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Abstract: The method of proximal VNIR-SWIR (with a spectral region of 400–2500 nm) spectroscopy
in a laboratory setting has been widely employed in soil property estimations. Increasing attention has
been focused recently on establishing an agreed-upon protocol for soil spectral measurement, fueled
by the recognition that studies carried out under different laboratory settings have made future data
sharing and model comparisons difficult. This study aimed to explore the key factors in a lab-based
spectral measurement procedure to provide recommendations for enhancing the spectra quality and
promoting the development of the spectral measurement protocol. To this aim, with the support
of the standard spectral laboratory at Jilin University, China, we designed and performed control
experiments on four key factors—the light interference in the measurement course, soil temperature,
soil moisture, and soil particle size—to quantify the variation in the spectra quality by the subsequent
estimation accuracies of different estimation models developed with different spectra obtained from
control groups. The results showed that (1) the soil–probe contact measurement derived the optimum
spectra quality and estimation accuracy; however, close-non-contact measurement also achieved
acceptable results; (2) sieving the soil sample into particle sizes below 1 mm and drying before
spectral measurement effectively enhanced spectra quality and estimation accuracy; (3) the variation
in soil temperature did not have a distinct influence on spectra quality, and the estimation accuracies
of models developed based on soil samples at 20–50 ◦C were all acceptable. Moreover, a 30-min
warm-up of the spectrometer and contact probe was found to be effective. We carried out a complete
and detailed control experiment process, the results of which offer a guide for optimizing the process
of laboratory-based soil proximal spectral measurement to enhance spectra quality and corresponding
estimation accuracy. Furthermore, we present theoretical support for the development of the spectral
measurement protocol. We also present optional guidance with relatively lower accuracy but effective
results, which are save time and are low cost for future spectral measurement projects.

Keywords: laboratory VNIR-SWIR hyperspectral measurement; spectral measurement protocol;
control experiment; soil organic carbon content (SOC); partial least squares regression (PLSR);
spectral transformation

1. Introduction

Proximal hyperspectral spectroscopy in the visible near-infrared and shortwave in-
frared (VNIR-SWIR) spectral region (400–2500 nm) of soils presents a non-destructive and
efficient approach for estimating numerous soil properties in a laboratory setting. The
establishment and development of the calibration–validation strategy [1] for analyzing
the correlation between spectra and certain physical or chemical attributes have led to
the development of a spectral quantitative estimation of soil properties [2–8]. Despite the
desired soil property estimations achieved with the proximal VNIR-SWIR hyperspectral
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measurement approach, a recognized limitation of this approach is the lack of a common
laboratory protocol [9–11].

Several key variables in performing the lab-based VNIR-SWIR spectral measurement
procedure on soil samples significantly influence their spectra quality and subsequent
estimation accuracy to soil properties brings challenges to establish the agreed-upon pro-
tocol for soil spectral measurement [9–14]. Variability in the sample collection, sample
pretreatment, laboratory environment, and the spectrometer condition may lead to sig-
nificant differences in spectra quality and subsequently hamper model sharing and com-
parison [10,12–14]. Hence, investigating and optimizing the key factors in the spectral
measurement procedure are essential to develop an agreed-upon protocol [15]. However,
few studies have comprehensively investigated these factors, and their results have been
inconsistent [15–19].

First, the existing VNIR-SWIR spectroscopy laboratory procedure usually requires
carrying out the measurement with a high-intensity contact probe or a halogen lamp to
illuminate the darkroom environment [15]. However, the different laboratory conditions
and the special requirements of different operators (e.g., some laboratories prohibit the
probe coming into contact with soil samples to avoid cross-contamination between samples
and instruments) introduce the possibility of light interference in the measuring course.
Second, soil temperature plays an important role in controlling the soil spectral character-
istics [3,9]. In most cases, the spectral measurements are recommended to be carried out
at room temperature [10,11,15]. However, few studies have investigated the correlation
between soil temperature and corresponding spectral characteristics until now; moreover,
they have not proposed a common standard [18,20]. Third, soil moisture is a major chemical
chromophore that significantly influences the soil’s spectral characteristics [3,21–23]. The
moisture variation in soil samples caused by damp environmental storage leads to signif-
icant variations in soil spectra. In most cases, studies have suggested using an air-dried
or oven-dried procedure in sample pretreatment to enhance the spectral quality [9,15];
nevertheless, studies have demonstrated that in some cases the wet samples did not show
significantly degraded results in spectral analysis [16,24]. Additionally, the crushing and
sieving pretreatment interferes significantly with the soil texture, which generates particle
size differences in soil samples. It also interferes with the radiative transfer process and
further influences the soil spectral characteristic significantly [3,21,25,26]. Although previ-
ous studies have demonstrated that the spectra quality of soil samples and corresponding
estimation accuracy are enhanced with fine sieving, the sieving levels that derived the
optimum results differed [5,15,26–28].

Several reliable protocols, such as the CSIRO, TAU, CGS, and CULS [10,11,15], have
been developed for standardizing the proximal VNIR-SWIR spectral measurement proce-
dure. However, with the rise in the number of spectral measurement protocols, as well as
the generation of regional and national soil spectral libraries, the variation in the generated
datasets has obviously not been corrected [10]. Recent studies have attempted to standard-
ize the spectra data obtained from different laboratory procedures into a uniform protocol
from the perspective of mathematical calculation methods [10,11,15]. Nevertheless, no one
has comprehensively studied unifying the key factors in the protocol from the perspective
of a sample processing and spectral measurement procedure. Moreover, the requirements
of existing protocols have also not been perfected in common applications because of the
limitations of the laboratory environment, instrument conditions, and different operational
habits [9,29,30]. Therefore, this study was carried out to investigate the variation in spectra
quality and corresponding estimation accuracy generated by variations in key factors in the
spectral measurement procedure with the aim of quantifying these variations. Moreover,
we provide optional guidance for further proximal VNIR-SWIR spectral measurements
and theoretical support for optimizing the protocols.

