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Abstract: Building height is one of the basic geographic information for planning and analysis in
urban construction. It is still very challenging to estimate the accurate height of complex buildings
from satellite images, especially for buildings with podium. This paper proposes a solution for
building height estimation from GF-7 satellite images by using a roof contour constrained stereo
matching algorithm and DSM (Digital Surface Model) based bottom elevation estimation. First, an
object-oriented roof matching algorithm is proposed based on building contour to extract accurate
building roof elevation from GF-7 stereo image, and DSM generated from the GF-7 stereo images is
then used to obtain building bottom elevation. Second, roof contour constrained stereo matching
is conducted between backward and forward image blocks, in which the difference of standard
deviation maps is used for the similarity measure. To deal with the multi-height problem of podium
buildings, the gray difference image is adopted to segment podium buildings, and re-matching
is conducted to find out their actual heights. Third, the building height is obtained through the
elevation difference between the building top and bottom, in which the evaluation of the building
bottom is calculated according to the elevation histogram statistics of the building buffer in DSM.
Finally, two GF-7 stereo satellite images, collected in Yingde, Guangzhou, and Xi’an, Shanxi, are used
for performance evaluation. Besides, the aerial LiDAR point cloud is used for absolute accuracy
evaluation. The results demonstrate that compared with other methods, our solution obviously
improves the accuracy of height estimation of high-rise buildings. The MAE (Mean Absolute Error)
of the estimated building heights in Yingde is 2.31 m, and the MAE of the estimated elevation of
building top and bottom is approximately 1.57 m and 1.91 m, respectively. Then the RMSE (Root
Mean Square Error) of building top and bottom is 2.01 m and 2.57 m. As for the Xi’an dataset with
7 buildings with podium out of 40 buildings, the MAE of the estimated building height is 1.69 m and
the RMSE is 2.34 m. The proposed method can be an effective solution for building height extraction
from GF-7 satellite images.

Keywords: GF-7 satellite; building height estimation; contour constrained matching; podium
segmentation; urban 3D reconstruction

1. Introduction

With the acceleration of China’s urbanization process, the concept of “urban fine
management” has been proposed [1]. Urban fine management is designed to solve the
problems of blind expansion [2,3], population assessment [4–6], urban climate [7,8], destruc-
tion of natural environment and cultural heritage [9,10], urban 3D reconstruction [11–14],
etc. As the fundamental element of urban cities, buildings are one of the most important
research targets, and their height information plays a critical role in urban exemplary
management. Thus, effective solutions are necessarily required in practice.
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In contrast to shadow-based methods [15–22], other research aims to use dense match-
ing technology to obtain DSM (Digital Surface Model) of building areas [23–26], in which
building height can be calculated from the roof and bottom elevation of buildings [27,28].
The methods based on DSM have become the most commonly used solution, and the build-
ing height accuracy depends on the accuracy of the roof and bottom elevation. In general,
there are two kinds of DSM extraction methods. One is the traditional dense matching
methods, such as SGM (semi-global matching) [29]. The other is the deep learning-based
methods [30–34]. The SGM algorithm combines the advantages of the local algorithm and
the global algorithm,and avoids the disadvantages of them [29,35]. It has been adopted
by most commercial satellite image processing software. For example, Tao et al. [36] used
PCI and INPHO to explore DSM reconstruction of GF-7 images, and the accuracy of flat
area can reach 0.655 m. However, the experimental data that was selected from Xinjiang
with only a few low buildings, which cannot conclude for urban areas with dense high-rise
buildings. Wang et al. [28] adopted SGM to generate point clouds from GF-7 stereo images
for building height extraction, in which building footprints are extracted on the backward
image by using a proposed multi-stage attention U-Net. The root mean square error (RMSE)
between the extracted building height and the reference building height is 5.41 m, and the
mean absolute error (MAE) is 3.39 m. The results demonstrate the promising potential of
GF-7 RS images in stereo applications. However, they did not discuss the big forward angle
of the GF-7 satellite camera, which leads to the loss of high-rise buildings when applying
the pyramid SGM methods to estimate DSM.

