iu,v,w−2, Iu,v,w−1) , ‖ w ≥ 1
(7)

Iu,v,w = FCL,w(Qu,v,w) (8)

In Equation (8), Qu,v,w is the input of the w-th CL module in the v-th dense block in
the u-th DCRDB, Iu,v,w is the output of the w-th CL module in the v-th dense block in the
u-th DCRDB, FCL,w represents the w-th CL composite network in the v-th DB of the u-th
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CRDB and Tconcat(·) represents the concatenate operation that sums the channels of the
input feature maps. Suppose we use ϕ CL modules, then:

ICL = Fconv
(
Tconcat

(
Qu,v, Iu,v,0,, Iu,v,1 · · · · · ·Iu,v,ϕ−2, Iu,v,ϕ−1

))
(9)

In Equation (9), ICL is the output of Fconv(·) and Fconv(·) is the last layer of the convo-
lution operation of the DB. Following this, we access a residual connection

Iu,v = Qu,v + ICL (10)

In Equation (10), Qu,v is the input of the v-th DB in the u-th DCRDB and Iu,v is the
output of the v-th dense block in the u-th DCRDB.

After introducing the basic components of the DCRDB, we now introduce the genera-
tive network. Suppose we use ε DCRDBs. The output Iε−1 is connected with the output of
each previous layer of DCRDBs and fed into the next convolutional layer:

Iy = Fconv

(
I f + α

ε−1

∑
i=0

Ii

)
(11)

In Equation (11), Fconv(·) represents the final layer of the convolution operation of the
generative network and Iy represents the output of Fconv(·). Then, we access a residual connection

Iz = Iy + I f (12)

In Equation (12), Iz represents the output of Iy connected to the I f residuals. Finally, Iz
is fed to the upsampling network, set up as follows:

ISR = Fupnet(Iz) (13)

In Equation (13), Fupnet(·) represents our upsampling network, Iz represents the input
of the upsampling network and ISR represents the output of the upsampling network,
which is also the input of the final discriminator. The upsampling network of ESRGAN [40]
is exploited in our network. It includes two magnification steps. Each step uses a nearest
neighbour algorithm to magnify the image and connect a convolutional layer and an
LReLU [44,45] layer.

3.2. Discriminative Network

The role of the discriminator is to discriminate the feature map distribution difference
between ISR and IHR, and to discriminate whether ISR is real or fake. The output of the
basic discriminator of a GAN is often a classification after a series of convolutions and a
full concatenation score to indicate whether the overall category of the image is real or
fake. The receptive field for classification is the whole image, which is why the network is
insensitive to the local information of the image and cannot achieve a higher-fidelity image
reconstruction in the case of rich feature details. Therefore, local feature extraction and
discrimination of the image are needed to generate an SR reconstructed image that is closer
to the real aerial image.

Inspired by [46], we used the idea of a matrix mean discriminator capable of local dis-
crimination on the generated images, to construct our discriminative network. The network
structure of the discriminative network is shown in Figure 1, set up as a fully convolutional
network [47]. The first layer consists of a convolutional layer and an LReLU [44,45]. The sec-
ond, third and fourth layers consist of a convolution layer, a BN layer and an LReLU [44,45].
The fifth layer consists of one convolutional layer. The size of the output matrix in each
layer is shown in Table 1.
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Table 1. The size of the output matrix of each layer of the network, where h represents the size of
the input image, k1 − k5 represent the sizes of each convolution kernel from the first layer to the fifth
layer, p1 − p5 represent the amounts of padding from the first layer to the fifth layer, s1 − s5 represent
the sizes of each convolutional step from the first layer to the fifth layer, n1 − n4 represent the sizes of
the output matrix from the first layer to the fourth layer and n represents the size of the final output
matrix from the discriminator.

Network Layers Calculation Formula Size of the Output Matrix

the first layer (h− k1 + 2p1)/s1 + 1 n1
the second layer (n1 − k2 + 2p2)/s2 + 1 n2
the third layer (n2 − k3 + 2p3)/s3 + 1 n3

the fourth layer (n3 − k4 + 2p4)/s4 + 1 n4
the fifth layer (n4 − k5 + 2p5)/s5 + 1 n

The discriminative network finally yields an n× n discriminative matrix. Each element
in the matrix represents a receptive field in the original image and carries out a real or fake
discrimination for each value in the n× n matrix to complete the local discrimination of
the input image. The experimental results shown in Section 4 demonstrate that the image
quality is significantly improved by our discriminator-optimised model.