To this aim, we designed and performed four groups of control experiments in the
standard spectral laboratory at Jilin University, China, to illustrate the spectral response
under the influence of four independent variables: light interference, soil temperature,
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soil moisture, and soil particle size. Moreover, we chose the soil organic carbon (SOC)
content, which is an important property of soil, as an indicator when performing the
partial least squares regression (PLSR) calibration–validation to show the estimation ability
of the spectra obtained from different groups of control experiments. Moreover, our
study also considered employing spectral transformations, which have been applied in
previous studies [31–37], for PLSR calibration–validation to provide conclusions that could
be employed in future comparisons.

2. Materials and Methods
2.1. Basic Materials
2.1.1. Sampling Sites

Thirty soil samples collected from the typical black soil-covered (Haplic Phaenozems) [38]
farmlands in Jilin province (124◦55′5.71′′E to 126◦04′51.21′′E, 43◦03′5.04′′N to 45◦01′45.47′′N)
in October 2018 were used to perform light interference, soil temperature, and soil mois-
ture control experiments (Figure 1 red points). Additionally, 30 soil samples for the soil
particle size control experiment were collected in the typical black-soil-covered farmlands
in Wangkui County, Heilongjiang province (42◦33′19.51′′N to 45◦11′4.82′′N, 124◦55′45.07′′E
to 126◦8′47.57′′E) in July 2017 (Figure 1 blue points). At each sampling point, 2–3 kg of
topsoil sample (0–20 cm) was collected for further spectral and geochemical testing, and each
sampling point was recorded with WGS84 coordinates.
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Figure 1. The geographic extent of the sampling sites: dark background indicates the typical black
soil area in northeast China. Blue and red points indicate sampling points in Heilongjiang and Jilin.

2.1.2. Soil Samples Pretreatment

Our Jilin (JL) soil samples were already processed in a course of air drying, crushing,
and sieving through a 0.075 mm sieve and a soil organic carbon test. An analysis of
soil organic carbon (SOC) content was carried out in the laboratory with the potassium
dichromate volumetric method [39]. We fortunately obtained the other 30 Heilongjiang
(HLJ) soil samples from Jilin Jianzhu University. These samples had not been finely sieved
and retained field characteristics, which allowed us to design the control group with the
single variable of soil particle size. Descriptions of the two datasets are listed in Table 1.
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Table 1. Soil datasets for this research.

Datasets
SOC Content (%)

SD CVMin Q1 Median Q3 Max Mean

JL 0.91 2.50 2.63 2.47 3.70 2.60 0.52 0.20

HLJ 1.78 2.62 2.51 2.17 3.76 2.55 0.41 0.16

Q1: the first quartile; Q3: the third quartile; SD: standard deviation; CV: coefficient of variation.

2.1.3. Basic Laboratory Materials

All soil samples were processed and spectrally measured in a standard spectral lab-
oratory in Jilin University (JLU), China, which has constant laboratory environment and
devices to support the control experiments: The darkroom was lined with a light-absorbing
solid black cloth background; it contained a constant-temperature oven to control the
temperature of the soil sample; a humidifier (mist maker) to adjust soil moisture; standard
diameter metal mesh soil sieves; a thermal imager; high-precision electronic balance; sup-
port stand; Petri dishes, etc. The laboratory conditions and experimental materials are
shown in Figure 2. An ASD Fieldspec® 3 high-resolution spectrometer with a high-intensity
contact probe was used for soil sample spectral reflectance measurement. This spectrometer
had the following characteristics: a spectral region of 350–2500 nm; a spectral resolution of
3 nm at the visible spectral region, 8.5 nm at the near-infrared, and 6.5 nm at the shortwave
infrared spectral region; a 1 nm spectra sampling interval.
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2.2. Sample Treatment and Control Experiments

A single-variable control method was used to perform the experiments in this study.
Figure 2 shows the flowchart of this procedure. Experiments were performed in a constant-
temperature environment (20 ◦C). The 0.075 mm-sieved JL samples and the HLJ samples
were all oven-dried at 50 ◦C for 24 h and placed in the constant-temperature lab for cooling
to room temperature; they were spectrally measured as benchmarks. During the spec-
tral measurement course, the spectrometer and probe were warmed up for 60 min, the
spectrometer was calibrated by white reference measuring standard per 10 min, and the
soil sample was placed in a Petri dish and its surface was flattened for probe-contacted
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measuring five times for each experiment (except for the light interference control experi-
ment). Based on these benchmarks, we, respectively, controlled the light interference, soil
temperature, soil moisture, and the soil particle size as the single variables to design the
four control groups to investigate the spectral reflectance response and the SOC estimation
difference under their influence.

2.2.1. Light Interference Control Group

The first experiment was performed to control the light interference in the spectral
measurement process. We fixed the probe on a support stand. The distances between the
top of the probe and the surface of the soil sample in the Petri dish were set at 0.3 and
1 cm. Under each condition, the standard spectral measurement process (darkroom) was
performed on the 30 Jilin samples to determine whether the probe–sample distance would
disturb the spectra results (Figure 3b,c). Moreover, the spectral measurement at the 0.3 cm
gap was replicated in an illuminated room condition to investigate the spectra variation
under the interference of the light noise (Figure 3a).
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reference indicate the position change of the probe.

2.2.2. Soil Temperature Control Group

In the second control experiment, the soil temperature was set as the single variable to
detect its influence on the spectral reflectance and subsequent estimation accuracy. Each
of the JL samples in Petri dishes were put in the constant-temperature (50 ◦C) oven for
10 min, heated successively, and then removed for surface temperature measurement. The
surface temperature of each sample was recorded with a FLUKE TiS60 thermal imager
(Figure 4). Furthermore, the spectral reflectance of each sample at 50 (usually lower), 40,
and 30 ◦C was measured to analyze the variation in the spectra and their capacity for SOC
content estimation modeling, comparing them with the results of the benchmark (20 ◦C).
It should be explained that in order to protect and recover the soil samples, we set the
heating temperature to no higher than 50 ◦C; what is more, the temperature of the soil
samples removed from the oven for next spectral measurement were usually lower than
50 ◦C because they cooled down quickly in the low-room-temperature environment.
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ready sieved through the 1 mm standard soil sieve. These soil samples were further sieved 
through 0.5, 0.25, 0.1, and 0.075 mm sieves to derive the 5 groups of samples for the spec-
tral measurement. Figure 6 shows an example of the sieved soil samples. We observed 
that the sample sieved through the 1 mm sieve retained many impurities. The number 
and the size of impurities decreased with the reduction in mesh size. Impurities were vis-

Figure 4. Sample heating and surface temperature recording. The surface temperature of the
benchmark sample is represented as the visible light image (top left) and infrared image (top right).
The heated samples are represented as infrared images on the right. The fingers of the researcher are
depicted as references.