On the other side, deep learning-based methods have been designed to extract eleva-
tion or height information from aerial or satellite images [37–40]. Karatsiolis S et al. [39]
proposed a task-centered deep learning (DL) model, which combines the structural char-
acteristics of the U-Net and residual network, and learns the mapping from single aerial
image to standardized digital ground model. The model was trained on aerial images
whose corresponding DSM and Digital Terrain Models (DTM) were available, and they
were then used to infer the nDSM of images with no elevation information. To promote
the deep learning based elevation and height information extraction from satellite images,
IEEE released the worldview satellite images and corresponding DSM, DTM, and nDSM
data [37]. Cao et al. [38] used ZY-3 data combined with A-map (a map service provider of
China) building height data and proposed a multi-view, multi-spectral, and multi-objective
neural network (called M3Net) to extract large-scale building footprints and heights on the
backward image. He verified the applicability of the proposed method in various cities.
The RMSE in the test site of Shenzhen is 6.43 m by M3Net. Although deep learning-based
methods have shown exciting performance, we still can not use deep learning-based meth-
ods in the operational system, due to the requirement of a large number of sample data
with ground truth for different satellites, different locations and different views. At present,
there are few sample data databases for satellite image stereo matching. Due to the different
design of different satellites in image spatial resolutions and stereo intersection angles,
the sample database for one satellite cannot be used directly for other satellites [36].

Considering the above-mentioned issues, this paper proposes an object-oriented
building roof matching method to improve the accuracy of building roof elevation of GF-7
images. Different from Wang et al. [28], who focused on the extraction of building footprints
and directly used SGM for extracting building height, we focus on the extraction of roof
elevation, in which DSM provides only bottom elevation information in the proposed
method. In this paper, we do not discuss the extraction of building contour, but use the
self-marked contours as input. In general, DSM and building contour are our input.

Our method consists of three steps: (1) The first step is image pre-processing, including
the calculation of the forward image search range and feature map preparation. The image
search range is determined by the minimum and maximum possible elevation of building
roofs, which can be estimated with a DSM and the maximum possible height of the highest
building. With the search range, the contour of the building on the backward image is
projected to the forward image to obtain epipolar image blocks. (2) The second step is roof
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contour constrained stereo matching and podium segmentation, in which the backward
image block is matched against the forward image with the similarity metre of feature map
difference. Since the podium contains multiple elevation planes, the podium is segmented
with image gray difference and rematched to obtain the elevation of multiple planes. (3) The
third step is bottom elevation estimation and building height calculation. The bottom eleva-
tion is calculated according to the elevation histogram statistics of building buffer by using
DSM. The top elevation is calculated using a space intersection algorithm. The building
height is then obtained through the difference between the top and bottom elevations.

This paper is organized as follows. Our methodology is presented in Section 2.
The experiment data and results are reported in Section 3. Finally, conclusions are drawn
in Section 4.

2. Methodology

This paper proposes a roof contour constrained stereo matching method to extract the
accurate height of high-rise buildings from GF-7 satellite images. The overall workflow of
the proposed solution is illustrated in Figure 1. The input of our method consists of GF-7
backward and forward images, building roof contours on the backward image, and the
corresponding DSM data. The method includes three major steps, as described as follows:

(1) Epipolar image block and feature map generation from stereo images. The first step is
to prepare the epipolar image block for roof contour matching, in which the parallax
search range is determined by using the DSM data and a supposed maximum range of
building heights. After image resampling, the epipolar image blocks are transformed
into feature map blocks by computing regional standard deviation to extract the
structural characteristics.

(2) Roof contour constrained stereo matching considering podium structure. The back-
ward image block is first matched against the forward image block with the similarity
measure of image feature difference. To deal with the multi-heights problem arising
from podium buildings, the gray difference image is used to detect the mismatched
contours, which can include podium. The image is then rematched iteratively until
no podium structure can be detected. With the matched parallax, the roof elevation
is calculated through the space intersection using the RPCs of satellite stereo images
and the 2D roof contours on the backward image is transformed into 3D roof contours
in the geographic coordinate system.

(3) Bottom elevation estimation and building height calculation. Bottom elevation is
estimated using histogram analysis of the DSM in the buffer of a building contour
with a buffer size of 20 m. Building height is then calculated by the subtraction
between bottom elevation and roof elevation.

Figure 1. The overall workflow of the building height extraction solution.
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2.1. Epipolar Image Block and Feature Map Generation for Stereo Images

This step aims to prepare epipolar image blocks for roof contour constrained stereo
matching. The source block range on the backward image is determined by the building
contour itself. The destination block range on the forward image depends on the building
roof elevation, which needs to be determined by image matching. So we use DSM for
estimating the bottom elevation and plus the maximum possible height for roof elevation.
Then the roof contour is transformed from the backward image to the forward image
for epipolar resampling. At last, convolution processing is used to extract the standard
deviation feature of the epipolar image blocks for decreasing the impact of bright change
between the forward image and the backward image.

