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Abstract: Soil organic carbon (SOC) changes affect the land carbon cycle and are also closely related
to climate change. Visible-near infrared spectroscopy (Vis-NIRS) has proven to be an effective tool
in predicting soil properties. Spectral transformations are necessary to reduce noise and ensemble
learning methods can improve the estimation accuracy of SOC. Yet, it is still unclear which is the optimal
ensemble learning method exploiting the results of spectral transformations to accurately simulate
SOC content changes in the Three-Rivers Source Region of China. In this study, 272 soil samples were
collected and used to build the Vis-NIRS simulation models for SOC content. The ensemble learning
was conducted by the building of stack models. Sixteen combinations were produced by eight spectral
transformations (S-G, LR, MSC, CR, FD, LRFD, MSCFD and CRFD) and two machine learning models of
RF and XGBoost. Then, the prediction results of these 16 combinations were used to build the first-step
stack models (Stack1, Stack2, Stack3). The next-step stack models (Stack4, Stack5, Stack6) were then
made after the input variables were optimized based on the threshold of the feature importance of the
first-step stack models (importance > 0.05). The results in this study showed that the stack models
method obtained higher accuracy than the single model and transformations method. Among the six
stack models, Stack 6 (5 selected combinations + XGBoost) showed the best simulation performance
(RMSE = 7.3511, R2 = 0.8963, and RPD = 3.0139, RPIQ = 3.339), and obtained higher accuracy than Stack3
(16 combinations + XGBoost). Overall, our results suggested that the ensemble learning of spectral
transformations and simulation models can improve the estimation accuracy of the SOC content. This
study can provide useful suggestions for the high-precision estimation of SOC in the alpine ecosystem.

Keywords: soil organic carbon; visible-near infrared spectroscopy; characteristic band; extreme
gradient boosting; Tibetan plateau

1. Introduction

Soil organic carbon (SOC) is well known to have a significant impact on global carbon
cycling, soil quality and environmental protection [1]. Traditionally, methods for measuring
SOC content are time-consuming, requiring intensive workloads and high research costs.
At present, with a greater understanding of the relationship between the spectral reflectance
of soil and the spectral response of organic matter, hyperspectral retrieval can provide a
basis for the rapid and effective monitoring of SOC content [2]. Yet, the most effective
combination of retrieval models and spectral transformations has not been identified for
Alpine ecosystems. Here, the retrieval models of SOC content may be divided into the
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categories of linear and nonlinear models. The linear regression models include multiple
linear regression (MLR), principal component regression, and partial least squares regres-
sion (PLSR) [2–5]. Moreover, machine learning methods are widely used in SOC content
spectral retrieval and include methods such as support vector machine (SVM), artificial
neural network, random forest (RF) and boosted regression tree, etc. [6–9].

SVM has a good effect in field spectral simulation of SOC content in farmland [10].
Some scholars have used CARS (competitive adaptive reweighted sampling) in combination
with RF models and achieved a better prediction effect than that obtained using PLSR [11].
DNN (deep learning neural networks) resulted in the best modeling accuracies, followed by
RF, XGBoost (extreme gradient boosting), ANN [12], and Cubist [13]. In previous studies,
we found that the retrieval accuracy of RF and SVM is higher than that of PLSR [14]. Here,
PLSR, RF and XGBoost are used to build simulation models and compare their accuracies
in SOC content estimation.

As the noise and error produced in the spectral measurement process are particularly
complex, the spectral pre-processing method is an important prerequisite for improving
the retrieval accuracy of SOC content. Preprocessing is used to reduce the noise of the spec-
trum acquisition and extract more characteristic band information. Currently, smoothing,
multiple scattering correction (MSC), baseline correction, standard orthogonal transform,
difference transform, logarithmic reciprocal (LR) transform, wavelet transform, continuous
media removal, and wavelet packet analysis are widely used [15–17]. Previous studies
have found that MSC, baseline correction, and differential transformation can effectively
improve retrieval accuracy of SOC content [18]. Additionally, differential transformation is
very sensitive to the spectral signal-to-noise ratio, and so the first-order differential (FD)
transform is more prominent in this respect. In contrast, the second-order differential
(SD) transform is more effective in eliminating the baseline drift and background effects
of some instruments [19]. The LR transform can reduce the influence of random factors
caused by light conditions and changes in terrain and enhance the spectral differences of
visible-light areas [17]. Continuum removal (CR) can effectively highlight the absorption
and reflection characteristics of the spectrum and, in doing so, improve the correlation
between the spectral data and organic carbon. MSC is a preprocessing method used to
separate the spectral scattering signal from the chemical absorption information, which can
eliminate the spectral differences of the same batch of samples caused by the uneven soil
sample particles during the diffuse reflection process [20].

Above all, the different spectral transformation methods and estimation models
showed different advantages in previous studies. Recently, stacking in ensemble learning
based on models has been proved to improve the prediction accuracy of SOC content using
environment variables [13]. Some studies use models averaging combined soil properties
or weighted models averaging to improve the mapping soil properties [21,22]. Because the
ensemble method is considered the most promising framework to ensure the robustness of
variable subset in conditions of high dimensional dataset and low-size sample [23,24]. The
above studies merely combined multiple models to reduce the limitations of a single model.
However, the various spectral pre-processing transformation methods can be combined and
display the potential of improving the performance of SOC content estimation. Therefore,
in this study, we will explore the ensemble learning method of spectral transformation
methods and estimation models.

