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Abstract: As an essential part of point cloud processing, autonomous classification is conventionally
used in various multifaceted scenes and non-regular point distributions. State-of-the-art point
cloud classification methods mostly process raw point clouds, using a single point as the basic unit
and calculating point cloud features by searching local neighbors via the k-neighborhood method.
Such methods tend to be computationally inefficient and have difficulty obtaining accurate feature
descriptions due to inappropriate neighborhood selection. In this paper, we propose a robust and
effective point cloud classification approach that integrates point cloud supervoxels and their locally
convex connected patches into a random forest classifier, which effectively improves the point cloud
feature calculation accuracy and reduces the computational cost. Considering the different types of
point cloud feature descriptions, we divide features into three categories (point-based, eigen-based,
and grid-based) and accordingly design three distinct feature calculation strategies to improve feature
reliability. Two International Society of Photogrammetry and Remote Sensing benchmark tests show
that the proposed method achieves state-of-the-art performance, with average F1-scores of 89.16 and
83.58, respectively. The successful classification of point clouds with great variation in elevation also
demonstrates the reliability of the proposed method in challenging scenes.

Keywords: point cloud classification; supervoxel; random forest; feature fusion; segmentation

1. Introduction

With the development of photogrammetry and light detection and ranging (LiDAR)
technologies, urban three-dimensional (3D) point clouds can be easily obtained. Three-
dimensional point cloud data are used in many applications, such as power line inspec-
tions [1], urban 3D modeling [2,3], and unmanned vehicles [4]. However, the most basic
requirement for these applications is the semantic classification of 3D point cloud data,
which has been a research focus among photogrammetry and remote sensing communities.

Early classification efforts mainly focused on extracting low-level geometric primitives,
such as point features, line features, and surface features, which were used for surface
reconstruction or point cloud alignment. In recent years, researchers have developed
methods for extracting high-level semantic features for structure model reconstruction
from point cloud data through machine learning-and deep learning-based methods [5–7].
The core challenges of point cloud data classification are extracting discriminative features
from neighborhoods and constructing point cloud classifiers [8,9]. Accurate classification
depends on a combination of robust point cloud features and proper classifiers [8,10].
Recent works have applied deep learning networks to directly learn per-point features
from raw point clouds [11,12]. Similar to traditional machine learning, these methods
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focus on the extraction of higher-order features from point cloud data by building a new
convolutional neural network. Although remarkable performance has been achieved using
these methods, large training sample sets are required to pre-train the classification models.
These semantic tags require manual labeling, which is time-consuming and labor-intensive.
Moreover, the training models obtained by such methods are difficult to generalize to other
scenarios [13].

To solve the model generalization and incomplete label data problems, many re-
searchers prefer traditional machine learning methods, which require only a small sample
dataset to achieve fast and accurate semantic point cloud data classification [14–16]. How-
ever, original point cloud features are often highly unstable due to the influence of point
cloud data accuracy and noise, especially data acquired by tilt photogrammetry. Thus,
more researchers are exploiting high-order features and their contextual information for
scene classification. As dimensional objects expanding upon the concept of the “super-
pixel” [17], “supervoxels” [18] are generated by partitioning 3D space as point clusters.
Supervoxels have been increasingly applied to describe adjoining points related to the same
objects [16,19]. Transferring the original point cloud to the “supervoxel cloud” propagates
simple point-based classification to an object-based level. Some point cloud segmentation
methods, such as locally convex connected patches (LCCP), recognize points through
supervoxel-adjacent relationships. In addition to features, classifiers that can effectively
deal with massive data must be considered. Machine learning methods such as random
forest (RF) that are capable of handling complex data are gaining attention for this pur-
pose [20,21].

Here, we propose a robust and effective point cloud classification approach that
integrates point cloud supervoxels and their LCCP relationships into an RF classifier. The
proposed method involves three strategies to effectively improve classification accuracy.
(1) Features are divided into three categories based on their description types (point-based,
eigen-based, and grid-based), and three unique feature calculation strategies are designed to
improve feature reliability. (2) A centroid point is used to represent supervoxel geometries,
and every point that belongs to the same cluster shares all properties. (3) Supervoxel local
neighborhoods are segmented by LCCP to avoid the inclusion of object borders.

The rest of this paper is organized into four sections. In Section 2, we review and
compare similar methods for solving classification issues in two categories. Section 3
presents the framework of the proposed supervoxel-based RF model, providing the feature
descriptions and RF model process and algorithm. The statistical and visual results of
the data training and validation are shown in Section 4, and our research conclusion and
remarks are given in Section 5.