3.3. Loss Function Design

Here, we introduce the design of the loss function of the generative network, which
consists of three main parts: pixel loss, perceptual loss [38] and adversarial loss [33]. Pixel
loss is calculated as follows:

Lpixel(ISR, IHR) = smoothL1(ISR − IHR) (14)

In which

smoothL1(x) =

{
0.5x2 , ‖ |x| < 1
|x| − 0.5 , ‖ |x| ≥ 1

(15)

Is a more powerful objective function. In fact, in the interval of |x| ≥ 1, L1 loss
actually solves the problem of a too-large gradient and unstable training caused by a
too-large difference between ISR and IHR at the early stage of training. In the |x| < 1
interval, which is actually L2 loss, the derivative of the L2 loss is relatively small when
the difference between ISR and IHR is small in the late training period, thereby making
the loss convergence more stable and aiding convergence to the global optimum [11]. The
perceptual loss is calculated as follows:

IPerceptual(VGG(ISR), VGG(IHR)) = smoothL1(VGG(ISR)−VGG(IHR)) (16)

We use the smoothL1 loss to design our perceptual loss. In Equation (16), VGG(·)
represents a 19-layer VGG network [39], and we use this network before activation to
extract the feature maps from the generated and real images. The goal of the perceptual
loss function is to minimise the error between the feature maps. The addition of this loss
function allows our model to generate images with a more realistic texture. We can now
introduce the adversarial loss for the generator, which is calculated as follows:

LGA = −E(log(1− DHS))− E(log(DSH)) (17)

In Equation (17), DHS = σ(D(IHR)− E(D(ISR))) represents the difference between
the matrix D(IHR) of the real image IHR output through the discriminator D(·) and the
element mean of the output matrix D(ISR) of ISR after the discriminator D(·). Then,
the resultant matrix is mapped to a probability matrix between 0 and 1 by the sigmoid
function, and the DHS matrix has an optimisation target of 0 for each element. Each
element represents an optimisation target of 0 for each receptive field. Here, σ(·) is the
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sigmoid function and DSH = σ(D(ISR)− E(D(IHR))) represents the difference between
the matrix D(ISR) of ISR output through the discriminator D(·) and the element mean of
the output matrix D(IHR) of IHR after the discriminator D(·). Afterwards, the resultant
matrix is mapped to a probability matrix between 0 and 1 by the sigmoid function, and the
optimisation target of each element in the DSH matrix is 1. Each element also represents an
optimisation target of 1 for each receptive field. The optimisation target of the receptive
field is 1. The final objective function of the generator can be defined as

LG = βLpixel(ISR, IHR) + IPerceptual(VGG(ISR), VGG(IHR)) + γLGA (18)

In Equation (18), β and γ represent the weight coefficients of the pixel loss and the
generator adversarial loss.

Next, we introduce the discriminator loss function construction. The discriminator
adversarial loss calculation formula can be expressed as

LDA = −E(log(DHS))− E(log(1− DSH)) (19)

The design of the discriminator adversarial loss differs from that of the generator in
which each element of the DHS = σ(D(IHR)− E(D(ISR))) output matrix has an optimi-
sation objective of 1, in that each element of the DSH = σ(D(ISR)− E(D(IHR))) output
matrix has an optimisation objective of 0. The similarity lies in the fact that each element
of the matrix represents each receptive field. The loss function of the discriminator can be
expressed as

LD = η ∗ LDA (20)

In Equation (20), η represents the weight coefficient of LDA. We optimise LG and LD by
alternate training to update the parameters of our generative and discriminative networks
and obtain our SR reconstruction model.

4. Experiments and Results

In this section, we introduce the production of the SR reconstruction dataset based on
real HR and LR aerial imagery (RHLAI), the details of training parameters, the analysis of
changes in the reconstructed image quality metrics during NDSRGAN training and the
analysis of the reconstruction results of the RHLAI dataset.