The Three-Rivers Source Region (TRSR), located in the hinterland of the Qinghai Tibet
Plateau, is an ecologically fragile region particularly sensitive to impacts of global climate
change. As global temperatures rise and human disturbances intensify, the degradation of
grassland and the severe desertification of land in this region has brought about temporal
and spatial changes to the SOC content [25]. The TRSR is characterized by areas of per-
mafrost and seasonal permafrost. Therefore, a warming climate may induce environmental
changes that accelerate the microbial breakdown of organic carbon, thereby releasing car-
bon dioxide. In this way, a positive feedback cycle is produced that can further accelerate
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climate change [26]. On the other hand, warming can also increase primary production,
thereby increasing soil carbon stocks [27].

Meanwhile, overgrazing might accelerate carbon decomposition rates and shorten the
turnover time by shifting soil microbial composition [28]. With the aggravation of grassland
degradation, SOC content has significantly decreased in the Tibetan alpine meadow [29].
Therefore, SOC content estimation in this alpine ecosystem is vital to the sequestration of
soil carbon, along with its feedback to climate change.

To estimate SOC content and explore the optimal ensemble learning method of spectral
transformations and simulation models, we conducted a four-year field sampling study
and obtained 272 soil samples. We then measured SOC content and soil spectral data for
these samples in the laboratory. Moreover, the laboratory spectrum of dry soil can be used
to correct the spectrum of the field in situ soil spectrum or those of hyperspectral imaging in
future studies [30]. Additionally, as different combinations of spectral transformations and
models have been shown to achieve different simulation accuracy [14], the explorations of
the optimal ensemble learning method are crucial for future SOC content monitoring using
remote sensing images.

The objectives of this study were (1) to reveal the topsoil SOC content characteristics
of alpine grassland ecosystems using the field soil samples in the TRSR; (2) to explore
and define the best ensemble learning methods of spectral transformations and estimation
models for SOC content. The results of this study may therefore provide a reference for the
estimation and monitoring of SOC content in alpine areas.

2. Materials and Methods
2.1. Study Area

The Three-Rivers Source Region (TRSR) is located in the southern part of Qinghai
Province, at N31◦39′–36◦12′, E89◦45′–102◦23′. The administrative area includes 16 counties
in Yushu, Guoluo, and Tibetan Autonomous Prefectures of Huangnan and Tanggula
Townships in Golmud City, with a total area of 302,000 km2. TRSR is part of the Tibetan
Plateau and consists of polar tundra climate (ET) and dry belt steppe climate (Bs) in
the Köppen Geiger classification system. The area exhibits a small annual temperature
difference and a large daily temperature difference. The duration of sunshine in the TRSR
is long, with intense radiation and no distinct seasonal variation. Overall, the study region
is semi-arid, with <400 mm of precipitation annually.

The TRSR is dominated by mountains with complex terrain, and its altitude ranges
between 3335–6564 m. Overall, the topography of the central and northern portions of
the region exhibits little fluctuation, with many wide and flat areas. Due to this flat
terrain, in combination with its long history of glaciation and poor drainage, a large area
of wetland has been formed. The southeast area of the study region mainly includes high
mountains and valleys, with strong geomorphic cutting and steep terrain. The vertical
zonal distribution law of soil and vegetation is determined by these mountainous landforms
and climate conditions. The vegetation types in the area include temperate grasslands,
temperate desert grasslands, alpine meadows, alpine grasslands, and alpine meadow
grasslands (Figure 1). The soil types are alpine cold desert soil, alpine meadow soil, alpine
grassland soil, mountain meadow soil, gray cinnamon soil, chestnut soil and mountain
forest soil, in which alpine meadow soil is the main soil. Additionally, swampy meadow
soil is also widely distributed. However, the soil in the TRSR has a short development time,
creating a thin soil layer with coarse soil texture and poor water holding capacity.
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Figure 1. Distribution of soil sampling sites and different vegetation types in the Three-Rivers Source Region.

The TRSR is China’s largest nature reserve and is one of the most concentrated areas
of high-altitude biodiversity globally, mainly due to its unique landforms and vegetation
types. However, under the influence of global climate change and human activities, the
area has experienced serious degradation and has become fragile [31]. This process has
ultimately influenced the terrestrial carbon cycle and soil carbon sequestration ability
of the area. Therefore, the ability to accurately estimate SOC content is crucial for the
alpine ecosystem carbon sequestration and the implementation of effective ecosystem
management strategies. In this study, the sampling sites are mainly located in the eastern
and central portions of the TRSR, considering factors such as accessibility and poor natural
conditions. The number of sampling sites and soil types of the different land-use types
are shown in Table 1.

Table 1. Numbers of samples and soil type for each vegetation type.