2. Related Works

Previous classification approaches can be categorized as knowledge-driven and model-
driven methods predicated on the classifier type. Reviews of the logical bases for these
methods are presented below.

2.1. Knowledge-Driven Methods

Knowledge-driven methods involve the detection of structural features consisting of
points; human expert knowledge of the terrestrial surface is then used to extract various
objects from the original point cloud. In some cases, correction systems are applied to fix
obvious faults [16]. Typically, these approaches focus on two crucial points: what features
to extract and how to build a reliable human-knowledge-based system for classification.
Generally, some human-eye optical features, such as height, slope, and color, can be used
in real cases. Huang et al. [22] integrated multispectral imagery and ALS data to obtain the
ground truth red–green–blue (RGB) color and surface elevation values in each pixel and
built a classification system based on color information and urban elevation knowledge
for executing segmentation of different objects. Germaine and Hung [23] constructed two
systems based on surface height and surface slope, respectively. Polygonal features can also
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be used in knowledge-based approaches. For instance, Zheng et al. [24] used the Fourier
fitting method [25] to classify the pointcloud, in which the geometrical eigen features
and basic features were integrated in their classification algorithm. Including spectral
information assures reliable results, and combining various features ensures the system
has high performance. Additionally, simple rules derived from gained features facilitate
increased accuracy in the postprocessing stage. By regularizing objects placed at different
heights and with distinctive surface slopes, a correction system can fix local classification
faults in point clouds [22,26].

Knowledge-driven methods are well-acknowledged for their succinct and distinct pro-
cesses based on the human recognition of ground objects [26]. However, these approaches
rely on prior information, and precise airborne imagery is essential for acquiring reliable
outputs. Moreover, matching the LiDAR dataset and multispectral image coordinates is
time-consuming, which restricts knowledge-based processes to a small area range and can
create spectral error accumulation. Furthermore, specific knowledge cannot generalize
to diverse situations, such as vehicles and clusters on a small scale, which may generate
errors in the final output. Thus, complex urban scenes may be challenging to classify using
knowledge-driven methods.

2.2. Model-Driven Methods

Model-driven methods construct classification models from features extracted from
or calculated based on point clouds, before segregating clouds into a training dataset and
validation dataset. The training set fits the model and modifies the original parameters, and
the validation set provides the current classification performance of the model. Appropriate
model structures are crucial for such methods. The primary differences between knowledge-
and model-driven methods are the classifier types and structures.

Many approaches use convolutional neural networks [27] as the basic model struc-
ture [28–31]. The network structure is designed according to the actual composition of
the point cloud dataset, and then the points are separated into clusters used for input.
Through many rounds of forward and backward propagation, a relatively reliable classifi-
cation model can be built. Varied features are included to increase the input complexity
and optimize model performance. Wang et al. [31] developed a dynamic graph network
structure that could simultaneously finish classification and segmentation to identify shape
properties and include neighborhood features. Hong et al. [28] built upon this method by in-
cluding a modification module to balance the performance and cost and using an optimized
skip connection network for efficient training. Classic models, such as RF, conditional ran-
dom fields [14] with integrated RF, and support vector machines [32], have also been used
for the labeling process [21,33,34]. The supervoxel-based method representing object-based
routes has been incorporated into simple classifiers [35], and the supervoxel-adjacency
relationship can also be considered as a feature of the local neighborhood [36].

Most existing model-driven methods based on supervoxel extraction are prone to
include real object boundaries in the local neighborhood of voxels, which decreases the
homogeneity of supervoxel adjacency and polygonal feature accuracy. Combining a precise
object segmentation utility with previous model-driven methods will effectively solve this
problem. Object edges can be detected by particular network structures or LCCP [37].
Feng et al. [38] developed a local attention-edge convolutional network that identified
objects by summarizing the features of all neighbors as a weight value learned by the
network. The LCCP examined the connection between two adjacent supervoxels and
determined whether they relate to one object by calculating the included angle of two
normal vectors. The former method focused on whole object segmentation, whereas the
latter recognized as many connected edges as possible. To better exploit supervoxel features
and their contextual relationships for point cloud classification, we propose a robust and
effective classification approach that integrates point cloud supervoxels and their LCCP
relations into an RF classifier to improve the accuracy of feature calculation and reduce
computational costs.
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3. Methodology
3.1. Overview of the Approach

The approach starts with a voxel-grid-based downsampling algorithm [39] to prevent
the point cloud from becoming over-dense without impacting the original structure. Next,
a noise-rejection statistical-outlier-removal filter is used to remove dynamic objects and
erroneous points from the aerial laser point cloud. The threshold is calculated from the
average distance between a single point and its k-neighbors referring to a certain range of
standard deviation.

