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Abstract: Urban expansion studies have focused on two-dimensional planar dimensions, ignoring
the impact of building height growth changes in the vertical direction on the urban three-dimensional
(3D) spatial expansion. Past 3D simulation studies have tended to focus on simulating virtual cities,
and a few studies have attempted to build 3D simulation models to achieve the synergistic simulation
of real cities. This study proposes an urban 3D spatial expansion simulation model to achieve a
synergistic simulation of urban horizontal expansion and vertical growth. The future land use
simulation model was used to simulate urban land use changes in the horizontal direction. The
random forest (RF) regression algorithm was used to predict building height growth in the vertical
direction. Furthermore, the RF algorithm was used to mine the patterns of spatial factors affecting
building heights. The 3D model was applied to simulate 3D spatial changes in Shenzhen City from
2014 to 2034. The model effectively simulates the horizontal expansion and vertical growth of a
real city in 3D space. The crucial factors affecting building heights and the simulation results of
future urban 3D expansion hotspot areas can provide scientific support for decisions in urban spatial
planning.

Keywords: urban three-dimensional simulation; building heights; urban land use; cellular automata;
FLUS model; random forest

1. Introduction

Since the Industrial Revolution, cities have achieved unprecedented development.
Accelerating urbanization has substantially affected land resources. Urban sprawl is one
of the most significant characteristics of urbanization [1], manifesting as horizontal and
vertical expansion [2]. In the early stages of urban development, most cities fulfil the
demand for population growth via low-density sprawl in horizontal space [3]. As the
demand for construction land from socioeconomic activities continues to increase, the
available land resources in horizontal space continues to decrease. The over-expansion
of urban areas has triggered a series of problems such as arable land loss [4], urban heat
islands [5], environmental pollution [6] and ecosystem degradation [7]. With the accelera-
tion of the urbanization process, traditional urban sprawl is inefficient to accommodate the
increasing number of social activities, prompting the use of vertical space in urban areas.
In fact, the rational use of the three-dimensional space in urban areas was proven to be
an effective solution for increasing urban spatial capacity and relieving land use pressure.
Many cities have found in practice that the growth and development of urban vertical space
can effectively improve the utilization efficiency of urban interior spaces [2,8]. In a later
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stage of development, with limited land resources, a city will move towards a high-density
spatial form. Therefore, studying the changes in urban 3D spatial expansion and building
an urban 3D spatial expansion model is crucial for smart city planning.

In recent decades, a series of studies have been conducted on urban expansion in
two-dimensional (2D) space in terms of its change pattern, evolution process, and driving
factors [9]. Relevant results provide crucial information for discovering the laws of hori-
zontal urban expansion. Cellular automata (CA), which is a bottom-up discrete dynamics
model simulating the spatiotemporal evolution of complex systems with simple rules
among local cells, was widely used to simulate the stochastic, nonlinear, and complex
evolution of urban development from the horizontal perspective [10]. Typical CA models
include multi-criteria evaluation CA [11], ant colony optimization CA [12], genetic algo-
rithm CA [13], Markov-CA [14], IF-THEN-CA [15], multi-agent CA [16], and Patch-CA [17].
CA combined with machine learning and deep learning algorithms [18–21] can efficiently
mine the transformation rules and achieve better simulation results. In particular, the
authors of [22] proposed a future land use simulation (FLUS) model by considering various
socioeconomic and natural climatic factors. The FLUS model was applied to the simulation
of land use change in China from 2000 to 2010 and achieved high simulation accuracy. In
general, these studies achieved good results in urban land use change simulations. How-
ever, the models are all based on a 2D plane and modelled with planar grid and parcels as
the basic objects, not involving urban vertical growth, and ignoring the influence of urban
building heights and 3D spatial capacity on urban 3D spatial expansion.