Vegetation Type Sample Number Elevation (m) Soil Type

Alpine meadow 101 3200–4000 Grass felt soil, Dark
felt soil,

Alpine grassland 36 3400–4200 Grass felt soil,
Chestnut soil

Alpine meadow grassland 46 3700–4400 Meadow soil
Swamp meadow 8 4500–4700 Swamp soil

Temperate grassland 59 3100–3200 Chestnut soil
Desert grassland 6 2900–3000 Chestnut soil

Farmland 13 2600–3000 Chestnut soil
Woodland 3 3390–3692 Mountain forest soil
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2.2. Sample Collection and Preparation

In this study, field surveys were conducted from late July to early August from 2017 to
2020 (Figure 1). Based on the geographical features and limited accessibility of the study
area, Google satellite imagery was used to reasonably select sampling points. At each
sampling point, a five-point mixed sampling method was used to collect soil samples, with
1 kg of soil being collected for each. The depth of each soil sampling point was 20 cm. After
collection, the samples were kept sealed in compact bags and were labeled. All sampling
points were precisely positioned using a hand-held GPS. The soil properties, land use types,
and vegetation cover conditions for each sampling point were recorded in detail. The
sampling areas were photographed by a digital camera, and the spatial distribution map
of the sampling points was drawn. In total, 272 top-soil samples (0–20 cm) were collected
over different land use types and were taken as the research object.

The collected soil samples were placed in a cool and ventilated room to air-dry. Any
sand, gravel, roots, or leaf residues were removed from the soil sample before being
ground in a ceramic grinding bowl. The samples were then sieved (0.25 mm). Finally,
the samples were divided into three parts, two for indoor chemical analysis and soil
spectrum determination, and one was sealed and stored for future reference to prevent
cross-contamination.

2.3. Determination of Soil Spectrum and SOC Content

A certain amount of oxidant (potassium dichromate sulfuric acid solution) was used
to oxidize the organic matter in the soil under heat. The remaining oxidant was titrated
with ammonium ferrous sulfate. Finally, the amount of oxidant consumed was used to
calculate the soil organic carbon content (SOC, g/kg). The formula is as follows:

SOC =
c × (V0 −V) × 0.003 × 1.10

m
× 1000 (1)

where V0 is the volume of ferrous sulfate standard solution consumed in blank test (mL); V is
the volume of ferrous sulfate standard solution consumed in test (mL); c is the concentration
of ferrous sulfate standard solution (mol/L); 0.003 is the millimolar mass of a quarter carbon
atom (g); 1.10 is the coefficient of oxidation correction; m is the mass of the dried sample
(g); and 1000 is a conversion to content per kilogram. The parallel measurement results are
expressed by arithmetic mean, and the significant three-dimensional figures are retained.

Chemical analysis results of SOC content and other indicators of selected 10 samplings
are shown in Table 2.

Table 2. Chemical analysis results of SOC content and other indicators.

Number m (g) c (mol/L) V0 (mL) V (mL) SOC (g/kg)

1 0.2037 0.20 20.60 12.1400 27.4087
2 0.1503 0.20 20.60 8.8900 51.4170
3 0.1991 0.20 20.60 12.8100 25.8211
4 0.2038 0.20 20.60 10.4000 33.0297
5 0.2006 0.20 20.60 13.1800 24.4108
6 0.1955 0.20 20.60 11.9000 29.3685
7 0.2036 0.20 20.60 11.3200 30.0801
8 0.2009 0.20 20.60 13.7000 22.6662
9 0.2018 0.20 20.60 16.1100 14.6837
10 0.2050 0.20 20.60 13.6100 22.5026

The soil spectrum reflectance was measured based on the dry soil samples in the
absence of light using the Analytical Spectral Devices (ASD) FieldSpec 4 portable spectrom-
eter. The spectral detection range was 350–2500 nm. The interior spectral measurement
conditions were as follows: A 50 W halogen lamp was selected as the light source. The
zenith angle of the light source was 45◦, the distance from the light source to the soil surface
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was 30 cm, and the field of view of the bare optical fiber probe was 25◦. Additionally, the
instrument was preheated for 30 min before use, the whiteboard was calibrated, and the
experiment was conducted after the instrument was stable. The soil sample was placed in a
dish with 100 mm diameter and 1.5 mm height. The black swan flannelette was taken as the
background, and the optical fiber probe was positioned 15 cm above the soil sample. Each
soil sample was measured in four directions, and five soil spectral curves were recorded
for each direction. The sampling interval was 1 nm with 20 samples collected. Finally, the
average value was selected as the spectral reflectance of the sample.

2.4. Pre-Processing Transformations

To reduce the influence of noise on the soil spectrum, pre-processing was conducted
in turn, namely band clipping, Savitzky–Golay smooth filtering (S-G smooth), multiple
scattering correction (MSC), logarithmic reciprocal (LR), continuum removal (CR), and
first-order derivative (FD).

Initially, the band clipping was mainly focused on the bands where the spectrometer
generates large amounts of noise (350–399 nm and 2451–2500 nm). After clipping, 2051
bands with a wavelength range of 400–2450 nm were retained.

Second, to avoid the influence of edge noise, the Savitzky–Golay filtering method was
used to smooth the spectral curve. S-G filtering is widely used in data smoothing and
denoising and can effectively remove noise and preserve the overall characteristics of the
spectral curve [32], which in turn can improve the estimation ability [33]. To highlight
the spectral band and separate the parallel background values, eight kinds of spectral
transformations were performed on the smoothed soil original spectral curve, namely the
S–G smooth, MSC, LR, CR, FD, MSC–FD, LR–FD, and CR–FD. Specifically, MSC was applied
to remove the multiplicative interferences of scatter and particle size. The basic principle
of MSC is to calculate the average spectrum of the sample to establish a linear regression
equation and correct the spectral information. CR and LR are also used for continuum
removal and are both common spectral analysis methods. Here, the soil spectrum can
reduce the influence of background information through de-enveloped processing, so as to
more effectively highlight the absorption and reflection characteristics of the spectral curve.