2.1.1. Calculation of Parallex Search Range

The principle of parallex search range is illustrated in Figure 2. The input building
roof contour is on the 2D backward image, and the DSM is in the 3D object space. An it-
eration algorithm is used to obtain building roof elevation from the DSM data, in which
it starts from an initial elevation Z0, such as the mean elevation of the study area. Then,
the algorithm executes iteratively as follows:

(1) With the initial evaluation Z0, we can get point P0 in the 3D object space by intersecting
imaging ray through the roof center with the horizontal plane created by the elevation
of Z0.

(2) After obtaining point P0, we use the horizontal coordinates X and Y of point P0 to
interpolate a new elevation value of Z1 from the DSM data.

(3) If the elevation difference between Z1 and Z0 is greater than a given threshold, then
update Z0 with Z1.

(4) Steps 1 to 3 are iteratively executed until reaching the terminal condition.

By using the above-mentioned algorithm, the minimum elevation can be obtained,
which is termed as Zmin. Considering the maximum building height hmax in the test area,
the elevation search range can be calculated as Zmin + hmax. With the elevation search range
(Zmin, Zmax), the parallex search range (begin, end) on forward image can be calculated by
projecting the points of roof contours on the backward image to the forward image, whose
envelope consists of the entire parallex search range on the forward image.

Figure 2. The principle of parallex search range calculation.



Remote Sens. 2022, 14, 1566 5 of 21

2.1.2. Epipolar Image Block and Feature Map Generation

By using the determined parallex search range, the GF-7 image is resampled by the
epipolar transform to generate epipolar image blocks. After resampling the forward and
backward images, their y parallax is eliminated. The two-dimensional image matching is
simplified as one-dimensional matching in order to improve the matching efficiency [23,41].

The brightness change between the forward image and the backward image can greatly
affect the image matching. To decrease the impact of brightness change, we conduct the
image matching on the standard deviation maps instead of the original epipolar image
block themselves. As shown in Figure 3, we use a convolution of 5 × 5 window to generate
standard deviation maps. The larger the standard deviation value, the richer the image
pixel information. The standard deviation is calculated with Equation (1)

S(i,j) =

√
∑n

a=−n ∑n
b=−n(x(i+a,j+b) − x̄)2

(2n + 1)2 (1)

where S(i,j) is the standard deviation value at point (i, j); n is the radius of the window; x̄ is
the mean value of the window; x(i+a,j+b) is the pixel in the window.

Figure 3. Illustration of standard deviation image extraction using convolution processing.

For a visual interpretation, Figure 4a shows a roof image of a building, and Figure 4b
shows its standard deviation map. Bright areas include the internal structure of a building
and dark areas are regarded as the background.

Figure 4. Illustration of the image feature map. (a) building roof image; (b) extracted feature map.
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2.2. Roof Contour Constrained Stereo Matching Considering Podium Structure
2.2.1. Roof Contour Constrained Stereo Matching

Figure 5 illustrates the epipolar image blocks and their corresponding standard devia-
tion maps. Figure 5a is the backward image block of a building; Figure 5b is the forward
image block to be matched. Due to the imaging view difference, these two image blocks
have dramatic bright difference. Figure 5c,d respectively shows the standard deviation
map of Figure 5a,b, whose bright difference is greatly reduced.

Figure 5. Epipolar image blocks and their standard deviation maps. (a) backward image block;
(b) forward image block; (c,d) standard deviation maps of image blocks (a,b).

Based on the standard deviation maps, we use the gray difference to measure the simi-
larity between the backward image and the forward image. The gray difference similarity
is measured as the absolute gray difference between the template and the searched image,
as shown in Equation (2), where gSi+pj is the searched pixel value with x parallax p; w, h
is the template window size; gTi+j is the pixel value of the template window, respectively.
The parallax p with the smallest gray difference sum is regarded as the matched result.

S(p) = ∑w
i=1 ∑h

j=1

∣∣∣gSi+pj − gTi+j

∣∣∣ (2)

In order to exclude the interruption of pixels outside the building roof contours,
the gray difference is modified to be a masked gray difference, as shown in Equation (3),
in which only the roof pixels are taken into account.