2.2.3. Soil Moisture Control Group

The third control experiment set the soil moisture as the single variable. The humidifier
(mist maker) was infused with distilled water and put into a transparent box to create a
wet space. All JL samples in Petri dishes were placed in the box and humidified for 5 min
to simulate slightly wet conditions (Figure 5). The masses of all samples were recorded
by the balance before and after humidification to determine the change in soil moisture.
The steps were replicated for another 25 min of humidification to simulate severely wet
conditions. Samples were spectrally measured simultaneously to determine the difference
in obtained spectra and their capacity for SOC content estimation compared with the results
of the benchmark.
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2.2.4. Soil Particle Size Control Group

The raw Heilongjiang samples we obtained from Jilin Jianzhu University were already
sieved through the 1 mm standard soil sieve. These soil samples were further sieved
through 0.5, 0.25, 0.1, and 0.075 mm sieves to derive the 5 groups of samples for the spectral
measurement. Figure 6 shows an example of the sieved soil samples. We observed that
the sample sieved through the 1 mm sieve retained many impurities. The number and
the size of impurities decreased with the reduction in mesh size. Impurities were visually
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imperceptible after sieving through a mesh size below 0.1 mm (Figure 6d). The spectral
measurements of the 5 groups of samples were performed using the standard process, and
the obtained spectra were applied in the investigation of the spectra difference and their
capacity for SOC content estimation modeling.
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2.3. Methodology
2.3.1. Spectra Pre-Processing

The spectra recorded by the spectrometer were smoothing processed using the Savitzky–
Golay algorithm [40] and exported into ASCII by ViewSpec Pro software. The average
of the 5 replicated measurements of each sample was calculated to represent its spec-
tral reflectance (R). Studies usually carry out the spectral transformation procedure to
enhance the spectral characteristics for improving the quantitative estimation accuracy in
calibration–validation modeling [31–37]. This study employed three often-used forms, the
first derivative of the reflectance (R’), the absorbance (A) [32], and the continuum removal
(C) [41], to perform the spectral transformation. The original spectral reflectance and the
results of the three forms of spectral transformation of the samples were considered in SOC
estimation modeling. Overall, based on the design of the control experiments with different
sample treatments, a total of 56 PLSR models were developed with different groups of
spectra for comparative analysis (Table 2).

2.3.2. Partial Least Squares Calibration and Validation

Partial least squares regression (PLSR) was employed for calibration–validation mod-
eling for SOC content estimation. The PLSR procedure has been demonstrated to be the
most robust modeling method in solving high-dimensional collinear independent hyper-
spectral data modeling for soil properties, especially for SOC content estimation [5,42–45].
For the computations, we employed the SIMPLS algorithm in MATLAB (MathWorks, Inc.
USA), which constructs the original independent variables (spectra) into orthogonal PLS
components (also known as the latent variables) that represent linear combinations of them
and further relates the dependent variables with the new PLS components by linear regres-
sion [46]. The number of the PLS components used in modeling is commonly determined
by maximizing the percentage of variance explained in variables (PCTVAR) by the PLS
components or minimizing the root mean square error (RMSE) in n-fold validation [36].
In this study, we defined an index, the normalized ratio of PCTVAR and RMSE (NRPR),
in a 10-fold cross validation to determine the optimum number of PLS components for
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calibration by maximizing it. The RMSE values of estimation in calibration (RMSEc) and
in 10-fold validation (RMSEv), as well as the coefficients of determination in calibration
and validation (R2c and R2v), were employed to quantify the accuracy of estimation in
this study.

Table 2. A list of the PLSR models developed with different sample sets under different treatments
and four forms of spectral transformations.

Sample Set Control
Experiment Treatment Spectra Form Model

Jilin

Benchmark Standard R/R’/A/C Model JLBR/JLBR’/JLBA/JLBC

Light
Darkroom 0.3 cm R/R’/A/C Model LaR/LaR’/LaA/LaC

Illuminated 0.3 cm R/R’/A/C Model LbR/LbR’/LbA/LbC
Darkroom 1 cm R/R’/A/C Model LcR/LcR’/LcA/LcC

Temperature
30 ◦C R/R’/A/C Model TaR/TaR’/TaA/TaC
40 ◦C R/R’/A/C Model TbR/TbR’/TbA/TbC
50 ◦C R/R’/A/C Model TcR/TcR’/TcA/TcC

Moisture
slightly wet R/R’/A/C Model MaR/MaR’/MaA/MaC
severely wet R/R’/A/C Model MbR/MbR’/MbA/MbC

Heilongjiang Particle size

0.075 mm sieved R/R’/A/C Model HBR/HBR’/HBA/HBC
0.1 mm sieved R/R’/A/C Model PaR/PaR’/PaA/PaC
0.25 mm sieved R/R’/A/C Model PbR/PbR’/PbA/PbC
0.5 mm sieved R/R’/A/C Model PcR/PcR’/PcA/PcC
1 mm sieved R/R’/A/C Model PdR/PdR’/PdA/PdC

3. Results
3.1. The PLSR Modeling Benchmarks

The normalized ratios of PCTVAR and RMSE (NRPR) of the PLS models that were
developed with the spectral reflectance of Jilin (JL) and Heilongjiang (HLJ) benchmarks
and their three forms of spectral transformation (R’, A, and C) are shown in Figure 7. The
maximum NRPR indicates the optimum number of PLS components (PCs) for modeling.
The subsequent PLS models developed with corresponding spectra derived from different
control experiments should refer to the benchmarks to keep the PCs consistent.
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Figure 7. The NRPRs of different numbered PLS components (PCs) of eight benchmark models. As
explained in detail in Table 2, the model names in Figure 7 correspond to: JLB: JL Benchmark; HB:
HLJ Benchmark; R, R’, A and C in model names correspond to four forms of spectra.