Recently, some studies have started to extend the traditional 2D urban simulation
model and tried to simulate the urban growth from the three-dimensional (3D) perspective.
Ref. [23] presented a quasi-3D CA simulation model. The quasi-3D model used a cell
attribute containing building height information and set various parameters to simulate
different types of city pattern. However, this model was limited to the 3D simulation of
virtual city and ignored the spatial heterogeneity of the built environment. Ref. [24] refined
a 3D-CA model based on theory of self-organization in urban development to simulate
urban growth. With the addition of the center distance and the traffic distance factors, the
simulation results of the model were more approximate to the reality of city extension
progress. The 3D-CA model took into account the impact of spatial heterogeneity on urban
growth, but still stayed on the virtual city. Ref. [25] developed a GIS-base CA model to
explore urban vertical growth. An “IF-THEN” rule was designed to simulate the height
states of building growth. The model was applied to building height changes in Guangzhou
from 2001 to 2010. The study only simulated vertical growth of a real city, but did not
couple horizontal urban expansion. Ref. [26] proposed a coupled 3D model considering
interaction between horizontal expansion and vertical growth in urban development. The
model used case-based reasoning technology with sort CA to simulate horizontal expansion
and used neural network predict the vertical extrusion of building heights. Although the
model was able to simultaneously project urban growth in the vertical and horizontal
dimensions, it was only a simple combination. Land use demand was still the area demand
in 2D. Additionally, some spatial factors were used to predict building height, but the
driving pattern of spatial factors on building height has not been explored.

These studies provide a preliminary exploration of the 3D urban expansion simulation
with a simple combination of horizontal urban expansion simulation and vertical height
prediction. How to simulate horizontal urban expansion and vertical growth synergistically
deserves further study. In addition, spatial factors driving changes in building height
growth have not been deeply explored and analyzed. Therefore, this study extends the
traditional 2D urban simulation model and builds an urban 3D spatial expansion simulation
model by coupling urban expansion simulation in the horizontal direction and height
growth prediction in the vertical direction. Different from previous 3D-simualation models,
our proposed 3D model extends land use demand to volume demand in 3D and combines
a CA model with the building heights prediction model. Therefore, our model is capable
of simultaneously simulating both the horizontal urban expansion and vertical growth.
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Unliked traditional models that only simulate changes in single urban land use type, the
CA model in this study can simulate changes in multiple urban land types. In addition,
we adopted the random forest (RF) algorithm to model building heights and explore the
characteristics and patterns of spatial factors affecting building heights. Our proposed 3D
simulation model was applied and tested to simulate the 3D spatial expansion in Shenzhen
City, a rapid urbanization city in southern China featuring dense high-rise buildings. The
research results can hopefully deepen our understanding of urban 3D expansion and help
to achieve sustainable urban development in Shenzhen City.

2. Study Area and Data

Shenzhen is on the east coast of the Pearl River estuary in Guangdong Province, China.
Its total area is 1997.47 km2. As of the end of 2019, Shenzhen had a residential population
of approximately 13.4388 million and a total GDP of 2.69 trillion yuan. Shenzhen is one
of the economic, financial, technological innovation, and logistics centers in China. Since
the reform and opening policy, Shenzhen has experienced economic development. The
massive gathering of population has intensified urban expansion, leading to a constant
shortage of land resources. Medium-rise and high-rise buildings have become more and
more dense. The spatial structure becomes more complex. Therefore, Shenzhen city is
suitable as the study area of this study.

As shown in Figure 1, Shenzhen has nine administrative districts (Futian, Luohu,
Yantian, Nanshan, Baoan, Longgang, Longhua, Pingshan, Guangming) and one new
district, Dapeng New District. Since the reform and development, Shenzhen’s urban
land use has undergone significant changes. With economic development and population
gathering, available land resources are becoming increasingly scarce, urban expansion in
the horizontal direction is increasingly restricted, and urban growth in the vertical direction
is increasing. An increasing number of high-rise buildings are being developed, especially
in Futian, Luohu, and Nanshan.
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Figure 1. Case study area: Shenzhen, Guangdong Province, China.

Table 1 presents the data used in this study. All spatial datasets were processed to
a resolution of 30 m × 30 m. Land use data was obtained from the Bureau of Land and
Resources of Shenzhen. As illustrated in Figure 2, land use types were reclassified as
non-construction land (N), public management services land (P), commercial land (C),
residential land (R), and industrial land (I). Public management services land, residential
land, commercial land, and industrial land are urban land types. The main change from
2009 to 2014 was from non-construction land to urban land types (Table 2). The conversion
of urban land to non-urban land rarely occurred. Internal conversions between the four
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urban categories were almost non-existent. Furthermore, the conversion of urban land to
non-urban land is mainly dominated by policy factors. Therefore, this study focuses on the
conversion of non-construction land to urban land use types.

Table 1. List of data used in this study.