SM(p) = ∑i,j∈M

∣∣∣gSi+pj − gTi+j

∣∣∣ (3)

where M is the mask matrix of template block; (i,j) is the pixel in the mask set.
As illustrated in Figure 6, a simple building with only one roof height plane can be

matched in one pass, in which the mask is generated with the roof contour indicating the
inner part of a building roof, and the histogram of the gray difference image has only one
obvious peak.
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Figure 6. A single building matching based on masked gray difference.

2.2.2. Segmentation and Rematching of Building with Podium

In the previous section, we suppose that the building roof has only one height. That is
correct for most buildings. In the real world, buildings, however, have different shapes and
structures, and many buildings have several height planes. Such as, the podium building
refers to an auxiliary building that is general at the bottom of the main body of a multi-story,
high-rise, or super high-rise building. Its floor area is greater than the standard floor area
of the main body. As shown in Figure 7, the pink rectangle and blue rectangle belong to
one building. However, they have two different height. For simplicity, we call the building
part below the main body as podium building. Apparently, we can not estimate the two
heights in one pass matching processing.

Figure 7. Backward and forward view of a podium building. (a) podium on backward image;
(b) podium on forward podium.

Fortunately, the gray difference map of the matched blocks can provide more clues
to refine the initial matching result. The gray difference map data represents the average
brightness difference of backward and forward parallax. As shown in Figure 6, the gray
difference histogram distribution should be in the range of (0–100) values if the matching
result is completely correct. However, there are two peaks in the histogram as shown in
Figure 8a, one is in the range of (0–100), and the other is in the range of (200–250). This
indicates that there are two different heights in the building, and only one height is matched
correctly. To solve this problem, we match the different height of a building with podium
using the masked gray difference in an iterative manner. As shown in Figure 8a,b, by using
two different masks, the bottom height of the podium is estimated in the first pass, and the
top height of the podium is estimated in the second pass.
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Figure 8. Roof matching based on masked gray difference. (a) first pass matching for a podium
building; (b) second pass matching the podium building in (a). The blue part of the masks represent
the area need to be matched; the pink part of the mask represents the matched area.

Figure 9 shows the principle of mask refinement and contour segmentation of podium
building. First, the gray difference image (Figure 9a) is binarized to generate the new mask
(Figure 9b). Second, an a connectivity analysis is conducted to erase small regions whose
pixel numbers is smaller than a given threshold. The region with maximum number of
pixels is selected as the area to be matched (Figure 9c). Third, the morphological filter is
carried out on the selected area (Figure 9c) to get a refined mask (Figure 9d). Finally, one or
several sub roof contours (Figure 9e) can be generated using the rectangles covering the
sub regions of the refined mask, in which the covering rectangles are parallel to the original
roof contour.

Figure 9. Mask refinement and contour segmentation of podium building. (a) gray difference map
after last pass matching; (b) binarization of gray difference map; (c) new mask after connectivity
analysis; (d) refined mask after morphological filtering (e) polygon of sub roof contour.

Based on above idea, the process of matching and segmentation of a building with
podium is outlined as follows, as illustrated in Figure 10:

(1) Set the mask as the whole roof using the blue contour polygon.
(2) Search the x-parallax with the minimum masked gray difference in the standard

deviation map;
(3) Compute the gray difference map between matched image blocks;
(4) Compute the histogram of the gray difference map in the mask set;
(5) If there are more than one peaks in the histogram, the gray difference image is

binarized and refined as a new mask for next matching.
(6) Repeat steps 2 to 5 until 90% pixel is matched.
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Figure 10. Podium Segmentation workflow.

2.3. Bottom Elevation Estimation and Building Height Calculation

Three steps are used to estimate the building bottom evaluation and building height.
First, combined with the matched x-parallax, the ground point of the building contour
center can be computed using the intersection of the two homogeneous imaging rays of
the stereo image pair [42]. Then using the RPCs of the backward image, the contour of
the building roof on the backward image can be transformed into the object space as the
ground footprint, which is on the horizontal plane defined by the elevation of the building
center. Second, as shown in Figure 11, the bottom elevation is estimated by using elevation
histogram analysis of DSM values, which is created in a 20 m buffer around the building
footprint. Then the elevation at the minimum peak of the histogram is chosen as the bottom
elevation. Third, the building height is obtained by subtracting the bottom elevation from
the roof elevation.