The first derivative (FD) and second derivative (SD) of reflectance are utilized to re-
move baseline drift and background interferences, as well as to resolve overlapped spectra,
although the noise level increases significantly in higher-order derivative calculations [34].
The application of the first and second derivatives of reflectance in soil properties estimation
depends on the quality of the raw spectral data. Previous studies employed the FD [35,36],
while others preferred the SD method [37]. Furthermore, some studies found that the FD
obtained a better performance effect than SD [38]. The S–G smooth, FD, MSC, and LR were
implemented using Unscrambler software, and CR was conducted using ENVI software.
The eight spectral transformations are displayed in Figure 2.
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Figure 2. Soil spectral curve of eight kinds of spectral transformations. (a) Savitzky–Golay smooth
filtering, (b) multivariate scattering correction, (c) logarithmic reciprocal, (d) continuum removal,
(d,e) first–order differential, and (f–h) first–order differential transformation based on (b–d), respec-
tively). The color lines represented the spectral curve of soil samples.
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2.5. Hyperspectral Retrieval Models of SOC Content

The original spectrum and reconstructed spectrum were taken as the independent
variable, while the SOC content was considered the dependent variable of the models.
According to a ratio of 2:1, the modeling samples and verification samples were selected
for the model building of SOC content.

2.5.1. Individual Models

The PLSR method has demonstrated a strong ability to solve multicollinearity prob-
lems, and as such, is widely used in the field of SOC content hyperspectral retrieval [5,39].
The PLS method combines MLR and principal component analysis (PCA). Compared with
the traditional MLR method, PLS can be used for regression modeling in cases where there
are a large number of bands and considerable autocorrelation.

SVR (support vector machine regression models) is a statistical learning method on the basis
of structural risk minimization and can deal with the problems of small samples, nonlinearity,
and high dimension and overcome the difficulties of local minimum in neural networks.

RF is a form of machine learning algorithm used to model the relationships between
target variables and potential predictors [40]. RF is widely used in nonlinear and big
data applications where it can reduce the computation required while ensuring models
accuracy [41]. The RF model considers decision trees as the basic unit and averages the
results from all trees to obtain its predicted result. Many decision trees are constructed in
RF to ensure the stability of the models, where each tree is independently constructed by a
unique bootstrap sample of the training dataset [42]. Further, only a random subset of the
covariates is evaluated at each node. For these reasons, RF with a sufficiently large number
of trees is robust against overfitting, noise, as well as non-informative and correlated
features. This modeling technique is generally preferred in soil properties mapping or SOC
content estimation studies because it can estimate the relative importance of variables, is
insensitive to overfitting and produces stable and accurate predictions [9].

XGBoost is also a tree-based ensemble method [43], combining the advantages of two
algorithms (i.e., regression trees and boosting) to improve the performance of a single
model. Boosting is a numerical optimization algorithm that minimizes the loss function by
adding a new tree to the previous regression tree model at each step [44]. In this way, the
algorithm focuses more on samples with higher uncertainty. Finally, all generated models
are combined to calculate the outcome. Therefore, the XGBoost model is useful for SOC
content retrieval or soil properties mapping studies.

2.5.2. Stacking Model

At present, meta-learning method is a highly effective method for stacking models.
There are two levels in stacking framework of meta-learning method: level 0 is the base
model, and level 1 is the prediction model [13]. In principle, the method takes the measured
value of the original data set as the dependent variable data set Y, and the output of the
base models as the input features, that is, the independent variable data set X, and inputs
them together into the regression prediction model to achieve the purpose of integrating
features of multiple base models [45]. In addition, the meta-learning method can also be
used to filter multiple base models [46].

In this paper, three machine learning models, SVR, RF and XGboost, were selected
as prediction models, respectively. And 16 preprocessor-model combinations established
by eight spectral transformation methods (SG, MSC, LR, CR, FD, MSCFD, LRFD, CRFD)
and two independent models (RF, XGBoost) were stacked to obtain six stack models. The
process of stacking models can be seen in Figure 3.
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Figure 3. Stacking model processes based on three models and eight pre-processing transformations
(SVR is support vector machine regression model, RF is the random forest regression model, XGBoost
is the extreme gradient tree regression model. Stack1~ stack3 are stacked models based on 16
preprocessor-model combinations. After modeling Stack1~Stack3, stack4~stack6 are stacked models
based on the selection of important variables. The SG is Savitzky–Golay smooth filtering, LR is the
logarithmic reciprocal, CR is the continuum removal, MSC is the multivariate scattering correction,
FD is the first-order differential, and CRFD, MSCFD and LRFD are the first-order differentials based
on CR, MSC and LR, respectively).