4.1. RHLAI Dataset

Most SR reconstruction methods use LR images obtained by bicubic interpolation of
HR images. A difference exists between the LR images obtained in this way and the actual
LR images. As a result, the trained SR models often do not have the SR reconstruction
capability of the real LR images. To solve this problem, in this study we discarded the
bicubic interpolation method of generating LR images from HR images used in most
previous studies to construct paired HR and LR datasets. Instead, we used real LR aerial
imagery and the corresponding real HR aerial imagery to produce the datasets, to enable
the model to learn more complex and more realistic mapping relationships instead of
simply learning the inverse process of bicubic interpolation.

To ensure that the HR and LR images corresponded to each other, we took HR and LR
images by aerial flight at 100 m and 400 m, respectively, in the same place. These images
were taken on 9 January 2021, at 2:00 p.m., at Yichang City, Hubei Province, China. We
obtained real HR aerial imagery with 0.05 m resolution and real LR aerial imagery with
0.2 m resolution.

We used the georeferencing tool in ArcGIS to align the HR images and LR images
by manually setting the control points, in order to make the features in the aligned HR
images and LR images correspond to each other as much as possible. We used OpenCV to
crop the 0.05 m HR images into 256 × 256 images and the corresponding 0.2 m LR images
into 64 × 64 images, resulting in a dataset of 9288 pairs of HR and LR images. We selected
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8385 pairs of HR and LR images as the training dataset and 903 pairs of HR and LR images
as the test dataset. We discuss the performed cross-validation on the training dataset in
Section 4.3.

We named this dataset RHLAI. This dataset can avoid the problem of the model simply
learning the inverse process of bicubic interpolation and can truly reflect the reconstruction
ability of the SR model.

4.2. Training Details

We set the batch size to 16 for the input images. All the input data were randomly
cropped and data-augmented. We randomly cropped the HR images to 128 × 128 and the
LR images to 32 × 32. NDSRGAN uses 23 DCRDBs and 3 DBs in each DCRDB; each DB in
turn uses 4 CR modules.

The residual scaling factor α was set to 0.2, β was set to e−2, γ was set to 2.5e−3 and η
was set to 0.5. The learning rate at the beginning of training was set to 2e−4. The number of
training iterations was set to e5 and the learning rate was reduced by half at 2.5e4, 5e4 and
7.5e4 iterations.

For the optimiser settings, NDSRGAN used the Adam optimiser [48], with β1 = 0.9
and β2 = 0.99. The generative and discriminative networks were trained alternately during
the training process until Nash equilibrium was achieved.

We developed our model code using the PyTorch framework and completed the model
training on two GTX1080Ti GPUs with 12 GB of global memory.

4.3. Cross-Validation

In this experiment, we used three accuracy metrics to evaluate the model: peak signal-
to-noise ratio (PSNR) [49], structural similarity (SSIM) [50] and learned perceptual image
patch similarity (LPIPS) [51]. LPIPS is calculated according to the L2 distance d(x, x0),
which was defined in [51] as

d(x, x0) = ∑
l

1
HlWl

∑
h,w
‖wl � (ŷl

hw − ŷl
0hw)‖

2
2 (21)

The widely used perceptual metrics (PSNR, SSIM) are very simple functions that
cannot reflect human perception well. Therefore, in this experiment, we added the LPIPS
metric to evaluate the model. LPIPS is a type of computational evaluation metric for
image depth features, which is closer to human perception in visual similarity judgment
and performs better. LPIPS is a metric calculated by mapping the evaluated image and
the original image to a high-dimensional space using a deep learning model, and then
calculating the distances between the feature images of the evaluated image and the original
image. It can be used to evaluate the quality of the image. The smaller the distance between
two feature images, the closer the evaluated image is to the original image. A lower LPIPS
value represents better image quality [51].

We conducted nine-fold cross-validation experiments on the training dataset. A total
of 8385 images were divided into nine sub-datasets. We extracted one sub-dataset each
time as the validation dataset and input the remaining eight sub-datasets into the model for
training. Table 2 shows three metrics of the model for nine experiments. After observing
that the fourth experiment had the highest performance, we chose the sub-datasets of
the fourth experiment to obtain the final parameters of our model and selected them for
conducting subsequent model comparison tests.