Category Data Year Resolution Data Resource

Basic geographic
information data

Administrative boundaries, city
center, district centers, river, lake,
ocean, railway stations, subway

stations

2015 National Catalogue Service for
Geographic Information

Parks and green spaces 2020 OpenStreetMap

DEM 2000–2013 30 m ASTER GDEM V3

Slope 30 m Calculated from DEM

Socioeconomic data

GDP 2015 1 km
Resource and Environment Science

and Data Center, Chinese
Academy of Sciences

Population 2015 100 m World pop

Nighttime light intensity 2015 15′′
(450 m) NOAA/NGDC—EOG

Housing prices 2017 5 m [27]

Climate and
environmental data PM2.5 2014–2016 0.01◦

(1.11 km) SEDAC

Land use data Fine cadastral land use 2009, 2014 Bureau of Land and Resources of
Shenzhen

Building data Building heights 2016 Gaode Map API

Points of interest

Shopping malls, hospitals,
entertainment facilities,

supermarkets, restaurants, parks,
bus stations, factories

2016 Gaode Map API

All levels of road data
Highway, railway, national road,

provincial road, urban road
network

2020 OpenStreetMap

Table 2. Total conversion area (km2) of different land use types in Shenzhen from 2009 to 2014.

2009
2014

N P C R I

N 1368.5030 14.5539 5.5249 10.6865 16.7462
P 6.4993 85.7941 0.0000 0.0183 0.0152
C 0.3568 0.0137 26.0410 0.0005 0.0000
R 0.2559 0.0005 0.0000 187.8887 0.0007
I 3.7533 0.2685 0.0106 0.0047 266.4813

The building height data (Figure 3) was obtained from the Gaode Map. The number
of floors was included in this data attribute. In addition, we extracted the building heights
in areas not covered by this data viz visual interpretation using high resolution images and
map street view. Building heights in vector format needed to be processed into building
raster cells to ensure a uniform data type. Buildings have different shapes and sizes. Cell
units that are too large will not accurately represent the buildings and may introduce errors.
A small cell size may also limit the interpretability of the model because bordering areas
where cells intersect may cover a portion of the same building. After testing various cell
sizes, ref. [25] used a 20 m cell size, which ensured that each building consisted of at least
five cells. Therefore, we used “Polygon to Raster” tool in ArcGIS to process the vector
building height data into 5 m × 5 m regular cells.
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Figure 2. Urban land use data of Shenzhen in 2009 and 2014. Where (A–C) represent their respective
regions, respectively; (A1,A2) represent the urban land use of region A in 2009 and 2014; (B1,B2)
represent the urban land use of region B in 2009 and 2014; (C1,C2) represent the urban land use of
region C in 2009 and 2014.

However, the spatial scale of urban land use data in the horizontal direction was 30 m.
For maintaining the same spatial scale in the horizontal and vertical directions, the 5 m
building heights data must be processed into 30 m. Different buildings have different
building appearances and basement areas. Directly finding the average building heights
will produce a large error [28]. The 5 m building heights data resampled to 30 m by the
mean value will lead to instability and bias in expressing the spatial distribution of building
heights. Some 30 m cells may contain only a small number of 5 m cells. Calculating by
taking the mean value in this manner may make the height value of the processed 30 m
cells too high. Additionally, such a small number of 5 m cells may be the boundary area
error caused by the vector building height data conversion. If the 5 m building height
cells are spread to 30 m cells, this step will largely attenuate the over-height value after
processing.

Basic geographic information, socioeconomic, environmental, points of interest and
OpenStreetMap road nets were used as drivers of land use change and building height
growth. Urban land use change was a complex process caused by interactions between the
natural environment and human activities [29]. We selected seventeen driving factors from
natural, ecological, socioeconomic and transportation sources (Figure 4). The growth and
development of building heights is a manifestation of vertical urban growth and is related
to topography, ecology, economy, society, location, and policy [3,26,30,31]. Seventeen spatial
factors of building heights were selected based on the actual situation of the study area and
available data sources, as shown in Figure 5.
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Figure 4. Driving factors of urban land use change in Shenzhen. (a) DEM; (b) slope; (c) distance to city
center; (d) distance to district centers; (e) distance to railways; (f) distance to highways; (g) distance to
national roads; (h) distance to provincial roads; (i) distance to railway stations; (j) distance to subway
stations; (k) distance to ocean; (l) distance to lakes; (m) distance to rivers; (n) density of urban road
network; (o) population density; (p) PM2.5; (q) GDP.
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Figure 5. Spatial factors of building heights in Shenzhen. (a) DEM; (b) slope; (c) distance to parks
and green spaces; (d) distance to waters; (e) housing prices; (f) density of entertainment facilities;
(g) density of supermarkets; (h) density of restaurants; (i) density of factories; (j) density of shopping
malls; (k) population density; (l) density of hospitals; (m) nighttime light intensity; (n) distance to
city center; (o) distance to district centers; (p) distance to urban roads; (q) density of bus stations.