Figure 11. Bottom elevation extraction. (a) the buffer of DSM; (b) the elevation histogram.

3. Experiment and Results
3.1. Data and Study Area
3.1.1. Study Area

There are two datasets used in this study for performance evaluation, as shown in
Figure 12. Dataset one locates in Yingde City, Guangdong Province, between 113.31–113.50°E,
24.25–24.41°N. This study area contains more than 8000 buildings with their footprints in
shapefile format, whose height ranges from 10 m to 100 m. By using aerial LiDAR data, we



Remote Sens. 2022, 14, 1566 10 of 21

estimated the roof elevation, bottom elevation, and building height as ground truth. With the
GF-7 images, we used ENVI and INPHO to generate DSM, which can be used to estimate
building height directly or as the input of our roof contour constrained matching method.
Then, our result and DSM based result were compared with the LiDAR based ground truth.
In addition, the shadow based result was also compared.

Figure 12. GF-7 images and building samples of the study areas.
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Dataset two locates in Xi’an high tech Industrial Development Zone, Shanxi Province,
between 108.85–108.89°E, 34.18–34.24°N. In this area, we focus on high-rise buildings and
podium buildings. In this test site, there are no building footprints and LiDAR data to
generate ground truth. Instead, we took the building heights measured from GF-7 stereo
images as reference values. We selected 40 buildings, which include 33 single buildings
and 7 podium buildings. The height distribution of this dataset ranges from 20 m to 350 m,
and the average building height is about 95.55 m, among which the Xi’an Guorui financial
center with a height of 348.384 m is the highest building.

3.1.2. GF-7 Stereo Images

GF-7 satellite stereo images are used to extract building height. The parameters of
used GF-7 satellite stereo images are presented in Table 1. GF-7 satellite is equipped with
payloads, including a dual-line array camera and a laser altimeter. The three-line array
camera can effectively obtain panchromatic stereo images with a width of 20 km and a
resolution better than 0.8 m. In addition, infrared multispectral images with a resolution of
2.6 m can also be obtained. The infrared multi-spectral camera is aligned with the backward
panchromatic camera for pansharpening. The backward direction is nearly nadir, designed
for balance between less occlusion and bigger stereo intersection angle. Thus, the backward
image is better for the extraction of building roof contours.

Table 1. Characteristics of the GF-7 satellite stereo images.

Parameter Value

Forward camera inclination 26°
Backward camera inclination 5°

Panchromatic resolution Backward 0.65 m, Forward 0.8 m
Multispectral resolution Backward 2.6 m

Width of Windows ≥20 km

3.1.3. LiDAR Data

The LiDAR data used in this paper was acquired with Leica CityMapper-2 [43], which
is an airborne hybrid sensor of oblique camera and LiDAR. The flight altitude is about
1450 m and the point cloud density in Yingde is 8.1 points/m2 . As an example, a small
area of LiDAR point cloud in Yingde is shown in Figure 13.

Figure 13. A small area of LiDAR point cloud in Yinde.
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3.1.4. Building Roof Contours and Ground Truth

Our method supposes that building roof contours on the backward image are available
for matching against the forward image. For the experiment purpose, building roof
contours are generated from footprint data or digitized directly on the backward image.
In the practical processing of city scale data, the building contour can be generated by
semantic segmentation of backward image.

In the Yingde study area, roof contours are based on the building footprint, which
were provided by Hubei Sunrise Photogrammetric Company. Based on the histogram
analysis of the point cloud in the buffer of a building footprint, the roof elevation and
bottom elevation of a building can be estimated, then the building footprint with roof
elevation can be projection onto the backward image as the input roof contour for our
workflow. Partial roof contours are shown in Figure 14a.

In the Xi’an study area, we directly digitized 40 buildings’ roof contours on the
backward image with the ArcMap software, as shown in Figure 14b.

The ground truth of building height was calculated according to the roof elevation
and bottom elevation. As mentioned ahead, the roof elevation and bottom elevation in the
Yingde study area were estimated with LiDAR data. In the Xi’an study area, the roof eleva-
tion and bottom elevation were measured in a self-developed stereo model viewer software.

Figure 14. Self-annotated building roof contours on the GF-7 backward image. (a) the building roof
contours in Yingde; (b) the countours in Xi’an.