The technical route for our approach after data preprocessing is shown in Figure 1.
The features are divided into three categories, point-based, eigen-based, and grid-based.
First, the original 3D point cloud is transformed into a set of supervoxels by the supervoxel
calculation method, in which points located in the same supervoxel generally have similar
feature descriptions. The original point cloud is also divided using a regular grid to facilitate
the extraction of grid-based elevation features in the later stage. Instead of semantic
labeling of the raw points, supervoxels are used as the basic unit for semantic classification,
and the centroids of the supervoxels are generated from the supervoxel structure. Three
kinds of features are calculated: (1) The eigen-based features are first calculated using a
principal component analysis algorithm, and the corresponding geometric shape features
are generated by deformation and combination with those eigenvalues. Specifically, the
adjacency relationship built by voxel cloud connectivity segmentation (VCCS) is used to
determine the supervoxel neighborhood ranges. (2) The point-based features, including
the local density, point feature histogram, point’s normal vectors, elevation values, and
RGB color properties, are obtained via neighborhood calculation or the point cloud’s raw
attributes. (3) We introduce a grid-based elevation feature to decrease the influence of
uneven topography during point cloud classification. Based on the regularized grid of the
point cloud data, the relative elevation of the horizontal location is used as the elevation
feature of each supervoxel centroid. Finally, all three feature types are used to train the
supervoxel-based RF model, which is used for point cloud classification.

Figure 1. Supervoxel-based random forests framework for point cloud classification. The equation
of the random forest model located at the bottom-left refers to the least squares method applied in
the model to predict unlabeled points, in which Y represents the label, X represents an individual
centroid point, and Θ represents the coefficient matrix.
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3.2. Two-Level Graphical Model Generation for Feature Extraction

Supervoxels are defined as groups of points that contain similar geometric features or
attributes, such as location, color, and normal direction. Additionally, adjacency relation-
ships embedded in supervoxels can provide more effective information for neighborhood
searching, improving the robustness and accuracy of feature calculation. For this classifica-
tion method, we use supervoxels, rather than single points, as the basic unit to construct
the RF model, and the domain information is constrained via LCCP segmentation. There-
fore, a two-level graphical model using supervoxel calculation and LCCP optimization
is generated from the raw point cloud. Figure 2 illustrates the two-level graphical model
generation process.

Figure 2. Illustration of two-level graphical model generation. (a) The fundamental process of
supervoxel-based object segmentation. (b) The octree structure used for supervoxel clustering.
(c) The locally convex connected patches (LCCP) segmentation scheme. Colored arrows show the
corresponding normal vectors of supervoxels.

3.2.1. First-Level Graphical Model Generation by the Supervoxel and VCCS Algorithm

First, we generate the supervoxel model in two steps, namely, randomly setting down
seeds within the point cloud and clustering by calculating the feature distances among
neighboring points. The supervoxel clustering algorithm estimates the point homogeneity
via color, space, and normal dimensions as in Equation (1).

d = ispace ∗ dspace + inormal ∗ dnormal

dspace =

√
∆x2 + ∆y2 + ∆z2

rvoxel

dnormal =
v1 ∗ v2

| v1 | ∗ | v2 |

(1)

where d represents the summarized estimation of homogeneity across all dimensions, dspace
represents the Euclidean distances between the seed points and surrounding points, and
dnormal is the normal of the fitted plane by the least squares fitting method based on the
neighbor points. In this approach, the weights for distance ispace and normal inormal during
supervoxel clustering are set to 0.4 and 0.6, in which the higher the weight, the greater the
contribution. rvoxel is the size of each supervoxel, and v1 and v2 are the normal vectors
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of pairwise adjacent supervoxels. The entire point cloud is clustered into supervoxels
using Voxel Cloud Connectivity Segmentation (VCCS) as proposed by [18]. Figure 2b
shows the schemes for supervoxel generation in which the octree structure is used to define
branches and separate areas. Based on the supervoxel clustering results, the centroids
of each supervoxel are calculated and then used for RF point cloud classification. All
points within their respective supervoxel have similar features, and the centroid points
are ordered in a mesh-like shape to simplify the complex computation of plane shape
features. Specifically, an adjacency map containing the adjacent connections relations
among supervoxels is simultaneously generated, which presents coterminous connection
information that can greatly reduce the cost of neighborhood searching and improve the
robustness and accuracy during neighbor calculation [40,41].

