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Abstract: The main purpose of this article is to evaluate the comprehensive performance of two inter-
frequency code bias (IFCB) models using undifferenced and uncombined observations. These two
IFCB models estimate IFCB parameters for each GLONASS satellite (EG model) and IFCB parameters
using a quadratic function of frequency channels K (K = −7 . . . 6) (QF model). The data sampled
in 30 s from 140 stations of the IGS network on 1–7 September 2021, are used for this study. We
analyze all the combinations, including the GLONASS data, from the perspective of positioning
accuracy, convergence time, and data utilization. The results show that the positioning accuracy of
these two IFCB models for the same combination is comparable in three directions in both static and
kinematic modes under long-term observation; the positioning accuracies of each IFCB model for all
the combinations are almost the same in three directions in static mode, and the positioning accuracy
of the combinations including the GPS data in three directions is better than that of the combinations
not including the GPS data for kinematic mode. For some combinations, such as GLONSS-only and
GPS/GLONASS, the convergence time of the EG model is better than that of the QF model, but the
improvement rate does not exceed 22%. However, for other combinations, such as GLONASS/BDS
and GLONASS/BDS/GALILEO, the convergence time of the QF model is better than that of the
EG model, and the improvement rate in some directions is more than 50%. For the combinations
including GPS data, the data utilization of the EG and QF models are almost the same for both static
and kinematic modes; however, for combinations without GPS data, the data utilization of the QF
model is better than that of the EG model. For these two IFCB models (EG and QF models), all
combinations can achieve the set accuracy thresholds in three directions, but the EG model has more
parameters to estimate than the QF model. From the perspectives of positioning accuracy, solution
convergence time, data utilization, and the number of estimated parameters for each IFCB model, we
suggest that the IFCB should be estimated using the QF model when performing combined PPP for
different combinations.

Keywords: precise point positioning (PPP); undifferenced and uncombined observations; inter-
frequency code bias (IFCB)

1. Introduction

Precise point positioning (PPP) is a prevalent technology first proposed in 1997 [1].
Its good stability and high accuracy have been widely used for various applications [2,3].
Although the performance of PPP has been greatly improved in recent years, the long
convergence time of PPP still limits its application in time-critical fields. Multisystem
integration increases the number of available satellites and is an effective way to improve
PPP performance. The global positioning system (GPS), which is the first component
of the global navigation satellite system (GNSS), has achieved great success in geodesy,
geophysics, atmospheric sciences, navigation, positioning, and timing [3]. In addition,
error correction models for GPS are increasingly precise and accurate. Next, the global
navigation satellite system of Russia (GLONASS) was revitalized in October 2011 and
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currently has 24 satellites in orbit. Since then, GNSS has included two satellite systems,
GPS and GLONASS.

With the development of GPS and GLONASS, other global and regional satellite
systems, such as the BeiDou navigation satellite system (BDS) and the Galileo positioning
system of the EU (GALILEO), are gradually being constructed [4–7]. The development of
BDS follows a three-step strategy: the installation of a demonstration system (BeiDou-1), a
regional satellite system (BeiDou-2), and a global satellite system (BeiDou-3) [8,9]. BeiDou-2
consists of five geostationary-orbit (GEO) satellites, five inclined-geostationary-orbit (IGSO)
satellites, and four medium-Earth-orbit (MEO) satellites. Since the end of 2012, the
BeiDou-2 constellation has provided continuous positioning, navigation, and timing ser-
vices for the entire Asia-Pacific region [4,9–12]. The BeiDou-3 system was completed in
July 2020 and began to provide services. The number of available BDS satellites is 49 for
the basic navigation services, including 15 BDS-2, 4 experimental BDS-3S, and 30 BDS-3
satellites. For GALILEO, four in-orbit validation (IOV) satellites and four full operational
capability (FOC) satellites were launched before September 2015 [11–13]. The GALILEO
constellation has had four IOV satellites and 14 FOC satellites since 17 November 2016, after
several years of progress. Currently, there are 26 GALILEO satellites available worldwide,
including 22 full operational capability (FOC) satellites and four in-orbit validation (IOV)
satellites [14–18]. Now, GALILEO and BDS are operational and continuously modernized,
similar to GPS and GLONASS. With GPS, GLONASS, BDS, and GALILEO currently oper-
ating up to approximately 132 satellites, the combined use of these satellites will greatly
enhance the PPP solution in terms of accuracy, reliability, and availability, especially in
visibility-limited environments such as canyons and mountainous areas. In addition, the
international GNSS service (IGS) has conducted a multi-GNSS experiment (MGEX) since
2012 to provide data, models, and analysis support for GNSS PPP [6,12]. Currently, more
than ten analysis center agencies are providing precise products, which enables the use of
GNSS observations for multi-GNSS PPP [6,12,16,18]. With more global and regional con-
stellations under construction, PPP with combined observations is being rapidly developed.
Compared with the single satellite navigation system, combined PPP has dramatically im-
proved in terms of shortening the convergence time, increasing the stability of the solution,
and improving the positioning accuracy [18–20].