3.2. Spectral Response and Estimation Results under Light Interference

The average spectral reflectance and corresponding three forms of spectral transfor-
mation of the JL samples in different light interference control experiments are presented
in Figure 8a–d (the corresponding results of all samples are shown in Supplementary
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Figures S1–S4). It is seen in Figure 8a that from the benchmark to the darkroom 1 cm gap
condition, the spectral reflectances had similar spectral shapes yet showed a generally
reduced whole VNIR-SWIR spectral region. Benchmark spectra were apparently higher
than other three treatments, no matter whether just considering the average or all cases.
Figure 8c illustrates that the variation tendency of spectral absorbance was almost symmet-
ric about the x-axis with the corresponding spectral reflectance. The spectral variations
were not noticeably different in R’ and C spectral forms, yet it was easily distinguished in
Figure 8a,c,d that the spectral discontinuity at the 1000 nm internal detector splice [9] was
obviously magnified in light-intervening conditions.
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SOC content estimation accuracy rates using PLSR based on the spectra of different
light interference control groups with different spectral forms are listed in Table 3 (the
corresponding scatterplots of the estimation results are shown in Supplementary Figure S5).
Regarding the estimation accuracy of different forms of spectra, although the calibration
accuracy was enhanced perfectly (R2c = 0.994) when applying the R’ spectra, the validation
accuracy was relatively poor (R2v = 0.518). The models developed with the C spectra
reached the lowest levels of both calibration and validation accuracies. In contrast, the
models developed with the original spectral reflectance and spectral absorbance reached
ideal validation accuracies (R2v = 0.873 and R2v = 0.720, respectively). As far as the
controlled light interference was concerned, the three groups of control experiments reached
lower R2v and higher RMSEv in most statistics. The 1 cm darkroom measured spectra
showed the lowest estimation accuracies, no matter what form of spectral transformation
was employed, which demonstrated that the illumination of the halogen bulb on the
soil sample was severely weakened when the contact measuring was not performed [15];
subsequently, the derived spectral reflectance and certain subsequent estimation results
were obviously influenced. The 0.3 cm darkroom and 0.3 cm illuminated measured spectra
showed comparable validation accuracies that were slightly lower than the benchmarks.

3.3. Spectral Response and Estimation Results under Soil Temperature Interference

The average spectral reflectance and corresponding three forms of spectral transforma-
tion of the JL samples under different soil temperature control experiments are presented
in Figure 9a–d (the corresponding results of all samples are shown in Supplementary
Figures S6–S9). In most cases (Figure 9a,c, Figures S6 and S8), the higher temperature
samples showed lower spectral reflectance (or higher absorbance), yet this variation was
not noticeable. The average reflectance of samples at 30, 40 and 50 ◦C did not show a
noticeable difference. The difference in spectra between the higher temperature samples
and the benchmark was narrowed by R’ spectral transformation (Figure 9b). However, the
variation in the absorption region in the ranges 350–560, 1360–1540, and 1820–2140 nm was
obviously distinguished by continuum removal (Figure 9d).
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Table 3. Estimation accuracy of PLS models in the light interference control experiment.

Model JLBR LaR LbR LcR JLBR’ LaR’ LbR’ LcR’

R2c 0.938 0.944 0.929 0.914 0.994 0.984 0.990 0.981
R2v 0.873 0.852 0.823 0.789 0.518 0.156 0.276 −0.351

RMSEc 0.128 0.122 0.137 0.150 0.041 0.065 0.050 0.071
RMSEv 0.182 0.197 0.216 0.235 0.356 0.470 0.436 0.595

Model JLBA LaA LbA LcA JLBC LaC LbC LcC

R2c 0.893 0.931 0.927 0.921 0.748 0.861 0.801 0.694
R2v 0.720 0.665 0.656 0.650 0.285 0.130 0.200 −0.265

RMSEc 0.167 0.135 0.139 0.144 0.257 0.191 0.229 0.283
RMSEv 0.271 0.296 0.300 0.303 0.433 0.477 0.458 0.576

As explained in detail in Table 2, the model names in Table 3 correspond to: JLB: Jilin Benchmark (contact
measurement); a, b, and c in model names refer to Darkroom 0.3 cm treatment, Illuminated 0.3 cm treatment, and
Darkroom 1 cm treatment, respectively; R, R’, A, and C in model names refer to the four forms of spectra.
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Table 4 provides the estimation accuracies of PLSR models based on the spectra of
different soil temperature control groups with different spectral forms (the corresponding
scatterplots of estimation results are shown in Supplementary Figure S10). The original
spectral reflectance provided the best validation accuracies. Although the accuracies were
lower than the R results, the models developed with A spectra also presented acceptable
results. The validation accuracies of models based on R’ and C spectra were relatively
poor, which is consistent with previous studies reporting that, although the spectral trans-
formation of the first derivative and the continuum removal of spectral reflectance could
effectively enhance the calibration accuracies of statistical models [31–37], the characteristic
spectral bands of certain specific soil attributes show obvious discontinuous and unstable
variation on the whole VNIR-SWIR spectral region when the R’ and C spectra are employed,
which can distinctly influence validation accuracies [47]. Regarding the influence of soil
temperature on the spectra variation and corresponding estimation ability, the results
showed no distinct regularities between the estimation accuracy and the variation in soil
temperature: In most cases, the benchmark models developed with soil spectra measured
at a soil temperature of 20 ◦C showed the best estimation accuracies; however, the model
TaR’ (30 ◦C) obtained the highest R2v = 0.538 of the treatments in its group (Table 4 green
zone). Moreover, the model TcR (50 ◦C) obtained the highest R2c = 0.947 of the models
developed with spectral reflectance, even higher than the benchmark model (JLBR) (Table 4
red zone). In conclusion, the results showed that, although the variation of soil temperature
had an effect on the estimation accuracy, the effect was slight and not certainly averse.
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Table 4. Estimation accuracy of PLS models in the soil temperature control experiment.