2.6. Modeling Evaluation

In this study, four common performance metrics were used [47], including root mean
square error (RMSE), coefficient of determination (R2), the ratio of performance to In-
terQuartile distance (RPIQ) and the residual prediction deviation (RPD). The R2 value
varies between 0 and 1 and indicates the closeness of the observed values to the fitted
regression line or the proportion of variance explained by the independent predictors.
RMSE indicates the accuracy of the model’s prediction. RPIQ compares the interquartile
range to the RMSE [48]. An RPD value < 1.0 indicates a very poor model, and in this case,
their application is not recommended. Additionally, 1.0 < RPD < 1.4 indicates poor models;
1.4 < RPD < 1.8 indicates fair models; 1.8 < RPD < 2.0 indicates good models, where quanti-
tative predictions are possible; 2.0 < RPD < 2.5 indicates very good quantitative models;
and RPD > 2.5 indicates excellent models [49]. Overall, greater R2 and RPIQ values with a
lower RMSE indicate better predictive capacity and stability of the models. The calculations
for each performance metric are shown below:

RMSEP =

√
1
n∑n

i=1(Pi −Oi)
2 (2)

R2 =

 ∑n
i=1
(
Oi − O

)(
Pi − P

)√
∑n

i=1
(
Oi − O

)2
√

∑n
i=1
(
Pi − P

)2

2

(3)

RPIQ =
Q3 −Q1
RMSEP

(4)
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RPD =
SDO

RMSEP
(5)

where Pi and Oi are the predicted and observed SOC content (g/kg) values at the ith
location, n is the number of data points, P and O denote the means for the predicted and
observed SOC content, and Q1 and Q3 are the first and third quartiles of observed SOC
content, respectively, and SDO is the standard deviation of observed SOC content.

3. Results and Analysis
3.1. Summary Statistics of SOC Content

The average SOC content of the modeling samples and verification samples were
all greater than 34 g/kg. Additionally, the coefficient of variation of the samples was
relatively close, with all values of moderate variation, indicating that the data distribution
was relatively uniform, which therefore met the basic requirements of modeling (Table 3).

Table 3. SOC content statistic of modeling sets and verification sets.

Sample Type Sample Number Average (g/kg) Standard
Deviation (g/kg) Kurtosis Skewness Coefficient of

Variation (%)

Overall samples 272 34.68 22.92 3.3 1.66 66.1
Modeling
samples 182 34.9 23.31 3.39 1.67 66.81

Verification
samples 90 34.23 22.22 3.3 1.64 64.92

3.2. Correlation Analysis of Soil Spectrum Reflectance and SOC Content

According to the correlation coefficients between SOC content and eight spectral data
(original spectrum, FD, MSC, LR, CR, CRFD, MSCFD and LRFD) (Figure 4), both positive
and negative correlation band positions between spectrum and SOC content under different
transformation forms were observed. The reflectance of the original spectrum (R) was
negatively correlated with SOC content. The correlation between them was first observed
to increase, then decrease in the wavelength range of 400–2450 nm, and finally reached the
peak value near 600 nm. On the contrary, the spectral curve after LR transformation was
positively correlated with SOC content. The correlation coefficient peak value appeared
at 576 nm, and the overall correlation was higher than the original data. The correlation
coefficient between the spectrum and SOC content after the FD treatments fluctuated
greatly between both positive and negative values. Compared with the original spectral
correlation coefficient, the correlation coefficient of the MSC and CR transformations data in
the near-infrared band was enhanced, indicating that the MSC and CR transformations can
amplify the absorption characteristics of the original spectrum in the near-infrared band.
In addition, the combined transformations of CRFD and MSCFD significantly improved
the correlation between SOC content and spectrum reflectance. Therefore, after the spectral
transformations, the absorption valleys became amplified to varying degrees, which is of
great significance to improving the accuracy of SOC content estimation.
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Figure 4. The correlation coefficient between SOC content and eight spectral transformations data
(SOC is the soil organic carbon, R is the original spectrum merely using Savitzky–Golay smooth
filtering, FD is the first-order differential, LR is the logarithmic reciprocal, CR is the continuum
removal, MSC is the multivariate scattering correction, and CRFD, MSCFD, and LRFD are the FD
based on CR, MSC and LR, respectively).

Moreover, the correlation coefficient reached 0.84 at 800–900 nm (Figure 3), which is
related to electronic transitions in iron oxides [50,51]. Peaks near 1400 nm are associated
with water hydroxyl (–OH) groups adsorbed to soil organic matter. Band peak of 2200–2300
nm was observed, and the correlation coefficient reached 0.83, which correspond to spectral
absorption features influenced by clay, minerals, and organic matter [52,53].

3.3. Comparison of SOC Content Modeling Results Based on Single Model

Following a 2:1 ratio, the total sample was divided into the modeling and verification
sets. The estimation models (PLSR, RF, and XGBoost) of SOC content were built using the
SOC content and the full bands after applying eight spectral transformations (R, LR, CR,
MSC, FD, LRFD, CRFD, and MSCFD).

The simulation accuracy results shown in Table 4 are based on the single spectral
transformations method. Of the three models compared, the XGBoost model resulted in
the best modeling accuracies, followed by RF and PLSR (Table 4). Out of the eight spectral
transformations, CR, FD, CRFD, LRFD and MSCFD exhibited better modeling accuracies
than the other transformation methods. Of the 24 transformation-model combinations
compared, the verification set models accuracy of MSCFD-XGBoost combination was
identified as the best (R2 = 0.8966, RMSE = 7.7869, RPD = 2.8452, RPIQ = 3.1521), followed
by FD-XGBoost (R2 = 0.8902, RMSE = 7.805, RPD = 2.8386, RPIQ = 3.1448), LRFD- XGBoost,
LRFD-RF CRFD-RF.
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Table 4. SOC content simulation accuracy comparison based on different spectral transformations
and models.