3.1.5. DSM Generation

The input DSM in the workflow(shown in Figure 1) is generated by a self-developed
dense matching software based on the pyramid semi-global algorithm, which is silimar to
SURE [44].

The DSM used in the Section 3.3.2 is generated by commercial software ENVI and
INPHO, which are industry leading software.

As shown in Figure 15, five control points were selected from the LiDAR point cloud
and the positioning accurarcy of GF-7 stereo image pair was imporved with RPC modifica-
tion [45] before DSM generation.

For the ENVI, the parameters are set as follows: the minimum overlap is 55; the
matching threshold is 15; the edge threshold is 5; the quality threshold is 60; the terrain
type is Flat.

For INPHO generating DSM, the parameters are set as follows: the terrain type is
Flat; the feature density is Dense; the point cloud density is 3 pixels; the Parallax threshold
is 20 pixels. Three block of DSM results generated from ENVI and INPHO are shown in
Figure 16.
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Figure 15. Ground control points selected for the Yingde stereo image pair.

Figure 16. Epipolar image blocks and the DSM generated by ENVI and INPHO.

3.2. Evaluation Metrics

Height accuracy is evaluated by comparing the estimated building height and the
reference building height. Three metrics are used for performance evaluation, including
the mean absolute error (MAE), root mean square error (RMSE), and max absolute error
(maxAE), which are formulated as Equations (4)–(6):
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MAE =
1
N

N

∑
i=1

∣∣∣hi − ĥi

∣∣∣ (4)

RMSE =

√√√√ 1
N

N

∑
i=1

(
hi − ĥi

)2
(5)

maxAE = max{|hi − ĥi|, i = 1, 2, . . . , N} (6)

where, hi is the estimated building, ĥi is the reference building height.

3.3. Experimental Results of Yingde Dataset

In Yingde study area, there are a total number of 8653 buildings, whose height is less
than 100 m. For accuracy evaluation, the ground truth of building height is generated from
aerial LiDAR data. Table 2 presents the accuracy statistic of building height estimation.
The results show that the MAE of the roof and bottom elevation estimation are 1.57 m and
1.91 m, respectively, and the accuracy of building height estimation is 2.31 m. The RMSE
of building height is 3.01 m. Besides, Table 3 shows the number and accuracy statistic of
building height at varying elevation ranges. The results show that the overall building
roof elevation estimation is relatively stable, and the bottom elevation estimation accuracy
fluctuates wildly since the DSM is easily affected by the occlusion of trees and buildings.

Table 2. Accuracy statistic of building height estimation.

Index Roof Elevation Bottom Elevation Building Height

MAE (m) 1.57 1.91 2.31
RMSE (m) 2.01 2.57 3.01

maxAE (m) 12.67 4.99 9.97

Table 3. Number and accuracy statistic at varying elevation ranges.

Height Range Building Numbers
MAE

Roof Elevation Bottom Elevation Building Height

0–10 m 5774 1.56 1.66 2.05
10–20 m 2466 1.59 2.32 2.76
20–30 m 305 1.48 2.73 3.07
30–40 m 48 1.56 3.29 3.75
40–50 m 21 1.29 4.39 4.85
50–60 m 17 1.12 3.20 3.65
60–70 m 8 2.27 1.69 2.71
70–80 m 8 1.24 1.47 1.98
80–90 m 6 0.76 3.67 2.90

90–100 m 1 1.99 4.31 6.31

3.3.1. Comparison with the Shadow-Based Method

The proposed solution is compared with the shadow-based method in this section.
Two sub datasets that are extracted from Yingde dateset, are used for evaluation. The first
sub dataset is a low-rise building dataset with the height ranging between 0–30 m, and there
are 299 buildings in the low-rise building dataset; the second sub dataset is a high-rise
building dataset with the height larger than 30 m, and there are 170 buildings in the
high-rise building dataset. According to Xie [20], when the ground height is horizontal,
the shadow length of a building is directly proportional to the height of the building.
Based on this observation, we measure the shadow length of buildings manually to avoid
the deficiencies of automatic extraction methods. Because the inclined angles of forward
camera and backward camera are different in GF-7 satellite, we estimate the building height
on both the forward image and the backward image for extensive comparison.
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The statistic results of shadow-based method and the proposed solution are shown
in Tables 4 and 5. Table 4 shows the comparison of accuracy statistics of building height.
According to the experimental results, we can conclude that: (1) the MAE of the shadow
estimation method on the high-rise building dataset is less than that of the low-rise building;
(2) In low-rise building dataset, due to the occluded image in the shadow area, 10%
buildings in the forward and 36% buildings in the backward participate in the metric
calculation. The average accuracy of the proposed solution in terms of MAE, RMSE
and maxAE is significantly higher than that of the shadow-based method; (3) In high-
rise building dataset, 45% the buildings in forward and 59% the buildings in backward
participate in the calculation. Similarly, the accuracy of the proposed solution is significantly
higher than that of the shadow-based method for the three metrics.