3.2.2. Second-Level Graphical Model Generation via LCCP Calculation

In order to determine the neighborhood relationship more accurately, we realize the
extraction of a second-level graphical model by applying the Locally Connected Convex
Patches (LCCP) algorithm on the first-level supervoxel model. In this algorithm, the
connection relations implicit in the supervoxels are used for the determination of the
neighborhood information, and these connection relations are defined as edges. The edges
between adjacent supervoxels are given concave and convex type information based on
a surface convexity detection. In order to ensure the aggregation of neighboring super
voxels with similar characteristics, we calculate the “robust neighbors” of each supervoxel
by judging the concave–convex relationship of edges. “Robust neighbors” means that the
domain information can more reasonably represent the geometric features of the current
location. Figure 2 shows the convex–concave estimation method among the supervoxels.
The method of determining the concave–convex relationship is shown in Equation (2).
When two super voxels have a concave domain relationship, they are considered to belong
to two different objects. Therefore, after LCCP-based calculations, the adjacency relations
of super voxels are given concave and convex properties, which can assist in obtaining
more robust domain information quickly and accurately during feature calculations.

d̂ =
−→x1 −−→x2

‖ −→x1 −−→x2 ‖
∆α = −→n1 · d̂−−→n2 · d̂

(2)

where −→x1 and −→x2 indicate the centroids of these two observed two supervoxels, and −→n1 and
−→n2 represent their normal vectors. The relationship is considered a convex connection when
∆α > 0, which indicates the angle between the normal vector of the current supervoxel and
the linear vector defined by −→x1 −−→x2 is small. Alternatively, the relationship is considered a
concave connection when ∆α < 0.

3.3. Hybrid Feature Description
3.3.1. Point-Based Feature Description

Considering that some features are extracted from the original point cloud with better
robustness, we present five types of point cloud feature description and extraction methods.
The five main types contain “Local density”, “Point feature histogram (PFH)”, “Direction”,
“Relative elevation”, and “RGB color”, as follows.

(1) Local density of the point cloud: the density feature is calculated as the average
distance from one point to the nearest k-neighbors. For each centroid in the super
voxel, fast retrieval of domain points is achieved by the construction of a KDTREE
and the fast library for approximate nearest neighbors (FLANN) algorithm [42]. Then,
the local density feature of the point is obtained by calculating the average of the
Euclidean distance between two pairs of neighboring points.

(2) Point feature histogram (PFH): The goal of the PFH formulation is to encode a point’s
k-neighborhood geometrical properties by generalizing the mean curvature around
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the point using a multidimensional histogram of values [43,44]. A Point Feature
Histogram representation is based on the relationships between the points in the
k-neighborhood and their estimated surface normals. In this work, the PFH feature of
each centroid point is calculated by KDTREE searching from the original point cloud.

(3) Direction: The direction feature indicates the angle between the normal of the location
and the horizontal plane, which is calculated as follows (Equation (3)).

c =
n1 · n2

| n1 | · | n2 |
=

z1√
x1

2 + y1
2 + z1

2 (3)

where c refers to the cosine value, n1 represents the normal vector of the supervoxel,
and n2 is the normal vector of the horizontal plane (defined as (0,0,1)), respectively. In
this paper, to facilitate feature normalization, the cosine value is used to represent the
directional features of the supervoxels.

(4) Relative elevation: The relative elevation feature is the distance from the center
point of the supervoxel to the ground in the extended z-direction. Considering the
influence of ground undulation on elevation features, this paper proposes a grid-based
optimization strategy for elevation feature extraction (see Section 3.3.3).

(5) RGB color: RGB color information can achieve effective judgment of feature types,
and this paper uses color features as a basic feature of supervoxels. Considering
that this paper uses supervoxels as the basic unit for feature classification experi-
ments, their color features are determined by the average value of points inside the
supervoxels.

3.3.2. Eigen-Based Feature Description

Eigen values illustrate the local shape characteristics of the point neighborhood, which
helps distinguish objects, such as ground points which have small values in one direction
and vegetation points which have similar values. The traditional method of computing
Eigen-based features is implemented by K-neighborhood search of point clouds. In or-
der to obtain more robust neighborhood information, this paper implements accurate
neighborhood estimation based on the LCCP algorithm, which can accurately estimate the
boundaries of different types of objects. Then these neighborhood supervoxels satisfying
the LCCP conditions are used for Eigen-based feature calculation. Figure 3 shows the
flow of the super voxel neighborhood calculation method in which the concave–convex
relationship between supervoxels is derived from the second-level graphic model.