Model JLBR TaR TbR TcR JLBR’ TaR’ TbR’ TcR’

R2c 0.938 0.902 0.934 0.947 0.994 0.993 0.984 0.995
R2v 0.873 0.798 0.867 0.857 0.518 0.538 0.296 0.344

RMSEc 0.128 0.160 0.132 0.118 0.041 0.043 0.064 0.035
RMSEv 0.182 0.230 0.187 0.194 0.356 0.347 0.430 0.415

Model JLBA TaA TbA TcA JLBC TaC TbC TcC

R2c 0.893 0.854 0.875 0.885 0.748 0.719 0.921 0.896
R2v 0.720 0.574 0.673 0.689 0.285 −0.500 0.100 −0.008

RMSEc 0.167 0.196 0.181 0.174 0.257 0.272 0.144 0.166
RMSEv 0.271 0.334 0.293 0.285 0.433 0.627 0.486 0.514

As explained in detail in Table 2, the model names in Table 4 correspond to: JLB: Jilin Benchmark (20 ◦C); a, b,
and c in model names refer to 30, 40, and 50 ◦C, respectively; R, R’, A, and C in model names refer to four forms
of spectra.

3.4. Spectral Response and Estimation Results under Soil Moisture Interference

We illustrated the mass change of all humidified JL samples to demonstrate their
moisture change instead of calculating the water contents because the humidifying method
in our experiment cannot always completely and evenly humidify the soil samples in a
relatively short time. Therefore, using the calculated water content to represent the soil
moisture change would not yield accurate results. As shown in Figure 10, the benchmark
samples obtained an average mass gain of 1.644 g after 5 min of humidification, which
was regarded as a slightly wet condition. Furthermore, soil samples had an average mass
gain of 2.546 g after another 25 min of humidification, which was regarded as a severely
wet condition.
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Figure 10. The mass changes of all Jilin benchmark samples after 5 and 30 min of humidification.

The average spectral reflectance and corresponding three forms of spectral transforma-
tions of JL samples in different soil moisture control experiments are presented in Figure 11a–d
(the corresponding results of all samples are shown in Supplementary Figures S11–S14).
Figures 11a and S11 show a common decrease in spectral reflectance with increasing moisture
content [21,22,48]. In contrast, the spectral absorbance showed a tendency to increase with
the soil moisture increase (Figures 11c and S11). Moreover, it can be seen that the water
absorption range in the SWIR domain was enhanced with the increase in soil moisture in the
results of R, A and C spectra (Figures 11a,c,d, S11, S13 and S14) [49–51]. The variations were
not distinguished in R’ spectra.
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Table 5 provides estimation accuracies of PLSR models based on the spectra of different
soil moisture control groups with different spectral forms (the corresponding scatterplots of
estimation results are shown in Supplementary Figure S15). Models developed with original
spectral reflectance and spectral absorbance showed the ideal estimation abilities with a
higher R2 and a lower RMSE. The validation accuracies of models based on R’ and C spectra
were relatively poor. Regarding the influence of soil moisture on the spectra variation and
corresponding SOC estimation ability, two groups of control experiments showed a decline
in R2 and increase in RMSE in most statistics with the increase in soil moisture.

Table 5. Estimation accuracy of PLS models in the soil moisture control experiment.

Model JLBR MaR MbR JLBR’ MaR’ MbR’ JLBA MaA MbA JLBC MaC MbC

R2c 0.938 0.884 0.857 0.994 0.973 0.990 0.893 0.880 0.865 0.748 0.603 0.730
R2v 0.873 0.721 0.587 0.518 −0.293 0.180 0.720 0.621 0.533 0.285 −0.390 0.146

RMSEc 0.128 0.175 0.194 0.041 0.085 0.051 0.167 0.178 0.188 0.257 0.322 0.266
RMSEv 0.182 0.270 0.329 0.356 0.582 0.464 0.271 0.315 0.350 0.433 0.604 0.473

As explained in detail in Table 2, the model names in Table 5 correspond to: JLB: Jilin Benchmark (20 ◦C); a and b
in model names refer to lightly wet and severely wet, respectively; R, R’, A, and C in model names refer to four
forms of spectra.

3.5. Spectral Response and Estimation Results under Soil Particle Size Interference

The average spectral reflectance and corresponding three forms of spectral transforma-
tion of the HLJ samples under different treatments of soil particle size control experiment
are presented in Figure 12a,d (the corresponding results of all samples are shown in
Supplementary Figures S16–S19). Figure 12a indicates that, ranging from the 0.075 mm
(benchmark) sieved treatment to the 1 mm sieved treatment, the spectral reflectance of soil
samples shared a similar spectral shape yet showed a general reduction in the whole VNIR-
SWIR spectral region; this tendency is shown for all samples in Figure S16. Furthermore, as
shown in Figure S16, in most cases the 0.075 and 0.1 mm sieved samples presented spectral
reflectance at nearly the same level. The spectral reflectance values of soil samples in the
0.25 and 0.5 mm sieved treatments were also close. The 1 mm sieved samples all presented
low-level results. Figure 12c and Figure S17 demonstrate the symmetric results of the A
spectra and the R spectra, which shared consistent variation tendencies. Moreover, it was
hard to observe the spectral variation of different soil samples from different particle size
treatments in R’ and C spectral forms. The variation in the particle size of soil samples
also did not cause distinct variations in the absorption region in the ranges 1360–1540 and
1820–2140 nm in R’ and C spectra, which was not consistent with the results of the moisture
and temperature control experiments; however, the absorption peaks vibrated noticeably
in the 350–560 nm range, as shown in Figure S19.
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SOC content estimation accuracy using PLSR based on the spectra of different soil par-
ticle size control groups with different spectral forms is listed in Table 6 (the corresponding
scatterplots of estimation results are shown in Supplementary Figure S20). PLSR models
developed with four forms of spectra all reached ideal calibration accuracies; however, the
validation accuracies of the R’ and C models were relatively poor. As far as the controlled
variables for soil particle size are concerned, three groups of control experiments reached
lower R2v and higher RMSEv than the benchmarks in all statistics. Excepting special cases
(R2v = 0.909 of model PdR and R2v = 0.386 of model PdC were higher than the other three
controlled cases), the validation accuracies of the models had a decreasing tendency with
the increase in the particle size.

Table 6. Estimation accuracy of PLS models in the soil particle size control experiment.