In addition, Table 5 shows the comparison of number statistic of building height at
varying elevation ranges, in which the term occlusion indicates the number of buildings
that occluded. we can see that for the low-rise building dataset, 268 (89%) buildings have
shadow occlusions on the forward image, and 190 (64%) buildings have shadow occlusions
on the backward image; for the high-rise building dataset, 93 (55%) buildings have shadow
occlusions on the forward image, and 69 (40%) buildings have shadow occlusions on the
backward image. The height of all the occluded buildings cannot be estimated. On the
contrary, the proposed method can successfully estimate the height of all buildings.

Table 4. The comparison of accuracy statistic of building height.

Para. Building < 30 m Building > 30 m
Forward Backward Ours Forward Backward Ours

MAE (m) 2.63 3.02 1.34 3.72 3.09 1.43
RMSE (m) 3.48 14.93 1.77 4.60 6.97 1.90

maxAE (m) 8.11 13.50 4.75 9.59 8.59 4.63

Table 5. The comparison of building number statistic at varying height ranges.

AE Building < 30 m Building > 30 m
Forward Backward Ours Forward Backward Ours

<2 (m) 16 53 229 25 38 127
2–4 (m) 8 22 65 25 23 30
4–6 (m) 3 14 5 7 12 13
>6 (m) 4 20 0 20 28 0

occlusion 268 190 0 93 69 0

For a visual interpretation, Figure 17 illustrates some shadow occlusion cases:
1 Sheltered by trees; 2 blocked by nearby buildings. As shown in Figure 17a,c, the shadows
at the edge of the house are blocked by trees, which belongs to case 1; On the backward
image in Figure 17b, the shadow is not obscured due to the small inclination of the camera;
however, in Figure 17d, the shadow on the forward image is occluded by the buildings in
the backward and forward rows. It can be seen that the shadow-based method has obvious
limitations when applied to GF-7 images. In a word, a majority of buildings cannot be
extracted by using the shadow-based method due to the serious occlusion that occur in
GF-7 satellite images, especially for the forward image.
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Figure 17. The illustration of shadow occlusions. (a,c) building shadows occluded by trees; (b,d) build-
ing shadows occluded by buildings.

3.3.2. Comparison with DSM Based Method

In this section we compare the proposed solution with DSM Based Method. We used
ENVI (version 5.6) and INPHO (version 12.1) to generate DSM in Yingde. After generating
the DSM, we overlaped the building contour vector onto the DSM for building height
extraction. The roof elevation and the bottom elevation are estimated with histogram
analysis, which has been discussed in the Section 2.3. The peaks of maximum elevation
and minimum elevation are selected as of the building roof and the bottom. Shown in
Figure 16, DSM generated by INPHO is relatively smooth, however, it loses some high-rise
heights. On the contrary, the DSM generated by ENVI can retain high-rise buildings better,
however, it can contain some holes.

Table 6 lists the accuracy statistic of building roof elevation from the DSM based
methods, and the distribution of absolute error (AE) of ENVI and INPHO is presented in
Figure 18. The results show that ENVI achieves better accuracy than INPHO for building
roof height estimation in the two datasets. For both ENVI and INPHO, the estimation
accuracy of low-rise buildings is better than that of high-rise buildings. As was expected,
our method achieves the highest precision. In a conclusion, INHPO and ENVI have
limitations in roof estimation of high-rise buildings when applied to GF-7 images, and the
performance of our method is very stable for both high and low buildings. Figure 19 shows
the 3D reconstruction models of the proposed solution in this dataset.

Table 6. Accuracy statistics of building roof elevation.

Para. Building < 30 m Building > 30 m
ENVI INPHO Ours ENVI INPHO Ours

MAE (m) 5.12 6.53 1.34 15.6 32.65 1.43
RMSE (m) 6.13 8.64 1.77 28.19 38.70 1.90
maxAE (m) 26.67 35.95 4.75 82.87 89.86 4.63



Remote Sens. 2022, 14, 1566 17 of 21

Figure 18. Error distribution of DSM based roof elevation.