Transformations Models
Modeling Sets Verification Sets

RMSE R2 RMSE R2 RPD RPIQ

R
PLSR 11.1135 0.771 9.9241 0.8089 2.2325 2.4733

RF 5.796 0.9496 13.3588 0.6413 1.6585 1.8374
XGBoost 1.5866 0.9956 16.1217 0.5456 1.3743 1.5225

LR
PLSR 11.1135 0.771 9.9241 0.8089 2.2325 2.4733

RF 5.796 0.9496 13.3588 0.6413 1.6585 1.8374
XGBoost 1.5866 0.9956 16.1217 0.5456 1.3743 1.5225

CR
PLSR 8.8811 0.8538 9.2152 0.8468 2.4042 2.6636

RF 3.8146 0.9789 8.0446 0.8728 2.7541 3.0511
XGBoost 0.4813 0.9996 8.2032 0.872 2.7008 2.9921

MSC
PLSR 12.1779 0.7251 10.8348 0.7693 2.0448 2.2654

RF 4.5176 0.9714 9.9916 0.7994 2.2174 2.4566
XGBoost 0.7942 0.9989 10.1022 0.8055 2.1931 2.4297

FD
PLSR 10.8081 0.7835 9.5417 0.8208 2.322 2.5724

RF 3.5427 0.9824 7.8371 0.8755 2.827 3.1319
XGBoost 1.8435 0.9939 7.805 0.8902 2.8386 3.1448

CRFD
PLSR 7.1537 0.9051 8.4846 0.8699 2.6113 2.8929

RF 4.0651 0.974 7.9954 0.8797 2.771 3.0699
XGBoost 0.2504 0.9999 8.1545 0.9011 2.717 3.01

MSCFD
PLSR 7.1537 0.9051 8.4846 0.8699 2.6113 2.8929

RF 3.5235 0.9801 9.7311 0.8281 2.2768 2.5224
XGBoost 0.016 0.9999 7.7869 0.8966 2.8452 3.1521

LRFD
PLSR 9.1212 0.8458 9.3074 0.8427 2.3804 2.6372

RF 3.7104 0.9791 7.8726 0.8817 2.8143 3.1178
XGBoost 0.5386 0.9995 8.0785 0.8976 2.7425 3.0383

Notes: R is the original spectrum merely using S-G smooth, LR is the logarithmic reciprocal, CR is the continuum
removal, MSC is multivariate scattering correction, FD is the first-order differential, and CRFD, MSCFD and LRFD
are the first-order differentials based on CR, MSC and LR, respectively. PLSR is partial least squares regression,
RF is the random forest, and XGBoost is extreme gradient boosting.

The accuracy of the SOC content simulation in this study is similar to those of previous
studies in the TRSR. Here, we report the R2 ranging from 0.55 to 0.90 for verification sets in
this study. Similarly, other studies report the r-value ranged from 0.06 to 0.99 [54], and R2

ranged from 0.5 to 0.93 [55]. Additionally, the RMSE here is lower than the results of [54].
Therefore, the simulation results in this study are considered reliable.

3.4. Models Stacking Results and Feature Importance Analysis

In this study, stack models were designed to extract spectral features of SOC content by
integrating different spectral transformation methods. After eight spectral transformation
method data were learned by RF and XGBoost, these two machine learning models, the
predicted results of 16 combinations were used to build the first three stack models (Stack1,
Stack2, Stack3). According to Figure 5, in different stack models, the importance of various
combinations is not exactly the same. However, FD-XG, CR-XG, and CRFD-XG are of
high importance in all models, and FD-RF has a significant contribution in Stack3 models.
Furthermore, the input variables of the models will be optimized based on the threshold of
feature importance of the first-step three stack models (importance > 0.05), so as to establish
the next step three stack models (Stack4, Stack5, Stack6).
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Figure 5. Feature importance of Stack1, Stack2, and Stack3 (Stacking models with SVR, RF, XG
(i.e., XGBoost) and 16 pretreatment-models, respectively).

Among the six stack models, Stack 6 showed the best simulation performance
(RMSE = 7.3511, R2 = 0.8963, RPD = 3.0139, RPIQ = 3.339) (Table 5). Besides, compared
to the results of Figure 6, the ensemble learning methods obtained higher accuracy than
the single model and transformations. Especially after input variables were selected,
the accuracy of models improved; for example, Stack 5 and Stack 6 both achieved a bet-
ter modeling accuracy than that of Stack 2 and Stack 3. However, Stack 4 had lower
accuracy than Stack 1.
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Table 5. Accuracy comparison of six stack models.

Models
Modeling Sets Verification Sets

RMSE R2 RMSE R2 RPD RPIQ

Stack1 (16 combinations + SVR) 0.3757 0.9998 7.4795 0.8968 2.9622 3.2817
Stack2 (16 combinations + RF) 0.5313 0.9996 7.5067 0.8939 2.9514 3.2698

Stack3 (16 combinations + XGBoost) 0.0743 1.0000 7.7530 0.8807 2.8577 3.1659
Stack4 (7 selected combinations + SVR) 1.7979 0.9940 7.9486 0.8893 2.7873 3.0880
Stack5 (8 selected combinations + RF) 0.3987 0.9997 7.4721 0.8953 2.9651 3.2849

Stack6 (5 selected combinations + XGBoost) 0.9194 0.9987 7.3511 0.8962 3.0139 3.3390
Notes: Stack4 represented FD-XGBoost, LR-XGBoost, CR-XGBoost, MSC-XGBoost, CRFD-XGBoost, MSCFD-
XGBoost, LRFD-XGBoost combinations + SVR; Stack5 represented FD-XGBoost, FD-RF, LR-XGBoost, CR-XGBoost,
MSC-XGBoost, CRFD-XGBoost, MSCFD-XGBoost, LRFD-XGBoost combinations + RF; Stack6 represented FD-RF,
MSC-RF, FD-XGBoost, CR-XGBoost, CRFD-XGBoost combinations + XGBoost. These are among 16 combinations
represented RF and XGBoost machine learning models, combined with eight spectral transformations (S-G, LR,
CR, MSC, FD, LRFD, CRFD, and MSCFD).