Figure 3. Locally convex connected patches (LCCP) neighborhood optimization. The neighborhood
ranges used to calculate eigenvalues are shown at the bottom.
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The three eigenvalues will be calculated by feature decomposition, and sorted in
descending order (λ1 ≥ λ2 ≥ λ3 ≥ 0). Based on the mathematical meaning of eigenvalues,
different combinations of eigenvalues demonstrate particular shape characteristics [10].
In this work, five types of shape features are used for the classification of supervoxels,
including “Curvature”, “Linearity”, “Planarity”, “Scattering”, and “Anisotropy”. The
specific calculation formulas are shown in Table 1.

(1) Curvature: Describes the extent of the curve for a point group.
(2) Linearity: Describes the extent of the line-like shape for a point group.
(3) Planarity: Describes the extent of the plane-like shape for a point group.
(4) Scattering: Describes the extent of the sphere-like shape for a point group.
(5) Anisotropy: Describes the difference between the extents of entropy in respective

directions of eigenvectors for a point group.

Table 1. Computing method for eigenvalue-based shape features. Feature definitions on the left are
described in Section 3.3.2. Three eigenvalue symbols are sorted in descending order from 1 to 3 in
the formulas.

Feature Definition Computing Formula

Curvature Ce =
λ3

λ1+λ2+λ3

Linearity Le =
λ1−λ2

λ1

Planarity Pe =
λ2−λ3

λ1

Scattering Se =
λ1
λ3

Anisotropy Ae =
λ3−λ1

λ3

3.3.3. Grid-Based Elevation Feature Description

When the original elevation features of point cloud data are used for point cloud
data classification, it is easy to produce misclassification in areas with large topographic
undulations. In particular, features with similar geometric shapes or colors can easily cause
confusion in classification, such as the ground and the top surfaces of buildings. Some
methods use DEM information to reduce the influence of terrain height difference on data
classification, but it is often difficult to obtain accurate DEM data. Therefore, this paper
proposes a grid-based method for calculating elevation features, which can accurately
calculate the relative elevation information between the features and the ground. As shown
in Figure 4a, we first project the original point cloud data onto a 2D plane, i.e., XOY plane
and then divide the projected data into a grid according to the area size. Therefore, the
relative elevation of each point can be obtained by subtracting the ground elevation from
that point. In general, we take the smallest elevation value in the grid as the ground
elevation of the target location. However, some hindrances, such as the absence of ground
points below the building roof and large-scale clusters, are typical in 3D urban scenes due
to the shortage of ray reflection, meaning that roof points, especially with a flat shape, are
occasionally confused with ground points. A lattice filter kernel is used to solve the ground
detection error problem, the basic principle of which is similar to image processing [45]. As
illustrated in Figure 4b, each cell is checked by a 5 × 5 filter kernel, the outliers are first
removed by the Gaussian distribution strategy. Then the algorithm corrects the ground
elevation value of the current cell with the average value of the filter, when the standard
deviation does not satisfy the Gaussian distribution condition [46].
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Figure 4. Grid-based elevation computation and filtering. (a) The illustrated point cloud data (left)
and the 2D-projected data with grid segmentation (right). (b) The grid filter examining anomalies of
calculated elevation values in grid squares.

3.4. Supervoxel-Based Random Forests (RF) Model

The RF model is an ensemble learning method for classification, regression, and other
tasks that operates by constructing a multitude of decision trees at training time. For
classification tasks, the output of the random forest is the class selected by the most trees.
In order to integrate the above three hybrid features for point cloud data classification, a
supervoxel-based RF model is constructed in this paper. In this method, the supervoxels
will be used as the basic classification units, and the extracted hybrid features will be used
as training information input for decision tree generation. The random forest construction
process is constrained by two main parameters including the “max depth” and the “total
number of decision trees”. Here, the “max depth” represents the depth of each tree in
the forest. The deeper the tree, the more splits it has, and it captures more information
about the data. However, too large a depth value can easily cause problems such as
overfitting or excess processing time. In this paper, to balance operational efficiency and
classification accuracy, the max depth and the total number of decision trees are set to 25
and 10, respectively. So to obtain an optimal number, the accuracy of the output RF model
is verified with the validation set. The algorithm applies the mean squared generalization
error to evaluate the classification correctness, as Equation (4) shown in [20].

EX,Y = ΣΘΣX,Y(Y− h(X, Θ))2 (4)

where X refers to the random feature vector, and Y refers to the corresponding label. Θ is a
single tree inside the forest, appearing in tandem with one X.