Model HBR PaR PbR PcR PdR HBR’ PaR’ PbR’ PcR’ PdR’

R2c 0.980 0.968 0.961 0.959 0.971 0.973 0.972 0.952 0.961 0.957
R2v 0.919 0.876 0.853 0.850 0.909 0.603 0.702 0.347 0.279 0.231

RMSEc 0.057 0.072 0.079 0.081 0.068 0.066 0.067 0.087 0.079 0.083
RMSEv 0.114 0.141 0.153 0.155 0.120 0.252 0.218 0.323 0.339 0.350

Model HBA PaA PbA PcA PdA HBC PaC PbC PcC PdC

R2c 0.999 0.999 0.998 0.999 0.999 0.987 0.989 0.979 0.983 0.980
R2v 0.925 0.801 0.758 0.741 0.743 0.431 0.312 0.300 0.296 0.386

RMSEc 0.010 0.012 0.016 0.014 0.014 0.045 0.042 0.058 0.052 0.057
RMSEv 0.109 0.179 0.197 0.203 0.202 0.301 0.331 0.334 0.335 0.313

As explained in detail in Table 2, the model names in Table 6 correspond to: JLB: Jilin Benchmark (0.075 mm
particle size); a, b, c and d in model names refer to particle sizes of 0.1, 0.25, 0.5, and 1 mm, respectively; R, R’, A,
and C in model names refer to the four forms of spectra.

3.6. Observation of the Temperature of the Spectrometer and Probe

Considering that the soil temperature control experiment did not find a distinct
correlation between the soil temperature and the corresponding estimation results, on
the basis of the original experiment, we further monitored the temperature change of
the spectrometer and the bulb under working conditions to determine the reason for the
instability of the results.

As shown in Figure 13a, we directly measured the temperature of the bulb with the
thermal imager during its working period. Because of the instrument body enclosure, it
was difficult to directly obtain the working temperature of the spectrometer; hence, we
recorded the temperature of the air outlet of the spectrometer as a representative value. We
recorded the temperature with a one-minute interval from the start to stop of the device
until it cooled to room temperature. As shown in Figure 13b, the temperature of the probe
bulb sharply increased in the first minute, experienced a relatively slow increase from



Remote Sens. 2022, 14, 1558 14 of 19

the 2nd to 24th minute, and then stabilized at around 50 ◦C. Meanwhile, the temperature
of the spectrometer increased relatively rapidly up to about 26 ◦C before the 6th minute,
experienced a sluggish increase from the 7th to 30th minute, and then stabilized at around
28 ◦C. We shut down the spectrometer at the 40th minute. We noted that the temperature
of the bulb fell sharply to 34.5 ◦C in 2 min, cooled to 28.2 ◦C after 7 min, then experienced a
long, sluggish cooling-down time to room temperature. Meanwhile, the temperature of the
spectrometer experienced a stable decrease in about 20 min to room temperature.
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4. Discussions

First, as a well-accepted method of soil spectral measurement in most laboratories
over the world [15], measurements with a high-intensity contact probe usually require close
probe–soil contact conditions [6,8,10,15]. This was consistent with the results of our study,
where the close contact measurement indeed obtained the optimum estimation accuracy
in validation (Table 3 and Figure S5). However, the different laboratory conditions and
the special requirements of different operators (e.g., some laboratories prohibit the probe
coming into contact with soil samples to avoid cross-contamination between samples and
instruments) introduced the possibility of light interference in the measuring course. Corre-
spondingly, our study presented a theoretical response to this problem by demonstrating
that the close-non-contact measurement could also obtain a relatively lower but acceptable
accuracy, even if under the illuminating interference environment. We also demonstrated
that the large gap non-contact measurement could lead to a serious reduction in the spectra
quality as well as the estimation accuracy. Hence, if there are no special requirements for
experiments, we recommend using contact measurement to obtain the optimal spectra
quality as far as possible.

Second, the soil moisture control experiment demonstrated that soil moisture interferes
the most significantly in the soil spectra quality of the four factors: The result showed
a common decrease in spectral reflectance with increasing moisture content, which was
consistent with previous studies [21,22,48]. Moreover, enhancement of the water absorption
range in the SWIR domain with the increasing soil moisture [49–51] was distinctly detected
in our experiment. The estimation accuracy significantly declined with the increase in
soil moisture, which was consistent with most cases in previous studies [48,52]. Water
in soil has been demonstrated to have a significant effect on the H2O expression spectral
bands, which masks the major chemical chromophores in soils [3,53] and leads to unstable
statistical characteristics of the modeling spectra. Moreover, this leads to poor accuracies in
estimation results. Hence, we suggest that complete drying of soil samples is necessary in
standard laboratory-based proximal spectral measurements.
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Third, the spectral reflectance of soil samples showed a general increase in the whole
VNIR-SWIR spectral region with the decrease in soil particle size, a stable tendency ob-
served in Figure 12 and Figure S16. Moreover, we demonstrated that the validation
accuracies of the models were effectively enhanced by finely sieving, which was consistent
with previous reports that indicated the transmission of light through soil samples would
be affected and derived different spectral reflectance characteristics when the particle
size changed, which can lead to significant variations in the estimation accuracies [54–56].
However, the optimum particle size suggested in previous reports differed (ranging from
0.88 to 2 mm) from our result [5,15,26–28]. One reason for this difference might be the
effects of the different test methods used to obtain the modeling parameters. For instance,
the laboratory methods for testing the SOC content are different, ranging from the dry
combustion [9,16,18,56] to Walkley’s rapid method [54]. Different test methods require
different soil particle sizes. For instance, this study employed the potassium dichromate
volumetric method, which required the particle size of the employed soil sample to be less
than 0.8 mm [39], which could explain why the particle sizes of soil samples that produced
the optimum estimation accuracies were consistent with previous studies (less than 0.1 mm)
employing the same methods [28,57]. In other words, the principles of existing modeling
methods almost all depend on establishing the statistical relationship between the soil
spectra and corresponding properties. Employing the same sieving level for geochemical
tests and spectral measurement of the soil samples, in the meantime, helps to maintain
the consistency of the target when establishing statistical relations. Hence, we suggest
that preparing soil samples with a particle size under 1 mm can be accepted. Moreover,
it is not necessary to require a particular unified sieving level in the development of a
laboratory-based proximal spectral measurement protocol, but this should depend on
different targets and methods.