4.4. Image Quality Metrics Analysis during NDSRGAN Training

We saved the mean values of PSNR, SSIM and LPIPS for the validation dataset ev-
ery 500 iterations while the model was trained and plotted them into three graphs for
visual analysis.
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Table 2. Mean values of PSNR, SSIM and LPIPS for cross-validation. The best performance in bold.

1 2 3 4 5 6 7 8 9

PSNR 19.282 19.251 19.304 19.513 19.418 19.389 19.466 19.276 19.411
SSIM 0.4438 0.4537 0.4521 0.4675 0.4520 0.4502 0.4533 0.4356 0.4523
LPIPS 0.3502 0.3436 0.3401 0.3306 0.3391 0.3420 0.3361 0.3536 0.3383

Figure 3a shows the PSNR values during the training process. The horizontal coordi-
nates are the number of iterations, and the vertical coordinates represent the PSNR values,
from which we can observe that the oscillation amplitude of the PSNR values was very
large at the beginning of the training period, and the difference between the highest and
lowest peaks was more than 2. Our model gradually stabilised, and the amplitude stayed
at around 0.2 when the number of iterations approached 100,000.
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Figure 3b shows the curve of the SSIM value change during training, from which we
can observe that the oscillation amplitude of the SSIM value was still very large at the
beginning of training, and the difference between the highest peak and the lowest peak
was more than 0.05. As the number of training iterations increased, the overall trend of
the SSIM values gradually increased, the amplitude of oscillation gradually stabilised and
the final amplitude remained around 0.01, which also indicates that our model gradually
stabilises in the late training period.

Figure 3c shows the curve of the LPIPS value change during the training process. It
shows that the quality of our model improved continuously as the number of training
iterations increased, and the model stabilised and converged when the number of iterations
approached 100,000.

4.5. Reconstruction Results Analysis of RHLAI Dataset

We conducted experiments using SRCNN [25], EDSR [29], SRGAN [34], ESRGAN [40],
SPSR [42], Real-ESRGAN [52] and NDSRGAN on the RHLAI dataset, under the conditions
where the training iterations, initial learning rates and training hardware environments
were guaranteed to be the same.

Table 3 shows the PSNR, SSIM and LPIPS values of the reconstructed images on
the test dataset. Higher PSNR and SSIM values and lower LPIPS values represent better
image quality. Through experimental comparison, we found that the bicubic interpolation
methods and the CNN-based SR reconstruction methods tended to obtain higher PSNR and
SSIM values compared with the GAN-based methods, but a large gap still exists between
the real reconstruction visual effect and the GAN-based methods’ reconstruction effect,
and the image visual effect is blurred (see Figure 4). Therefore, we believe that the PSNR
and SSIM metrics do not represent the real image reconstruction quality well. The authors
who developed ESRGAN [40] and SPSR [42] presented the same insights in their papers.
For this reason, we calculated a metric closer to human visual perception, to continue the
accuracy evaluation, namely LPIPS [51].Our model achieved the highest accuracy score,
significantly exceeding the LPIPS value of the second-ranked SPSR model. It can be seen
from Figure 4 that this metric is consistent with human visual perception. The lower the
LPIPS value othe reconstructed image, the higher the reconstruction quality.

Table 3. Mean values of PSNR, SSIM and LPIPS for different methods. The best performance in bold.

Metrics Bicubic
CNN GAN

SRCNN EDSR SRGAN ESRGAN SPSR Real-ESRGAN Ours

PSNR 20.763 19.985 20.619 19.011 18.637 18.391 19.201 19.513
SSIM 0.5246 0.5308 0.5307 0.4517 0.4320 0.4562 0.4876 0.4675
LPIPS 0.6802 0.6923 0.6777 0.3949 0.3791 0.3688 0.3952 0.3306

We also performed a group of qualitative and quantitative analyses of the recon-
structed images in terms of human visual perception. Figure 4 shows that the reconstructed
images from our model have richer texture details than the reconstructed images from
other models, and the reconstructed images are closer to the real HR images.