The framework proposed by the ETH Zurich RF template library [47] is used to train
the supervoxel-based random forest model. It should be noted that the framework contains
three kinds of classification method, including ordinary classification, local smooth classifi-
cation, and graph cut-based classification. In our approach, graph cut-based classification
is employed for training purposes, since it is optimized with an energy minimization
method [48] and provides the best overall classification accuracy.
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4. Experimental Results

To verify the effectiveness of the proposed method in this paper, two sets of data were
used for classification testing and accuracy analysis. The publicly available dataset from the
ISPRS benchmark [49] contains data collected in Toronto, Canada, and Vaihingen, Germany,
both the Toronto and German datasets were used for accuracy verification. Subsequently,
a classification experiment was conducted with the airborne LiDAR dataset collected in
Shenzhen City, China. In our experiments, three accuracy assessment metrics were used
for accuracy evaluation according to the conventional accuracy assessment methods for
point cloud classification [50,51]. We selected three indices, including the overall accuracy
(OA), the mean intersection over union (mIoU), and the F1-score, which were calculated
as follows.

OA =
True Positive

True Positive + True Negative + False Positive + False Negative

mIoU =
True Positive

True Positive + 2× (True Negative + False Positive + False Negative)

p =
True Positive

True Positive + False Positive

r =
True Positive

True Positive + False Negative

F1 =
2 ∗ p ∗ r

p + r

(5)

where True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN)
values are extracted from the confusion matrix of the classification result, and p and r are
the precision and recall percentages, respectively.

4.1. ISPRS Benchmark Datasets
4.1.1. Toronto Sites

The Toronto dataset was divided into two regions, Area 1 and Area 2 for testing
purposes. The classification results are shown in Figure 5. The overall scene was divided
into four types, buildings, vegetation, ground, and background. As shown in Figure 5,
there was a large amount of overlap and crossover between buildings and vegetation in the
Toronto data, as well as incomplete facade collection, which can easily lead to the problem
of confusion between tree and building facades during classification process. Meanwhile,
due to the lack of color information in Toronto’s point cloud data, the classifier relied
more on geometric features for semantic classification.Thanks to the grid-based elevation
features and the supervoxel-optimized Eigen features, the proposed algorithm still achieved
good classification results when only geometric features were used. Figure 6 shows the
comparison of the classification accuracy before and after using the grid-based elevation
features, in which it can be clearly seen that the ground level and the top surfaces of the
buildings could be accurately distinguished after the optimization of the elevation features.

However, the method proposed in this paper still suffered from some classification
errors. As illustrated in Figure 7, some misclassified areas are shown enlarged; those errors
were mainly caused by similar geometric features or missing data. For example, some
buildings were incorrectly classified as ground due to their low elevation values, and some
buildings with missing facades were classified as ground.

In addition, the quantitative classification results were compared with those of five
state-of-the-art algorithms, including MAR_2, MSR, ITCM, TICR, and TUM. The first two
rely mainly on the geometric information of the original point cloud for classification, while
the last three approaches fuse point cloud and image features for classification.The OA, mIoU,
and F1-score are listed in Table 2. The proposed method achieved high accuracy classification
results in both regions, similar to the classification accuracy of MAR_2 and MAR. It should
be noted that the MSR method achieved better classification accuracy in most cases, mainly
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due to the use of DEM data. The proposed method achieved an OA accuracy of 93.2%, mIoU
accuracy of 87.4%, and an F1-score of 92.6% in Area 1; in particular, the F1 accuracy was the
best among all methods. Similarly, in Area 2, the classification method proposed in this
paper achieved an OA accuracy of 93.1%, an mIoU accuracy of 87%, and an F1_score of
85.8% respectively.

Figure 5. Classification results of two Toronto site areas. (a) The classification result of Area 1 and
(b) the clasification result of Area 2.

Figure 6. The comparison of the classification accuracy before and after using the grid-based elevation
features on the Toronto sites.
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Figure 7. Misclassification cases in which roof points were recognized as ground points in the
Toronto sites. (a–c) refer to different types of misclassification results from roof to ground separately.

Table 2. Quantitative comparison of the proposed method and previous related methods tested on
the Toronto sites. Two methods, MAR_2 and MSR, used only the point cloud for classification; MSR
applied terrestrial digital models. ITCM, ITCR, and TUM used the point cloud and images.