Last, the soil temperature control experiment did not establish a distinct correlation
between the soil temperature and the corresponding estimation results. In most statistics,
the estimation accuracy showed a lower R2 and a higher RMSE with the increase in
soil temperature. However, this result was not obvious. We did not obtain consistent
extension in the group of models developed with the spectral reflectance (R), in which
the soil samples at 50 ◦C reached an even higher R2c with an ideal R2v than the other
three controlled conditions (20, 30, and 40 ◦C) (Table 4 and Figure S10), as the previous
study demonstrated [18]. According to the results of the additional experiment in our
study (Section 3.6), we suppose that one factor causing the varying results might be the
temperature disturbance by the contact probe. Figure 13b shows that the probe kept a
50 ◦C working temperature after 24 min of warming up. This means that even though the
soil samples were processed to a uniform temperature for measurement, when the sample
came into contact with the probe, the surface was heated by the 50 ◦C bulb, resulting in an
uncontrollable temperature gain that might lead to the unstable variation in the obtained
spectra. Overall, the estimation results did not demonstrate obvious regular variation with
the change in the soil temperature; the estimation accuracies of the models developed with
the spectral reflectance of soil samples under four temperature conditions (20–50 ◦C) were
all acceptable (0.902 ≤ R2c ≤ 0.947; 0.798 ≤ R2v ≤ 0.873). Hence, we suggest that in order
to ensure the efficiency of the spectral measurement procedure, the method of employing
the room temperature samples for spectral measurement should continue to be popularized
when developing standard laboratory protocol and future studies [10,11,15]. Moreover,
the results of the additional experiment also demonstrated that the spectrometer and the
contact probe bulb reached the stable working temperature in about 30 min, which also
presents a guideline for specifying the warm-up time of the devices from the perspective
of users.

5. Conclusions

For this study, we designed and performed control experiments to investigate the
influence on the soil spectra quality and subsequent estimation accuracy of four key factors
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in a proximal spectral measurement procedure in a laboratory setting. Control experiments
were performed in the standard spectral laboratory at Jilin University (JLU), China, which
has a constant laboratory environment and devices needed to support the control experi-
ments. Among the four key factors, light interference, soil moisture, and soil particle size
demonstrated obvious influences on soil spectral characteristics and subsequent estimation
accuracies. Furthermore, soil moisture interfered the most significantly in the soil spectra
quality, with an evident decrease in spectral reflectance and significant decline in the esti-
mation accuracy with increasing moisture content. However, the soil temperature control
experiment did not obtain the ideal result and could not determine a distinct correlation
between the soil temperature and the corresponding estimation results. From the results of
the control experiments and comparative analysis, the conclusions presented below can be
drawn to guide optimizing the process of laboratory-based proximal soil spectral measure-
ments to derive a higher spectra quality and corresponding ideal estimation accuracies.

The soil–probe contact measurement derives the optimum spectra quality and esti-
mation accuracy; however, close-non-contact measurement can also obtain a relatively
lower but acceptable accuracy, even if under the illuminating interference environment.
The complete drying procedure of soil samples is necessary in soil sample processing.
Sieving below 1 mm particle size can produce soil samples with a high spectra quality
and ideal estimation accuracy; moreover, specific sieving levels in further studies should
be designed based on the different research objects and the referenced geochemical test
methods. The method of employing the room temperature samples for spectral measure-
ment can continue to be promoted in future studies; moreover, a 30-min warm-up time
for the spectrometer and contact probe was demonstrated to be effective by the additional
temperature observation experiment.

Despite carrying out this investigation and optimizing the four key factors in soil
proximal spectral measurement, there is still room for further research to comprehensively
investigate additional factors in the spectral measurement procedure that will influence the
spectra quality and subsequent soil property estimation. Furthermore, as we mentioned
in Section 3.4, the geochemical references are usually derived from different laboratory
methods, and further comparative study to characterize their influence on the correspond-
ing estimation accuracies can also promote the development of spectral measurement
protocols. Moreover, although the reference factor used in this research, the SOC content,
is an important soil property, the estimation results might be different when other soil
properties are employed. Hence, the conclusions of this study must be confirmed by further
detailed applications.

Supplementary Materials: Supplementary Materials are available online at https://www.mdpi.
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tion results of all JL samples under soil temperature influence (including Figures S6–S10); Text S3:
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11. Gholizadeh, A.; Carmon, N.; Klement, A.; Ben-Dor, E.; Borůvka, L. Agricultural Soil Spectral Response and Properties Assessment:
Effects of Measurement Protocol and Data Mining Technique. Remote Sens. 2017, 9, 1078. [CrossRef]

12. Chodak, M.; Ludwig, B.; Khanna, P.; Beese, F. Use of near infrared spectroscopy to determine biological and chemical char-
acteristics of organic layers under spruce and beech stands. J. Plant Nutr. Soil Sci. 2002, 165, 27–33. [CrossRef]

13. Udelhoven, T.; Emmerling, C.; Jarmer, T. Quantitative analysis of soil chemical properties with diffuse reflectance spectrometry
and partial least-square regression: A feasibility study. Plant Soil 2003, 251, 319–329. [CrossRef]

14. Brown, D.J. Using a global VNIR soil-spectral library for local soil characterization and landscape modeling in a 2nd-order
Uganda watershed. Geoderma 2007, 140, 444–453. [CrossRef]

15. Ben Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245,
112–124. [CrossRef]

16. Reeves, J.; McCarty, G.; Mimmo, T. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories
in soils. Environ. Pollut. 2002, 116, S277–S284. [CrossRef]

17. Nduwamungu, C.; Ziadi, N.; Parent, L.-É.; Tremblay, G.F.; Thuriès, L. Opportunities for, and limitations of, near infrared
reflectance spectroscopy applications in soil analysis: A review. Can. J. Soil Sci. 2009, 89, 531–541. [CrossRef]