3. Methodology

A flowchart of the proposed urban 3D spatial expansion simulation model is shown
in Figure 6. This model contains two main parts: (1) one part based on the future land use
simulation (FLUS) model to simulate urban land use changes in the horizontal direction,
and (2) another part based on the RF regression to predict building height growth in the
vertical direction. To simulate how to synergize the horizontal expansion and vertical
growth, this model determines whether it is a new urban land use based on land use type
after roulette selection and then predicts the building heights of urban land use.
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3.1. Horizontal Simulation Using FLUS Model

Bulleted lists look like this: The FLUS model is an integrated model based on system
dynamics (SD) and CA [22]. The FLUS model is a widely used land use change simulation
model that has been applied to multi-scale, multi-regional, multi-factor, and multi-scenario
land use [22,32–39]. The SD model was used to project land use demand under various
socioeconomic and natural environmental driving factors. The CA model was used to
simulate future land use. As shown in Figure 7, this CA model contains two modules: (1) a
neural network to train and estimate the development probability of each land use type on
each cell, and (2) a self-adaptive inertia and competition mechanism designed to solve the
competition and interaction among land use types.

The final land use conversion probability depends on the development probability
output by the neural network and the neighborhood effects, inertia coefficient, conversion
cost, and competition among land uses. The total probability of a specific land use type on
a cell can be expressed by the following equation:

TPt
p,k = Pp,k ×Ωt

p,k × Inertiat
k × (1− conc→k) (1)

where TPt
p,k denotes the total combined probability of cell p to convert from the original land

use type to the target type k at iteration time t; Pp,k denotes the development probability of
land use type k on cell p; Ωt

p,k denotes the neighbourhood effect of land use type k on cell p
at iteration time t; Inertiat

k denotes the inertia coefficient of land use type k at iteration time
t, which changes iteratively according to the difference between future land use demand
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and current land use demand; and conc→k denotes the conversion cost from the original
land use type c to the target type k.
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3.2. Building Heights Prediction Using RF

Bulleted lists look like this: The RF algorithm is an integrated machine learning
classification and regression method proposed by [40]. RF is an ensemble of many decision
trees built using the bagging method. The predicted value of the RF regression algorithm is
calculated as follows:

H(X) =
1
k

k

∑
i=1
{h(X, θi)} (2)
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where H(X) represents the predicted value of the RF regression algorithm; {h(X, θi)}
represents the predicted value of the ith regression tree.

Sub-trees within the RF algorithm are independent, which can balance the model
error and generalize well for non-trivial datasets. In addition, the overfitting phenomenon
is rarely occurs [31]. More importantly, RF can calculate the contribution weights of the
feature variables and thus reveal the complex relationships among them. This advantage is
also the main reason for choosing the RF algorithm for building height prediction in this
study. The contribution weights of RF regression algorithm are described as follows:

VIMi =
var
(
Ei − E

)
∑N

i=1 var
(
Ei − E

) (3)

where Ei is average fitting accuracy of the ith spatial variable with noise; E is the total
fitting accuracy of all spatial variables without noise.

This study used floor area ratio (FAR) characteristic the vertical height of buildings on
raster cells. FAR is a critical 3D spatial index that measures the intensity of construction
land and the comfort of human settlements [41]. FAR is the ratio of the total floor area to
the size of the land parcel on which the buildings are located. The calculation formula is as
follows:

FAR =
∑n

i=1 Ci Ai

P
=

∑n
i=1

hi Ai
C

P
(4)

where Ci is the floor number of building unit i; hi is the height of building unit i; Ai is the
floor area of building unit i; C is a constant (C = 3.0 m), which corresponds to the average
height of the floor; and P is the area of the study unit.

3.3. Synergistic Simulation

The conditions for the completion of the simulation in our proposed 3D model are no
longer the area demand for land use types in traditional models, but the volume of land
use types. The volume demands consider the building height of urban land in 3D space.
The volume demand for urban expansion is defined as:

UVDi = FARi ×UADi (5)

where i is ith urban land type; UADi is the area demand for ith urban land type; FARi is
the average FAR of ith urban land type; UVDi is the volume demand for ith urban land
type. Because FAR is proportional value, UVDi is unitless in this study.