Figure 6. Scatter diagrams of six representative prediction models. (a) MSCFD–XG, (b) Stack 1,
(c) Stack 2, (d) Stack 3, (e) Stack 5 and (f) Stack 6.

4. Discussion
4.1. Combine of Pre-Processing Transformations and Models in SOC Simulation

In some past SOC simulation studies in the alpine ecosystem area (Table 6), S-G, FD,
and LR are the most commonly used pre-processing methods to improve the prediction
accuracy of soil organic carbon, while RF, SVM, and PLSR were popular model algorithms.
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Table 6. Comparison of SOC simulation accuracy in an alpine ecosystem.

Reference Depth Pre-Processing
Transformations Models R2 RPIQ RPD

Yang et al., 2015 0–20 FD, SD, LR, BD PLS, BP neural
network 0.01~0.96

Chen et al., 2019 0–20 SG, log(1/R) PLS, MLP 0.80~0.92 2.3~3.68
Xiao et al., 2020 0–20 SG, FD PLSR 0.62~0.79 1.6~2.2

Ogrič, M et al., 2019 0–20 FD, SD PLSR 0.78~0.95 0.47~5.31 0.41~4.74

Wei, et al., 2020 0–100
MSC, MC, MA, SG,
SG-FD, SG-SD, FD,

SD, CR, LR

RR, KRR, BRR,
AdaBoost 0.58~0.91

This study, 2022 0–20
SG, MSC, LR, CR, FD,

MSCFD, LRFD,
CRFD

PLS, RF, SVR,
XGBoost

0.51–0.90
(single model);

0.88~0.90
(stack models)

1.84~3.15;
3.17~3.34

1.37~2.85;
2.86~3.01

However, the difference in simulation accuracy between different spectral transforma-
tion methods and model algorithms is quite large [56]. For example, Chen et al. (2019) used
MLP and PLS models combined with S-G smooth to predict SOC content based on 547
soil samples, and the R2 is 0.92 and 0.8, respectively [57]. But in our study, the simulation
accuracy of SOC content based on S-G smoothing is much lower than that of FD, LR, CR,
MSCFD, LRFD, and CRFD spectral transformations (Table 4). Meanwhile, the optimal
spectral pre-processing and simulation models are different for different soil types; for
example, the study of Yang et al. (2015) [54] in Three-Rivers Source and Xiao et al. 2020 [55]
in the northeast of Tibet. For different research regions, although these two regions both
belong to the continental subarctic climate, the simulation accuracies are also different
(Ogrič et al. 2019) [58], R2 is 0.78 and 0.95, respectively.

In this paper, through the meta-learning of stacking method, six integrated models in-
tegrating various pretreatment methods and regression models were built to fully combine
the advantages of various methods to mine the spectral features of data. However, due to
the limited number of samples collected, the established models have some over-fitting
phenomenon of training sets, and the RMSE error of validation sets is in the concentration of
7.5–8.0 g/kg in general. Therefore, in future studies, on the one hand, more sampling sites
will be collected, especially in the western and northern regions of TRSR; then, different
eco-environment regions will be divided for the whole TRSR.

On the other hand, different models will be built based on different eco-environment
regions, soil types, vegetation types, or SOC content gradients. Last, in order to extract
the characteristic information of different soil samples, it is worthwhile to integrate more
pretreatment methods, such as orthogonal signal correction (OSC) [59].

4.2. Spatial Differentiation of SOC Content

The results of this study indicated that the spatial distribution of SOC content in the
TRSR varied due to several factors. In the vertical direction, SOC content increased with the
increase of altitude. This may be explained by the observation that areas of high altitude with
low temperature are associated with reduced SOC decomposition. Additionally, periodic
grazing may also be alleviated at higher altitudes, which may lead to an increase in SOC
input. In addition, SOC content decreased with increasing depth. This decrease likely occurs
because the humus in the surface soil is abundant, resulting in stronger biological activity
and richer SOC content. With the deepening of the soil layer, the distribution of animal and
plant material is reduced, and the SOC content is less. Further, in the deep soil, the increase
of gravels is not conducive to the long-term storage of organic matter. Via these proposed
mechanisms, climate, terrain conditions and human interference all affected vegetation growth
and respiration, which further affect soil carbon input and SOC content [60,61]

SOC content of different vegetation types varied greatly (Table 7). The content of SOC
in swamp meadow was the highest (98.91 g/kg), while SOC content in desert grassland was
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the lowest (5.07 g/kg). Correspondingly, the above-ground biomass of swamp meadow
was also significantly higher than that of desert grassland in this study (390.93 g/m2 vs.
56.42 g/m2). Because of this, the above-ground biomass is one of the main reasons affected
SOC content [62]. Except for swamp meadow, woodland and farmland, the variation
coefficient of SOC content displayed moderate variation, indicating that the SOC content
spatial distribution exhibits obvious spatial heterogeneity.