18. Miltz, J.; Don, A. Optimising Sample Preparation and near Infrared Spectra Measurements of Soil Samples to Calibrate Organic
Carbon and Total Nitrogen Content. J. Near Infrared Spectrosc. 2012, 20, 695–706. [CrossRef]

19. Xiao, S.; He, Y. Application of Near-infrared Spectroscopy and Multiple Spectral Algorithms to Explore the Effect of Soil Particle
Sizes on Soil Nitrogen Detection. Molecules 2019, 24, 2486. [CrossRef]

20. Nie, P.; Dong, T.; He, Y.; Qu, F. Detection of Soil Nitrogen Using Near Infrared Sensors Based on Soil Pretreatment and Algorithms.
Sensors 2017, 17, 1102. [CrossRef]

21. Bowers, S.A.; Hanks, R.J. Reflection of radiant energy from soils. Soil Sci. 1965, 100, 130–138. [CrossRef]
22. Neema, D.L.; Shah, A.; Patel, A.N. A statistical optical model for light reflection and penetration through sand. Int. J. Remote Sens.

1987, 8, 1209–1217. [CrossRef]
23. Aurelien, B.; Vu, P.V.H.; Stéphane, J.; Françoise, V.; Sophie, F.; Xavier, B.; Morteza, S.; Michael, L.W.; Frédéric, B.; Jia, T. Marmit: A

multilayer radiative transfer model of soil reflectance to estimate surface soil moisture content in the solar domain (400–2500 nm).
Remote Sens. Environ. 2018, 217, 1–17.

http://doi.org/10.1016/0034-4257(94)90001-9
http://doi.org/10.1016/s0065-2113(02)75005-0
http://doi.org/10.1590/S0103-50532003000200006
http://doi.org/10.1016/j.geoderma.2005.03.007
http://doi.org/10.1016/s0065-2113(10)07005-7
http://doi.org/10.13140/rg.2.1.4041.7687
http://doi.org/10.1007/s10712-019-09524-0
http://doi.org/10.1016/j.geoderma.2010.12.020
http://doi.org/10.1080/01431161.2016.1148291
http://doi.org/10.3390/rs9101078
http://doi.org/10.1002/1522-2624(200202)165:1&lt;27::AID-JPLN27&gt;3.0.CO;2-A
http://doi.org/10.1023/A:1023008322682
http://doi.org/10.1016/j.geoderma.2007.04.021
http://doi.org/10.1016/j.geoderma.2015.01.002
http://doi.org/10.1016/S0269-7491(01)00259-7
http://doi.org/10.4141/CJSS08076
http://doi.org/10.1255/jnirs.1031
http://doi.org/10.3390/molecules24132486
http://doi.org/10.3390/s17051102
http://doi.org/10.1097/00010694-196508000-00009
http://doi.org/10.1080/01431168708954765


Remote Sens. 2022, 14, 1558 18 of 19

24. Waiser, T.H.; Morgan, C.L.S.; Brown, D.J.; Hallmark, C.T. In Situ Characterization of Soil Clay Content with Visible Near-Infrared
Diffuse Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2007, 71, 389–396. [CrossRef]

25. Fontán, J.M.; Calvache, S.; López-Bellido, R.J.; López-Bellido, L. Soil carbon measurement in clods and sieved samples in a
Mediterranean Vertisol by Visible and Near-Infrared Reflectance Spectroscopy. Geoderma 2010, 156, 93–98. [CrossRef]

26. Disla, J.S.; Janik, L.J.; Rossel, R.V.; Macdonald, L.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared
Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2013, 49,
139–186. [CrossRef]

27. Hou, Y.; Lv, C.; Xiang, H.; Wang, H. Treatment effects on soil hyperspectral stability in laboratory test. Chin. J. Soil Sci. 2013, 46,
287–291. (In Chinese)

28. Wu, C.; Zheng, Y.; Yang, H.; Yang, Y.; Wu, Z. Effects of different particle sizes on the spectral prediction of soil organic matter.
Catena 2020, 196, 104933. [CrossRef]

29. Fearn, T. Standardisation and Calibration Transfer for near Infrared Instruments: A Review. J. Near Infrared Spectrosc. 2001, 9,
229–244. [CrossRef]

30. Feudale, R.N.; Woody, N.A.; Tan, H.; Myles, A.J.; Brown, S.D.; Ferré, J. Transfer of multivariate calibration models: A review.
Chemom. Intell. Lab. Syst. 2002, 64, 181–192. [CrossRef]

31. Liu, H.; Yu, W.; Zhang, X.; Ma, Q.; Zhou, H.; Jiang, Z. Study on the main influencing factors of black soil spectral characteristics.
Spectrosc. Spectr. Anal. 2009, 29, 3019–3022. [CrossRef]

32. Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra.
TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [CrossRef]
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36. Vašát, R.; Kodešová, R.; Klement, A.; Borůvka, L. Simple but efficient signal pre-processing in soil organic carbon spectroscopic
estimation. Geoderma 2017, 298, 46–53. [CrossRef]

37. Soltani, I.; Fouad, Y.; Michot, D.; Bréger, P.; Dubois, R.; Cudennec, C. A near infrared index to assess effects of soil texture and
organic carbon content on soil water content. Eur. J. Soil Sci. 2018, 70, 151–161. [CrossRef]

38. Liu, X.; Burras, C.L.; Kravchenko, Y.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.A.; Zhang, X.; Cruse, R.M.; Yuan, X.
Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [CrossRef]

39. DZ/T 0279. 27-2016: Analysis Methods for Regional Geochemical Sample-Part 27: Determination of Organic Carbon Contents by
Potassium Dichromate Volumetric Method. Available online: http://www.doc88.com/p-7724868306719.html (accessed on 17
January 2022).

40. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36,
1627–1639. [CrossRef]

41. Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys.
Res. Solid Earth 1984, 89, 6329–6340. [CrossRef]

42. Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130.
[CrossRef]

43. Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming
multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sens. Environ. 2016, 179, 54–65.
[CrossRef]

44. Vaudour, E.; Gomez, C.; Fouad, Y.; Lagacherie, P. Sentinel-2 image capacities to predict common topsoil properties of temperate
and Mediterranean agroecosystems. Remote Sens. Environ. 2019, 223, 21–33. [CrossRef]
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