Horizontal expansion and vertical growth in urban development are closely coupled.
This 3D model determines whether to predict heights based on the land use type after
roulette selection. If a non-urban land cell is converted to urban land, the building height
model is used to predict the building height of this cell. The predicted value is expressed in
the following equation:

bhij = RFregression
(

s1
ij, s2

ij, . . . . . ., sm
ij

)
(6)

where bhij denotes the predicted value of building height of the ijth new urban land cell;
RFregression denotes the trained building height prediction model; sm

ij denotes the mth
spatial factor of building height of the ijth new urban land cell.

Similarly, if a non-urban land cell is not converted to urban land, height prediction is
not required. The iteration of this 3D model is completed until the current volumes of all
urban land use types reach demands.
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3.4. Model Validation
3.4.1. Horizontal Simulation Validation

The kappa coefficient, overall accuracy (OA), and figure of merit (FoM) are commonly
used to assess simulation results of urban horizontal expansion. The confusion matrix has
limitations in assessing the accuracy of simulated changes. Many studies have shown that
FoM is significantly better than the kappa coefficient in assessing simulation results [42–44].
The FoM value was generally small. The simulation model has satisfactory prediction
performance when the FoM is greater than 0.21 [45]. FoM was calculated as follows:

FoM =
B

A + B + C + D
(7)

where A is the area of error due to observed change predicted as persistence; B is the
corrected area due to observed change predicted as change; C is the area of error due to
observed change predicted as change in the wrong category, and D is the area of error due
to observed persistence predicted as change.

3.4.2. Height Prediction Validation

To test the prediction accuracy of RF regression in building height modelling, we
divided the sampled dataset into two parts: the training set and the test set. The training
set accounted for 80%, and the test set accounted for 20%. The coefficient of determination
(R2), root mean squared error (RMSE), mean absolute error (MAE), and explained variance
score (EV) were used to assess the predictive accuracy of the RF regression. The calculation
formula is as follows:

R2 = 1−
∑n

i=1
(

FARt,i − FARp,i
)2

∑n
i=1
(

FARt,i − FARt
) (8)

RMSE =

√
∑n

i=1
(

FARt,i − FARp,i
)2

n
(9)

MAE =
1
n

n

∑
i=1

∣∣FARt,i − FARp,i
∣∣ (10)

EV = 1−
Var

{
FARt,i − FARp,i

}
Var{FARt,i}

(11)

where FARt,i and FARp,i represent the actual and predicted FAR of the ith building unit;
FARt is the average of the actual FAR of all building units, which is equal to 1

n ∑n
i=1 FARt,i;

n is the number of all building units; Var
{

FARt,i − FARp,i
}

and Var{FARt,i} represent the
variance of FARt,i − FARp,i and FARt,i. The range of R2 is [0, 1]. The larger the value, the
better the regression fit. RMSE and MAE are both in the range of [0, +∞]. The smaller
the value, the better the regression fit. EV is used to explain the variance change in the
dependent variable. The larger the value, the better the regression fit.

3.5. Urban 3D Expansion Analysis

The urban expansion intensity index was used to quantify the intensity and rate of
urban land expansion at different stages. The urban 2D expansion index is defined as the
ratio of the expanded urban area to the total land area during the study period. Referring to
2D urban intensity index [46,47], we define the urban 3D urban intensity index as follows:

UE3D =
ULVi,t′ −ULVi,t

TLVi
× 1

t′ − t
× 100% (12)

ULVi,t′ = ∑
j

AREAj,t′ × FARj,t′ (13)
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ULVi,t = ∑
j

AREAj,t × FARj,t (14)

TLVi = AREAi × FARi (15)

where UE3D is the urban expansion intensity index of study unit i at time t′ − t; ULVi,t′ and
ULVi,t represent the total building volume of study unit i at time t′ and time t; AREAj,t′ and
AREAj,t represent the basal area of building j in study unit i at time t′ and time t; FARj,t′

and FARj,t represent the FAR of building j in study unit i at time t′ and time t; TLVi is the
volume of study unit i; AREAi is the total area of study unit i; and FARi is the average FAR
of study unit i.