The figure also shows that the images reconstructed using bicubic interpolation and
CNN-based methods are obviously blurred, and the images reconstructed by the GAN-
based methods are clearer.
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As can be seen in the first and second rows of Figure 4, our model is able to reconstruct
a clearer car outline. In the third row of Figure 4, our model is able to restore more of the
white texture of the roof and produce fewer artifacts and in the fourth row of Figure 4, our
model is able to generate a clearer gutter that is closer to the real HR image. In the fifth row
of Figure 4, our model generates more regular and more detailed parking lines.

These results indicate that our model is able to take full advantage of the features of
the original image and that the feature detail contours in the generated image are closer
to the real HR image, due to the matrix mean discriminator utilised by NDSRGAN. The
performance of NDSRGAN will be further discussed in Appendix A.

5. Discussion

To further demonstrate the good performance of NDSRGAN, we conducted a series of
experiments using SRCNN, EDSR, SRGAN, ESGAN, SPSR, Real-ESRGAN and NDSRGAN
on the DIV2K dataset [53], under conditions where the training iterations, initial learning
rates and training hardware environments were guaranteed to be the same. Table 4 shows
the PSNR, SSIM and LPIPS values of the reconstructed images in Set5 [54], Set14 [55] and
Urban100 [56].
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Table 4. Mean values of PSNR, SSIM and LPIPS for different methods in Set5, Set14 and Urban100.
The best performance in bold.

Dataset Metrics Bicubic
CNN GAN

SRCNN EDSR SRGAN ESRGAN SPSR Real-ESRGAN Ours

PSNR 28.420 30.254 32.237 28.696 28.877 28.647 29.490 29.471
Set5 [54] SSIM 0.8245 0.8721 0.9075 0.8445 0.8459 0.8419 0.8680 0.8552

LPIPS 0.3407 0.2182 0.1724 0.1057 0.0877 0.0902 0.0931 0.0820

PSNR 26.100 27.362 28.650 25.921 25.764 25.722 26.476 26.135
Set14 [55] SSIM 0.7850 0.8253 0.8528 0.7669 0.7612 0.7591 0.7923 0.7688

LPIPS 0.4393 0.3331 0.2814 0.1710 0.1613 0.1588 0.1661 0.1537

PSNR 23.145 24.239 26.255 23.264 23.238 23.092 23.739 23.481
Urban100 [56] SSIM 0.9011 0.9347 0.9614 0.9100 0.9146 0.9132 0.9267 0.9220

LPIPS 0.4726 0.3457 0.2226 0.1908 0.1781 0.1692 0.1729 0.1591

As can be seen in Table 4, the EDSR model obtained the highest PSNR and SSIM metrics
in all three test sets. As described in Section 4.5, CNN-based models tended to obtain
higher PSNR and SSIM values, but the image reconstruction visual results were not as
good as those of the GAN-based models. The LPIPS metric is more consistent with human
visual evaluation results, so the ranking of LPIPS values is more convincing regarding the
superiority of the model. Our NDSRGAN model obtained the best LPIPS metrics in three
test sets, further proving the superiority of our model’s reconstruction ability.

6. Conclusions

High-resolution aerial images are important in aerial photography applications, but
they have a high acquisition cost and a long processing period. Moreover, the current
models do not achieve a good reconstruction effect on real aerial image super-resolution
reconstruction. Therefore, reconstructing high-quality high-resolution aerial images from
real low-resolution aerial images is a great challenge.

To address the difficulty of reconstructing real aerial images by using existing super-
resolution reconstruction models, we produced the RHLAI dataset with real aerial high-
and low-resolution pairing for aerial image super-resolution reconstruction and proposed
a new aerial image super-resolution reconstruction model called NDSRGAN.

We used multilevel dense connection to connect multiple dense connections in the
residual dense block, so that the designed generative network could maximise the use of
the features of real aerial images, and we used a matrix mean discriminator to optimise
our discriminative network, which does not discriminate the whole image of the input but
instead discriminates the input image locally in chunks.

The experimental results demonstrated that the reconstructed images obtained by
image local discrimination were of higher quality and closer to the real high-resolution
images. In our model, smoothL1 loss was used instead of the L1 loss used in the mainstream
models (ESRGAN [40], SPSR [42]), and this optimisation accelerated the convergence of
the model, making it reach the global optimum faster.