Methods
Area 1 Area 2

OA (%) mIoU (%) F1-Score (%) OA (%) mIoU (%) F1-Score (%)

MAR_2 94.3 89.2 88.9 94.0 88.7 88.4
MSR 95.5 91.4 91.2 94.8 90.1 89.7
ITCM 81.3 68.5 66.1 83.0 70.9 67.9
ITCR 84.2 72.7 69.2 85.4 74.5 72.4
TUM 82.6 70.4 68.1 83.1 71.1 68.9

Our method 93.2 87.4 92.6 93.1 87.0 85.8
OA, overall accuracy; mIoU, mean intersection over union.

4.1.2. Vaihingen Sites

The height of buildings in the Vaihingen data was similar to the vegetation and did not
contain color information, which was be a major challenge for point cloud data classification
for the data set. Similar to the experiment of the Toronto area, the scene was divided into
four categories of labels, buildings, vegetation, ground, and background. The classification
results are shown in Figure 8. It can be clearly seen that the classification results were
worse than those of the Toronto data, which was mainly caused by the similarity of geo-
metric features among different types. Due to connections between supervoxels containing
medium-height vegetation and building facades and some oddly curved roof surfaces,
points with building groundtruth values were more likely to be partially or completely
misjudged as trees. Figure 9 shows some cases of misclassification in the Vaihingen region,
in which some parts of buildings were misclassified into trees.

Meanwhile, seven existing classification algorithms were used for comparative analy-
sis of classification accuracy. The OA, mIoU, and F1-score are listed in Table 3. It can be
seen that the classification algorithm proposed in this paper achieved the best classification
accuracy of 85.2% OA, 74.2% mIoU accuracy, and 83.6% F1_score accuracy, respectively.

However, with the building outline explicitly extracted, the proposed method per-
formed well in the remaining areas, achieving an overall F1-score above 83%, which
surpassed some methods using heterogeneous data sources.
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Figure 8. Classification results of the Vaihingen sites.

Figure 9. Misclassified regions in the Vaihingen site caused by unexpected connections between
supervoxels of different objects. (a–c) mean misclassification situations in different minor scenes from
roof to vegetation.

Table 3. Quantitative comparison of the proposed method and previous related methods tested on
the Vaihingen sites sorted by overall accuracy (OA) in ascending order. The F1-score was computed
based on the same categories (building, vegetation, and ground).

Methods OA (%) mIoU (%) F1-Score (%)

UM 80.8 67.8 78.1
BIJ_W 81.5 68.8 78.6
LUH 81.6 68.9 80.4
RIT_1 81.6 68.9 79.0

D_FCN 82.2 69.8 80.9
WhuY3 82.3 69.9 81.0
WhuY4 84.9 73.8 80.8

Our method 85.2 74.2 83.6
mIoU, mean intersection over union.
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4.2. Airborne Laser Scanner Dataset in Urban Scenes of Shenzhen

RGB color information plays a significant role in the proposed classifier because three
discriminative features are computed by RGB reflection data, and multispectral aerial
images cannot be included. Furthermore, the two datasets used for testing carried little
or incomplete spectral band information. Point cloud data assisted by spectral informa-
tion during generation and reconstruction with complete color data and high resolution
can more comprehensively prove the performance of the proposed method. Integrated
reconstruction of the facade is also beneficial for the extraction of buildings.

The selected dataset included four urban regions, one for the training set and three for
independent validation [marked as (a), (b), (c)]. The training area was 350 m × 200 m, and
the validation areas were approximately 400 m × 300 m. The entire dataset was downsam-
pled to a resolution of 0.3 m. The classification results are illustrated in Figure 10. Most
vegetation points and ground points were accurately classified, and explicit outlines of
buildings were visible in the resulting figure. In most scenes, vegetation was distinguished
from adjacent buildings. Moreover, the centroid-based classification method enabled low
computation costs, even though each validation area contained more than four million
points after the downsampling process. This demonstrates that the proposed classifier
successfully handles large datasets. The point-based classification method in CGAL li-
brary [52] was used for comparison purpose. The quantitative performance evaluations of
our proposed method and the pointbased method are shown in Table 4. As expected, the
super voxel-based method proposed in this paper achieved better classification accuracy
in all three regions compared to the traditional point cloud-based methods. Specifically,
the proposed method achieved 3.6, 5.8, and 4.4 percent, respectively, in the OA, mIoU, and
F1_score in Area (a). Similar results were found in the other two regions.