4. Results
4.1. Implementation and Results

The urban land use of Shenzhen in 2009 was used to simulate land use in 2014 via the
FLUS model. We compared simulated land use and actual land use in 2014 (Figure 8), and
found that simulated land use has many ‘salt and pepper’ phenomenon. This phenomenon
occurs because the scale of this study was 30 m, and the land use pattern was refined and
distinctly differentiated. In general, the simulated land use was similar to the actual land
use. Results of the horizontal simulation accuracy assessment showed that FoM was 0.1907,
the kappa coefficient was 0.9098, and OA was 0.9561. The magnitude of the FoM value
is positively proportional to the net change in land use [48]. For simulation results with
long time intervals, FoM values are generally higher than those with short time intervals.
Considering the relatively short period (2009–2014) of simulation in this study, the net
change in actual land use was 2.92%. Therefore, the simulation results of this study were
acceptable.

The results of building height prediction accuracy showed that R2 was 0.8628, RMSE
was 2.0180, MAE was 1.3707, and EV was 0.8632. Therefore, the RF regression fits well
and can explain the FAR of buildings well. To further evaluate the accuracy results and
analyze the differences between the actual and predicted FAR, we predicted the FAR of all
units in the study area. The spatial distribution of relative errors between predicted and
actual FARs is shown in Figure 9. Overall, a correlation was between the relative error and
actual FAR. The higher the actual FAR, the higher the relative error. The Nanshan, Futian,
and Luohu Districts are extremely economically developed and contain many high-rise
buildings. The higher the actual FAR, the more likely the forecast will be underestimated.
As shown in Figure 10, the overall relative error in Shenzhen is low. A total of 50.19% of
the units were in the range from −0.5 to 0.5, and 89.18% of the units were in the range from
−1.75 to 1.75.
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Figure 8. Actual and simulated land use patterns in Shenzhen in 2014. Where (A–C) represent their
respective regions, respectively; (A1,A2) represent the actual and simulated land use patterns in
region A; (B1,B2) represent the actual and simulated land use patterns in region B; (C1,C2) represent
the actual and simulated land use patterns in region C.
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4.2. Future 3D Simulation

A Markov chain model is commonly used to project future land use amount in land
use simulations [20]. We used a Markov chain to predict future land use amount based on
the distribution of land use in Shenzhen from 2009 to 2014.

With the total land use area in the study area remaining unchanged, the area of each
land use type in 2024 and 2034 was projected based on land use in 2014 (Table 3). Combined
with the average FAR of each urban land use type in 2014, the future volume demand for
each urban land expansion in 2024 and 2034 was obtained (Table 4).

Table 3. Total simulated area (km2) of each land use type under future years.

Land Use Types 2024 2034

Non-construction land (N) 1313.7372 1253.2788
Public management services

land (P) 110.6550 121.6656

Commercial land (C) 40.1922 48.8844
Residential land (R) 219.6963 238.7700
Industrial land (I) 309.0222 330.7032

Table 4. Volume demand for each urban land expansion under future years.

Urban Land Types 2024 2034

Public management services
land (P) 181.2678 199.3047

Commercial land (C) 101.7893 123.8028
Residential land (R) 520.0457 565.1953
Industrial land (I) 538.8655 576.6723

We coupled the FLUS model and the building height prediction model to simulate
urban land use change in the horizontal direction and building height growth in the vertical
direction. Figure 11 shows the simulated urban land use patterns of Shenzhen in the



Remote Sens. 2022, 14, 1503 17 of 24

horizontal direction for 2024 and 2034. Shenzhen had a large amount of non-construction
land that was continuously eroded by urban land. The area (A1, A2, A3) near Shenzhen Bay
is an economically developed central area in Shenzhen. The future urban land in this area
is expanding rapidly, with strong growth in public management services and commercial
land to fulfil the needs of future economic development. In the area (B1, B2, B3) near the
Shenzhen North Railway Station in the south of Longhua District, much non-construction
land was developed as residential land. Transportation convenience due to railway stations
promotes the expansion of urban land.
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Figure 11. Simulated urban land use patterns of Shenzhen in the horizontal direction, 2014–2034. (A)
The region near Shenzhen Bay; (B) The region near the Shenzhen North Railway Station in the south
of Longhua District; (A1–A3) represent the urban land use patterns of region A in 2014, 2024 and
2034; (B1–B3) represent the urban land use patterns of region B in 2014, 2024 and 2034.