The previous super-resolution reconstruction models and NDSRGAN were trained on
the real aerial image dataset we produced, and the experiments showed that our proposed
super-resolution reconstruction model for aerial images could reconstruct the real aerial
images with better results, and that the reconstructed images achieved better results than
previous methods regarding both quantitative metrics and qualitative evaluation.

Although the proposed method could reconstruct real aerial images with better results,
the quality of the reconstructed images was not good when the model reconstructed images
taken by different sensors. The lack of reconstruction generalisation ability of the super-
resolution model on images taken by different sensors remains a problem that needs to be
studied and addressed in the future.
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Appendix A

In this section, we report the results of performing experimental analyses of model
ablation, residual scaling factor size, discriminative matrix size of discriminator and image
size of the input during model training.

Appendix A.1. Ablation Study

We performed stepwise improvement and optimisation on the base network of the
ESRGAN model to prove that each part of our model optimisation was effective. We
designed three comparative experiments.

The first was to add a multilevel densely connected network to the base generative
network part to achieve multilevel information utilisation and feature fusion between
multilevel DBs and DCRDBs. The second was to use a matrix mean discriminator instead
of the original discriminator, in addition to the MDC. The third was our final network
model, which uses smoothL1 in addition to MDC and MMD to compute the pixel loss and
perceptual loss.

From the experimental results in Section 4.5, we concluded that PSNR and SSIM are
not suitable for evaluating image quality, so we used only the LPIPS metric as the image
quality assessment metric in the experiments discussed in the Appendix. The LPIPS values
of the reconstructed images are shown in Table A1. After the MDC optimisation was added
to the base network, the LPIPS value improved by 0.0065 compared with the base network,
thereby proving that the MDC can effectively improve the image reconstruction ability of
the network.

Table A1. Mean value of LPIPS for different ablation experiments. Base represents the base network,
MDC represents multilevel dense connection, MMD represents matrix mean discriminator and
smoothL1 means that the pixel loss and perceptual loss are computed by smoothL1 loss. The best
performance in bold.

Methods LPIPS

Base 0.3791
Base + MDC 0.3726

Base + MDC+ MMD 0.3490
Base + MDC + MMD + smoothL1 0.3306

Meanwhile, after MMD was added, the LPIPS value of the reconstructed images
significantly improved by 0.0236, which shows that MMD plays a crucial role in the
optimisation of the model.

Finally, after the smoothL1 loss was added to the model, giving our final proposed SR
reconstruction model NDSRGAN, the LPIPS value of the reconstructed images improved by
0.0184. From this result, we can conclude that our optimisation of the loss is also essential.
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The reconstruction effects of each model in the above ablation experiments are shown
in Figure A1. The first row of Figure A1 shows that the car parking lines in the reconstructed
images of the base model are very blurred, which is directly related to the fact that the base
model generative network does not make full use of the image features. After we added
MDC optimisation to the generative network, the car parking lines in the reconstructed
images became much clearer compared with those in base model, but the contours and
colours of the parking lines still had some distortion. After we added MMD optimisation
to the generative network optimisation, the contour of the parking line was significantly
improved, and the colour of the parking line was closer to the original HR image. Finally,
after we added smoothL1 loss optimisation to the model, the reconstructed parking lines
became smoother, and the contour shape was closer to the original HR image.
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From the second row of Figure A1, we can observe that the reconstructed images from
the base model had serious colour distortion and obvious artifacts in the local zoomed
images. After using MDC to optimise the generative network, we can see that the recon-
structed image exhibited improved colour and fewer artifacts. When we optimised the
discriminator with MMD, the colour of the reconstructed image was further corrected, and
the overall image quality was improved. Finally, after we added smoothL1 loss optimisation,
the final model reconstructed an image with the closest colour to the original HR image,
the fewest artifacts and the best visual effect.