Table 7. SOC content statistics of each vegetation type.

Sample Type Sample Size Average (g/kg) Standard
Deviation (g/kg) Kurtosis Skewness Coefficient of

Variation (%)

Overall 272 34.6800 22.9200 3.2000 1.6400 66.1000
Alpine meadow 101 43.8963 20.6124 0.3268 0.6335 46.9570

Alpine
grassland 36 21.9632 9.6188 1.1223 1.1721 43.7952

Alpine meadow
grassland 46 31.8256 15.3990 1.5478 1.2023 48.3856

Swamp
meadow 8 98.9051 28.7973 −1.8473 −0.1171 29.1161

Temperate
grassland 59 23.1995 11.7917 31.8100 5.0835 50.8274

Desert
grassland 6 5.0734 2.6793 −1.6993 0.4736 52.8112

Farmland 13 18.1501 4.0150 −0.9805 −0.6302 22.1209
Woodland 3 45.5200 11.6000 - 1.7200 25.4800

4.3. Soil Carbon Change Analysis across Tibetan Plateau

Previous studies have indicated that the mean topsoil SOC turnover duration is 338 years
across Tibetan Plateau (TP) grassland sites [63], and have also highlighted the fact that there is a
significant spatial correlation between the turnover time and MAP (mean annual precipitation).
Specifically, increased precipitation is strongly associated with a shorter SOC turnover time
in TP grassland sites. Negative correlations between SOC turnover time and temperature in
the TP are linked to an increase in microbial decomposition with temperature [64]. Moreover,
regional-scale studies observed that 57.4% of spatial variation of the SOC turnover time was
explained by MAP and altitude in TP grassland.

As a key factor driving ecosystem dynamics, temperatures over the past decades have
been increasing at a faster rate in the TP than in the Northern hemisphere on average.
Zhai et al. (2005) found that precipitation increased significantly in the southeastern TP
from 1950 to 2008 [65]. At the same time, the social economy of the TP has developed
continuously since the 1950s [66]. For example, since 2001, the total fence-closed area and
forbidden grazing area both increased drastically [67], while at the same time, the livestock
number increased from 5,700,000 to 6,670,000 based on the Qinghai province statistical
yearbook (http://tjj.qinghai.gov.cn/2021.12.10, accessed on 12 October 2021).

These trends are predicted to lead to more serious overgrazing in the TP [68], and
overgrazing leads to the decrease of grass biomass, as found in our previous studies in
Xinghai County [14]. Xinghai County is also the sampling point distribution area in this
study, where the warm-wet climate conditions are conducive to improving plant growth,
but the increase of population and livestock leads to a decrease in grass biomass. On the
other hand, overgrazing may therefore accelerate carbon decomposition rates and shorten
the turnover time of SOC by shifting soil microbial composition from fungi-dominated to
bacterial-dominated communities [28]. In this way, the biomass C storage and soil C stock
decrease with increasing grazing intensity [29].

Above all, a warming climate can accelerate the microbial breakdown of organic
carbon and lead to the increased release of carbon dioxide, thereby causing a feedback
cycle that can accelerate climate warming [26]. On the other hand, a warming climate
may improve the net primary productivity and increase soil carbon sequestration in some

http://tjj.qinghai.gov.cn/2021.12.10
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areas [27]. The balance of these fluxes determines the nature of the Alpine ecosystem
feedback to warming. Therefore, SOC content monitoring is vital for the estimation of the
soil carbon sink along with its feedback on climate change.

5. Conclusions

Due to climate warming and intensified human intervention, SOC decomposition accel-
erated in the alpine ecosystem. Therefore, the high-accuracy simulation of SOC content is
vital for the carbon sink estimation and its response to climate change. In this study, a total
of 272 samples were collected in the Three-Rivers Source Regions. The ensemble learning
method by the stack models was conducted to improve the estimation accuracy of SOC
content. Stack models were designed to extract spectral features of SOC by ensemble different
spectral transformation methods. After data from eight spectral transformation methods were
learned by RF and XGBoost, and the predicted results of 16 combinations were used to build
the first-step stack models (Stack1, Stack2, Stack3). Then, the input variables of the model
will be optimized based on the threshold of feature importance of the first-step three stack
models (importance > 0.05)so as to establish the next step three stack models (Stack4, Stack5,
Stack6). The SOC content estimation was also conducted using the single model and eight
spectral transformation data. The results in this study showed that the ensemble learning
methods obtained higher accuracy than the single model and transformations. Especially
after selecting the input variables, the accuracy of the stack models significantly improved
compared to the 16 combination variables. Among the six stack models, Stack 6 (FD-RF,
MSC-RF, FD-XG, CR-XG, CRFD-XG 5 combinations + XGBoost) showed the best simulation
performance (RMSE = 7.3511, R2 = 0.8963, RPD = 3.0139, RPIQ = 3.339), and obtained higher
accuracy than Stack3(16 combinations + XGBoost) performance (RMSE = 7.7530, R2 = 0.8807,
RPD = 2.8577, RPIQ = 3.1659).Overall, our results suggest the ensemble learning method of
spectral transformations and simulation models could be used to estimate the SOC content.
This study can provide a useful reference for high-precision estimation and monitoring of
SOC content in alpine ecosystems in the future.
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