Figure 12 shows the predicted results of building height growth in the vertical direction
in 2024 and 2034. The new urban land was mainly developed with low-rise and medium-
rise buildings and a small number of high-rise buildings. New medium-rise and high-rise
buildings were built mainly in the city center (Nanshan District, Futian District, and Luohu
District). New low-rise buildings were generally located away from the city center (Baoan
District, Guangming District, Longhua District, Longgang District, Pingshan District,
and Dapeng New District). Public management services land, commercial land, and
residential land were mainly developed for medium-rise and low-rise buildings, and
high-rise buildings were generally developed only in these urban land types. By contrast,
industrial land was mainly developed with low-rise buildings and rarely with high-rise
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buildings. Industrial land did not require the development of medium and high-rise
buildings. We also focused on two local areas of land use change in the horizontal direction.
The new buildings in the local area (A1, A2, A3) were mainly medium-rise buildings,
supplemented by high-rise buildings. These results indicated that the height of buildings
had a positive relationship with economic development. Most of the new buildings in the
local area (B1, B2, B3) were medium-rise buildings. The expansion of residential land in this
area was influenced by the accessibility factor, which showed a clear correlation between
accessibility and building heights.
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Figure 12. Predicted results of building height growth of Shenzhen in the vertical direction, 2014–2034.
(A) The region near Shenzhen Bay; (B) The region near the Shenzhen North Railway Station in the
south of Longhua District; (A1–A3) represent the predicted results of building height growth of
region A in 2014, 2024 and 2034; (B1–B3) represent the predicted results of building height growth of
region B in 2014, 2024 and 2034.

5. Discussion
5.1. Contribution Weights Analysis of Spatial Factors

The contribution weights of spatial factors in building height modelling are shown in
Table 5. Distance to the city center and distance to town centers were the two spatial factors
that had the greatest influence on the FAR of buildings. This result is because Shenzhen has
many high-rise buildings distributed in city centers and town centers (Nanshan, Futian,
and Luohu). For the spatial factors of economic aspects such as distribution density of enter-
tainment facilities, distribution density of restaurants, distribution density of supermarkets,
distribution density of shopping malls, and housing prices, their contribution weights on
the FAR of buildings were high These results shows that building heights in Shenzhen
were influenced by the level of economic development. High-rise buildings tend to appear
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in economically developed areas. Moreover, the economic benefits of high-rise buildings
also symbolize a city’s economic development and urbanization level. The contribution
weight of the distribution density of the hospital was also high, and it had a significant
influence on the FAR of buildings. There was a significant correlation between high-rise
buildings and medical conditions. Medical conditions tend to attract more individuals,
which causes the height of surrounding buildings to rise, and hospitals are usually in
high-rise buildings. The lowest contribution weight of the distribution density of factories
also confirmed that there was no significant correlation between the distribution density
of factories and the FAR of buildings in Shenzhen. Additionally, factories were generally
dominated by low-rise and medium-rise buildings, and their building heights did not vary
significantly. In addition, the contribution weights of topographic spatial factors such as
DEM and slope were low, indicating that the topographic factors in Shenzhen did not have
significant constraints on building heights.

Table 5. Contribution weights of spatial factors on buildings’ FAR.

Spatial Factors Contribution Weights

DEM 5.09%

Slope 4.93%

Distance to parks and green spaces 6.21%

Distance to waters 5.46%

Housing prices 6.15%

Density of entertainment facilities 6.41%

Density of supermarkets 6.17%

Density of restaurants 6.39%

Density of factories 3.55%

Density of shopping malls 6.09%

Population density 5.52%

Density of hospitals 6.44%

Nighttime light intensity 5.26%

Distance to city center 7.35%

Distance to district centers 6.59%

Distance to urban roads 6.12%

Density of bus stations 6.30%

5.2. D Expansion Analysis

Grid analysis is a spatial measurement method that calculates each grid within the
study area by arranging uniform grids in the entire area and using such grids as the basic
unit to reflect the spatial heterogeneity of urban expansion [49]. We selected a 300 m ×
300 m grid to cover the study area and used it to calculate the urban 3D expansion intensity
index within each grid. We used the natural fracture method to divide the index into
four levels: high-speed expansion, medium-speed expansion, slow expansion, and zero
expansion.