The third row of Figure A1 shows that the roof lines in the reconstructed images of
the base model were rather blurred, and there was a serious loss of features. When the
MDC-optimised generative network was used, the roof lines in the reconstructed images
became clearer. After we used MMD to optimise the discriminator, the roof lines in the
reconstructed image became clearer, but some colour distortion occurred. Finally, after we
added the smoothL1 loss optimisation, the final reconstructed image had the sharpest roof
line, and the colour was closer to the original HR image.
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Appendix A.2. Residual Scaling Factor

In the MDC of the generative network, we used a residual scaling factor to set the
feature information weights and we conducted group experiments by setting different
residual scaling factors to select the most suitable residual scaling factor for the SR recon-
struction of real aerial images. Preliminary experiments proved that when the residual
scaling factor was larger than 0.4, the fusion of feature information was too redundant, and
the model reconstructed the image poorly. Therefore, we chose the four residual scaling
factors 0.1, 0.2, 0.3 and 0.4 to conduct the experiments.

The mean values of LPIPS on the test dataset are shown in Table A2. We can conclude
from observation that when the residual scaling factor was 0.1, the LPIPS value of the
reconstructed images was not the best, due to the loss of feature information in the process
of MDC caused by a too-small residual scaling factor. When the residual scaling factor was
0.3 or 0.4, the LPIPS values of the reconstructed images became worse, compared with the
value for a residual scaling factor of 0.2, because the residual scaling factor was too large. As
a result, the feature information in the MDC process was too redundant, thereby negatively
affecting the SR reconstruction of the image. When the residual scaling factor was 0.2, the
LPIPS value mostly ranked first. This also shows that the reconstructed network can make
the best use of the feature information in the multilevel densely connected network.

Table A2. Mean value of LPIPS for models with different residual scaling factors, where α represents
the residual scaling factor. The best performance in bold.

Residual Factor (α) LPIPS

α = 0.1 0.3535
α = 0.2 0.3306
α = 0.3 0.3419
α = 0.4 0.3534

We also present the reconstructed images of the model trained with different residual
scaling factors (Figure A2). From the first row of Figure A2, we can see that when the
residual scaling factor was equal to 0.1, the overall visual effect of the red car was blurred
due to the insufficient utilisation of feature information with a small residual scaling factor.
When it was equal to 0.3, the reconstruction of the red car was too dark due to the feature
redundancy caused by the large residual scaling factor. When it was equal to 0.4, the
red car’s overall visual effect became worse and more blurred. When it was equal to
0.2, the reconstruction of the red car had the highest quality and was closest to the original
HR image.

From the second row of Figure A2, we can observe that the reconstructed image of
the roof surface was too smooth, and the features of the roof surface gaps were lost when
the residual scaling factor was equal to 0.1. When the residual scaling factor was equal to
0.3, the roof surface was reconstructed with more artifacts. When the residual scaling factor
was equal to 0.4, the overall reconstructed image was too smooth, and there was a serious
loss of texture detail. When the residual scaling factor was equal to 0.2, the roof surface
had the fewest artifacts, and the features were most fully preserved.

The third row of Figure A2 shows that the roof reconstruction effect was very poor
when the residual scaling factor was equal to 0.1, and the features of the original HR
image were not learned. When the residual scaling factor was equal to 0.3, the overall
reconstructed image was blurred due to the redundancy of feature stacking. When the
residual scaling factor was equal to 0.4, the overall roof reconstruction effect was even
worse, and the features of the white lines of the original image were not learned. When the
residual scaling factor was equal to 0.2, the roof white lines were better reconstructed, and
the overall visual effect was closer to the original HR image.
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Appendix A.3. Discriminative Matrix Size

To improve the discriminator’s ability to discriminate local features of an image, we
used an MMD. The MMD aims to finally output a discriminative matrix to discriminate the
image. Different discriminative matrices correspond to different receptive field sizes in the
original image, and a large output discriminative matrix corresponds to a small receptive
field for each value in the matrix in relation to the original image. We used different sizes
of the discriminative matrix to perform group experiments to select the most suitable
discriminative matrix size for SR reconstruction of aerial images. We set up three sets of
comparison experiments with discriminative matrix sizes of 8 × 8, 14 × 14 and 19 × 19.