The average performance of the proposed method was higher for the Shenzhen
dataset than the Vaihingen and Toronto datasets. The mostly rectangular rooftop shapes
and integrated facade structures prevented building points from being recognized as
vegetation, whereas the uncertainty of object consistency in the Vaihingen set led to false
classification. Compared with the Toronto sites, which were comparably generated except
without color information, most elevated vegetation points and buildings with low height
and more detailed facades were successfully distinguished using RGB color features in
the Shenzhen dataset. However, some exceptional situations in the dataset affected the
overall accuracy of the classification results. As shown in Figure 11a, the neighborhood
information of partial rooftop points that were similar to roads, such as rises at the edge or
street light posts, reduced the contextual consistency of the local region and affected the
classification. Additionally, due to the intricate and uncertain shape appearances in modern
urban scenes, a single training area provided limited polygonal examples. Parts of buildings
with minor scale or unusual contours that were not provided in the training region were
misclassified as ground pieces in the validation sets [Figure 11b], which reduced the overall
classification accuracy.

Benefiting from supervoxel extraction processing, the point cloud of Shenzhen Uni-
versity can be rapidly aggregated into supervoxel structures, which effectively reduced
the point cloud density and complexity. In turn, with supervoxels as the basic unit, the
classification method proposed in this paper achieved point cloud classification with high
efficiency, and the overall computation costs were about 1.5 h. Moreover, the utilization of
LCCP object homogeneity segmentation in supervoxel-based neighborhoods contributed
to the considerable classification precision with complete object surfaces consisting of point
arrays, which advanced the object-based theory.
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Figure 10. Classification results of airborne LiDAR-generated Shenzhen sites. Three selected sites
have been marked as (a–c).

Figure 11. Misclassification cases in the Shenzhen dataset. (a) Faults due to edge interruption.
(b) Faults due to untrained object shapes.

Table 4. Quantitative evaluation of the supervoxel-based results and point-based results of the
proposed method on the Shenzhen airborne LiDAR dataset.

Area (a) Area (b) Area (c)

OA
(%)

mIoU
(%)

F1-Score
(%)

OA
(%)

mIoU
(%)

F1-Score
(%)

OA
(%)

mIoU
(%)

F1-Score
(%)

Our method 94.0 88.7 90.1 93.5 87.8 91.8 93.5 87.8 91.7
Point based 90.6 82.9 85.6 87.6 78.0 84.2 86.1 75.6 79.8

OA, overall accuracy; mIoU, mean intersection over union.

4.3. Discussions of the Experimental Results

For the classification results of the ISPRS benchmark datasets, due to missing RGB
color information and some incomplete facades of buildings, the classifier lacked RGB
band features, and eigen features were less discriminative. As a result, separated low roofs
were classified as vegetation with a similar height. However, most of the borders dividing
buildings and vegetation were successfully detected, which showed the excellent effect
of applying VCCS and LCCP object-based segmentation into the classifier. For the result
of the dataset of the Shenzhen urban scene, although complicated urban scenes provided
multi-aspect obstacles for the classifier, the outcome of the proposed method reached our
expectations. The proposed classifier achieved a high accuracy classification using only 3D
point cloud data without the assistance of digital models and multispectral images, as illus-
trated in the ISPRS benchmark site outputs. Furthermore, benefited by the RGB information
contained in this dataset, the borders between two objects in different types were more
distinct, which means color information assisted the object-based classification process.

5. Conclusions

In this paper, we proposed a robust and effective airborne LiDAR point cloud classifi-
cation method that integrated hybrid features, including point-based features, eigen-based
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features, and elevation-based features, into a supervoxel RF model. Three main innovations
were applied to effectively improve the classification accuracy of the proposed model.

(1) Rather than single points, we used supervoxels as the basic entity to construct the RF
model and constrain the domain information via LCCP segmentation.

(2) A two-level graphical model involving supervoxel calculation and LCCP optimization
was generated from the raw point cloud, which significantly improved the reliability
and accuracy of neighborhood searching.

(3) The features were divided into three categories based on feature descriptions (point-
based, eigen-based, and grid-based), and three unique feature calculation strategies
were accordingly designed to improve feature reliability. We conducted three ex-
periments using ALS data provided by ISPRS and real scene data collected from
Shenzhen, China, respectively. We compared the quantitative analysis of ALS datasets
with other state-of-the-art methods, and the classification results demonstrated the
robustness and effectiveness of the proposed method. Furthermore, this method
achieved fine-scale classification when the point clouds had different densities.

However, the proposed method still had some limitations on scene generalizability.
The algorithm may fail to recognize roof components when lacking facade information,
which is caused by a loss of the connection relationship between supervoxels. In the future,
we would like to integrate external constraints into the classification process to prevent the
influence of over-segmentation.
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