Figure 19. The 3D reconstruction models of the proposed solution in Yingde.

3.4. Experimental Results of Xi’an Dataset

In the dataset of Xi’an, there are a total number of 40 buildings, in which 7 buildings
are with podium. Similar to the procedure presented in Section 3.3.2, the proposed method
is compared with DSM based results of ENVI and INPHO. Table 7 shows the accuracy
statistic for this dataset. Figure 20 shows the correlation the estimated building heights and
their reference values, in which the dots nearer the dashed line have the higher estimation
precision. From the results listed in Table 7, we can conclude that our method achieves the
best performance, and obviously improves the accuracy of building height estimation; its
MAE and RMSE of building height estimation is 1.69 m and 2.34 m, respectively. By further
observation from Figure 20, we can see that within the range of 0–100 m, ENVI can achieve
comparable accuracy when compared with the proposed method. However, with the
increase of building height, its performance dramatically decrease. It can be seen from the
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green dots, which are nearly on the dashed line, our method archives consistently high
precision within the entire building height range.

Figure 20. The distribution of estimated and ground truth building elevation.

Table 7. Accuracy statistics of experimental results in the Xi’an.

Index Building Height
ENVI INPHO Ours

MAE (m) 41.46 55.20 1.69
RMSE (m) 77.86 100.64 2.34

maxAE (m) 326.38 345.38 7.47

Building Height Estimation of Buildings with Podium

In the Xi’an dataset, the building heights of the 7 podium buildings are evaluated,
in which more than one roof elevations are extracted using our iterative roof matching
method. For performance evaluation, the height of each podium building is divided
into three parts, and their heights are measured manually from GF-7 stereo image as the
reference values.

Table 8 shows the statistical results of building height estimation, which lists the
value of the first estimated building height by using the term Whole and height for each
part after the podium segmentation by using the terms Part1, Part2 and Part3. Besides,
the empty values in Table 8 represent that the part of the second podium is completely
covered by other parts, and the ground truth building height cannot be estimated, as shown
in Figure 21. The results show that for each part of the building with podium, the proposed
method by using podium segmentation can find several elevation planes in a building
contour, and can also accurately estimate their height. By the further analysis, we conclude
that the main error of height estimation comes from the matching error caused by partial
or entire occlusion of building roofs. Figure 22 shows the 3D reconstruction models of the
proposed solution in this dataset.



Remote Sens. 2022, 14, 1566 19 of 21

Table 8. Accuracy statistics of Podium building results in the study area.

Index Whole Part1 Part2 Part3
Ours (m) Truth (m) Ours (m) Truth (m) Ours (m) Truth (m) Ours (m)

1 106.19 108 106.19 16 18.86
2 74.71 106 105.18 - -
3 60.49 75 70.65 75 70.65 10 9.72
4 17.85 52 49.33 25 18.86
5 30.04 55 50.35 16 13.79
6 4.65 87 86.90 12 7.70
7 4.65 93 90.65 2 4.65

Figure 21. The illustration of the second Podium structure. The red box indicates the coverd part on
backward image.

Figure 22. The 3D reconstruction models of the proposed solution in Xi’an. The red box indicates the
podium buildings.

4. Conclusions

This study proposes a method for extracting building height information from GF-7
satellite stereo images. First, an object-oriented roof matching algorithm is proposed based
on building contour to extract accurate building roof elevation from GF-7 stereo image,



Remote Sens. 2022, 14, 1566 20 of 21

and DSM generated by business software is then used to obtain building bottom elevation.
Second, to cope with buildings with multiple level height plane, a mask gray difference
metric is proposed to search multiple elevation planes and segment the building contour.
Finally, by using ground truth data from LiDAR point clouds or manually measured
building height, the proposed solution is extensively evaluated and compared with shadow-
based method and DSM based method. The experimental results demonstrate that the
proposed solution can achieve the best performance and could be an useful solution
for accurate and automatic building height information extraction from GF-7 satellite
stereo images.

Compared with the DSM and shadow-based method, our algorithm skillfully solves
the problem of height estimation of high-rise buildings. Compared with deep learning, this
algorithm does not need training data set. For the first time, we focused on the problem of
multiple elevation planes within the height of a building.
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