The mean values of the accuracy metric LPIPS for the reconstructed images are shown
in Table A3, from which we find that the LPIPS value for the reconstructed images was not
good when the discriminative matrix size was 8 × 8. When the size of the discriminative
matrix was 19× 19, the LPIPS of the reconstructed images ranked second, which shows that
the discriminative matrix of size 19× 19 was not the most suitable for the SR reconstruction
of aerial images. When the discriminative matrix size was 14 × 14, the reconstructed
images ranked first for the LPIPS metric, and therefore the experiments indicate that a
discriminative matrix of size 14 × 14 was the most suitable choice for our SR reconstruction
of real aerial images.

Table A3. Mean value of LPIPS for models with different discriminative matrix sizes, where n
represents the size of the discriminative matrix. The best performance in bold.

Discriminative Matrix Size (n) LPIPS

8× 8 0.3478
14× 14 0.3306
19× 19 0.3424
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We also present the reconstructed images of the model trained with different discrim-
inative matrix sizes (Figure A3). In the first row of Figure A3, when the discriminative
matrix size was 8 × 8, the edges of the red car in the reconstructed image showed artifacts.
When the discriminative matrix size was 19× 19, the edges of the red car were very blurred
and showed colour distortion. When the discriminative matrix size was 14 × 14, the edges
of the red car were the most complete and showed the least distortion and fewest artifacts.
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In the second row of Figure A3, when the discriminative matrix was of size 8 × 8,
the overall colour of the roofline was dark and distorted. When the discriminative matrix
was of size 19 × 19, the overall colour of the roofline was still dark, and some obvious
white artifacts were observed. When the discriminative matrix was of size 14 × 14, the
reconstructed image was closest to the original HR image.

In the third row of Figure A3, when the discriminative matrix was of size 8 × 8, the
roof in the reconstructed image appears to show many artifacts. When the discriminative
matrix was of size 19 × 19, the roof in the reconstructed image still appears to show more
artifacts. When the discriminative matrix was of size 14 × 14, the roof in the reconstructed
image produced the fewest artifacts and the best visual effect.

Appendix A.4. Random Crop Size of Training Input Images

In this section, we discuss the effect of the random crop size of the HR input images
during model training on the reconstruction results of the model. We used three random
crop sizes of 64 × 64, 128 × 128 and 192 × 192 for group comparison experiments to select
the most suitable random crop size for SR reconstruction of aerial images.
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The mean values of LPIPS for the reconstructed images are shown in Table A4, from
which we can see that the reconstructed images did not obtain good LPIPS metric values at
the random crop size of 64 × 64. At the random crop size of 192 × 192, the LPIPS metric
on the reconstructed image ranked second, thus indicating that a random crop size of the
training input image of 192 × 192 was not suitable for SR reconstruction of aerial images.
For the random crop size of 128 × 128, the reconstructed images ranked first for the LPIPS
metric. Therefore, we used a random crop size of 128 × 128 for SR reconstruction of real
aerial images.

Table A4. Mean value of LPIPS for models with different random crop sizes of input images, where h
represents the random crop size of training input images. The best performance in bold.

Random Crop Size (h) LPIPS

64× 64 0.3603
128× 128. 0.3306
192× 192 0.3404

We present the reconstructed images of the model with different random crop sizes
(Figure A4). The first row of Figure A4 shows that, for a crop size of 64 × 64, the red car in
the reconstructed image was very blurred, and the reconstruction effect was poor. For a
crop size of 192 × 192, the red car in the reconstructed image had some distortion. For a
crop size of 128 × 128, the outline of the red car was the clearest, and the visual effect was
closer to the original HR image.
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In the second row of Figure A4, when the crop size was 64 × 64, more reconstruction
artifacts were found on the roof surface in the reconstructed image. When the crop size was
192 × 192, many reconstruction artifacts remained on the roof surface in the reconstructed
image. When the crop size was 128 × 128, the fewest reconstruction artifacts were found
on the roof surface, and the best visual effect was achieved.

In the third row of Figure A4, when the crop size was 64 × 64, the colour of the blue
roof in the reconstructed image was dark, and serious colour distortion occurred. For a
crop size of 192 × 192, the colour of the blue roof in the reconstructed image was still dark,
and some black artifact patches were found. When the crop size was 128 × 128, the colour
and detail texture of the blue roof in the reconstructed image were closest to the original
HR image, and the visual effect was the best.
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