The spatial distribution of urban 3D expansion intensity in Shenzhen from 2014 to 2034
is shown in Figure 13. The distribution of expansion intensity in Shenzhen was consistent
in 2014–2024 and 2024–2034. Shenzhen was characterized mainly by low-speed expansion.
Expansions occurred in all areas except mountainous areas. High-speed expansion was
mainly concentrated in the southern downtown and economically developed areas. Areas
of high-speed expansion from 2014 to 2024 were mainly concentrated in eastern Luohu,
Futian Nanshan, and Longhua. The expansion intensity from 2024 to 2034 changed slightly.
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The intensity of Dapeng and northern Shenzhen increased. By contrast, the intensity of the
northern city center slightly decreased, especially in the southern part of Luohu, which
had high-speed and medium-speed expansion and later shifted to medium- and low-speed
expansion. The central of Nanshan and Baoan showed a slight increase in intensity and
high-speed areas. The high-speed expansion area of Dapeng increased slightly.
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In addition, we analyzed the urban 3D expansion intensity of urban land use types in
Shenzhen via grid analysis. Figure 14 shows the spatial distribution of the 3D expansion
intensities of public management services land, commercial land, residential land, and
industrial land from 2014 to 2034. The spatial distribution of the expansion intensity of each
urban land type in 2014–2024 and 2024–2034 was still relatively consistent and dominated
by low-speed expansion. The expansion intensity of public management services land
was high in the south-central area near the city center. The three areas around Tiegang
Reservoir (Baoan), Shenzhen Bay (Futian), and Donghu Park (Luohu) are hotspots of high-
speed expansion. Commercial land had a high expansion intensity in Nanshan and the
northern coastal area of Dapeng. High-speed expansion hotspots were also located here.
The expansion of residential land was extensive. The area around the Shenzhen North
Station (Longhua) was a high-speed expansion hotspot. Industrial land expansion was the
most extensive and mainly concentrated in the north. High-speed expansion hotspots were
scattered, with scant distribution in the downtown area.
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6. Conclusions

This paper proposed an urban 3D spatial expansion simulation model. The model
combined the FLUS model to simulate urban land use changes in the horizontal direction
and RF regression to predict building height growth in the vertical direction. A synergistic
simulation of urban horizontal expansion and vertical growth was realized.

The proposed model simulated urban land use in the horizontal direction with good
accuracy (kappa = 0.91, OA = 0.95, FoM = 0.19) and effectiveness. The prediction of building
height modelling based on RF regression had a good fitting accuracy and low relative error.
Building height growth is driven by many spatial factors. Among them, the location factor



Remote Sens. 2022, 14, 1503 22 of 24

had the highest contribution and was the primary factor influencing building height growth.
Spatial factors of socioeconomic and location advantages drove building heights to change
much Topographic factors had a low contribution and played a limited role in constraining
building height growth.

We simulated urban 3D spatial changes in Shenzhen from 2014 to 2034 using the
proposed model. Industrial land expanded extensively, especially in the northern Shenzhen,
with mainly new low-rise buildings. Public management services expanded significantly
in the city centre (Nanshan, Futian, and Luohu), mainly adding new low-rise and medium-
rise buildings. Commercial land expanded significantly in Nanshan, Baoan, and Dapeng,
with mainly new low-rise and medium-rise buildings and a small number of new high-rise
buildings. Residential land expanded significantly around Shenzhen North Station within
Longhua, mostly with low-rise and medium-rise building developments. The distribution
of expansion intensity in Shenzhen was consistent in 2014–2024 and 2024–2034. Urban land
is dominated by low-speed expansion. High-speed expansion was mainly concentrated in
the southern city center and economically developed areas. Differences in expansion scope,
expansion intensity distribution, and high-speed expansion hotspot areas were obvious for
different urban lands.

The building height modelling in this study can identify the crucial factors affecting
building height changes and improve the mining and analysis of the driving mechanism of
urban 3D spatial expansion. The proposed urban 3D spatial expansion simulation model
can synergistically simulate horizontal and vertical growth. The analysis of 3D spatial
expansion results can identify hotspot areas for future urban 3D expansion. This study
solves the problem of the absence of simulation and analysis of real cities in urban 3D
simulations and expands and improves urban 3D simulation research.

In further research, multi-period building height data can be considered for the cal-
ibration and validation of urban vertical growth simulations to improve the evaluation
and accuracy of urban vertical growth simulation. Accurately simulating urban 3D spatial
structure changes in urban 3D simulation studies is difficult and requires data sources of
higher quality and accuracy than those used in this study. The highly accurate 3D building
model information and refined urban spatial big data in the city information model can
be used to enrich data sources for urban 3D simulation and then accurately simulate and
explore 3D spatial change patterns and characteristics of cities.
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