Unlike GPS, BDS, and GALILEO, which use code division multiple access (CDMA)
technology to transmit signals, GLONASS uses frequency division multiple access (FDMA)
technology to transmit signals at 14 frequencies (the frequency channels are from −7 to 6).
In this vein, GLONASS code and carrier phase observations suffer from inter-frequency
bias (IFB) [20,21]. The IFB associated with the code is called the inter-frequency code bias
(IFCB), and the IFB associated with the carrier phase is called inter-frequency phase bias
(IFPB) [21,22]. Generally, the IFPB can be observed in receivers of the same manufacturer,
while IFPB rate differences between receivers of different manufacturers can be up to 5 cm
at adjacent frequencies. Many studies [20,23–25] indicate that the IFPB can be estimated
well by a linear function of the frequency channels, so it is not described in this article. It
has been proven that the effect of IFCB could be as high as several meters in the study [26].
Many studies also have shown that IFCB correlates with receiver type, antenna, dome, and
firmware version and remains relatively stable [27–30]. For the IFCB, the error is usually
ignored or estimated as a linear function of the frequency channel [11,13]. If the IFCB is
ignored, then the GLONASS pseudorange observations are usually assigned a small weight
to reduce the effect of IFCB. This significantly reduces the contribution of pseudorange
observations to the PPP solution, especially during the initialization phase, which can
affect the positioning accuracy and convergence speed. In a previous study [30], it was
demonstrated that some receivers satisfy a linear function of the frequency channel to
estimate the IFCB, while some satisfy a quadratic function of the frequency channel to
estimate the IFCB. Furthermore, most of these studies are built on combined observations.
These combined observations have both advantages and disadvantages. The advantage
is that the wavelength is generally longer and can be used to fix the ambiguity (such as
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wide-lane (WL) observations) and reduce the estimation of ionospheric parameters (such
as ionosphere-free (IF) observations). The disadvantages are that the noise is too large,
and it is impossible to estimate the abundant additional parameters for the physics and
meteorology studies. In another study [31], four different existing IFCB methods were
summarized, which estimated the IFCB for each GLONASS satellite (EG model), estimated
the IFCB as a quadratic function of the frequency channel (QF model), modelled the IFCB
as a linear function of the frequency channel (LF model), or neglected the IFCB (NF model),
proposing that it was best to estimate the IFCB using the EG model. Nevertheless, their
experiment only analyzed the performance of GLONASS-only and GPS/GLONASS, and
the other combinations were not analyzed. We know that the numbers of parameters
corresponding to each IFCB model are very different, and the number of satellites observed
per epoch in each combined system also varies greatly. Thus, the performance of different
combinations will vary greatly for different IFCB models during the numerical calculation,
and one IFCB model should not be considered the best just because it performs best in
one or two combination(s). Furthermore, the convergence accuracy they set was a very
low threshold (0.1 m or 0.2 m) [31], which makes it difficult to meet the needs of various
industries. The convergence threshold should be a period of values that can meet the
needs of different applications, and it should be more intuitive to analyze the convergence
time of each IFCB model considering the requirements of different accuracy thresholds.
Lastly, only the accuracy and convergence time were analyzed in the study [31], and a very
important aspect they are missing is the data utilization. Since the extended Kalman filter
was used, one solution should be output per epoch, but the experimental results show that
not every IFCB model will output a solution at every epoch. When the number of satellites
is small, if the adopted IFCB model introduces too many unknowns, then it will prolong
the convergence time of the solution or even lead to no output solutions for some epochs.
This is very important for users who are not using long-term observations. What we want
is a model that works for all combinations, not just for one or two combination(s). Perhaps
the best model performs slightly worse in some combinations than others, but is optimal
when considered as a whole, similar to the least squares (LS) method.

With this background, this study contributes a more comprehensive analysis that
mainly focuses on the GLONASS IFCB models. First, we derive general PPP observation
equations using undifferenced and uncombined observations. To obtain the full rank
function model, we re-parameterize some unknown parameters. For the NF model, the
GLONASS positioning model is essentially identical to the positioning models of GPS,
BDS, or GALILEO. However, the IFCB is not fully absorbed by the receiver clock offset and
ionospheric delay parameters. The remaining frequency-dependent IFCB is reflected in the
pseudorange residuals, which causes many observations to be discarded as gross errors
due to the large residuals. Consequently, the NF model that ignores the effects of IFCB is
the worst. In addition to the NF model, there are only three commonly used IFCB models:
the EG model, the QF model, and the LF model. Second, two relatively better models are
identified from the remaining three models, and then, the two remaining IFCB models
are introduced in detail. Third, detailed statistical analyses of the positioning accuracy,
convergence speed, and data utilization are performed for the two remaining better IFCB
models. Finally, the conclusions are provided.

2. Methods and Dataset
2.1. General Observation Models

The linearized raw observation equations of the pseudorange and carrier phase can be
described as follows [32,33]:

ps,T
r,i = us,T

r ·x + c(dtr − dts,T) + γT
i ·I

s,T
r,1 + m·zwdr + ds,T

r,i − ds,T
i + es,T

r,i (1)

ls,T
r,i = us,T

r ·x + c(dtr − dts,T)− γT
i ·I

s,T
r,1 + m·zwdr + λs,T

i ·(Ns,T
r,i + Ds,T

r,i − Ds,T
i ) + ξs,T

r,i (2)
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where s, T, r, i (i = 1, 2) denote the satellite number, satellite systems (GPS, BDS, GLONASS,
and GALILEO), receiver, and carrier frequency band, respectively; ps,T

r,i , ls,T
r,i are the pseu-

dorange and carrier phase observed values minus the computed values, respectively;
us,T

r denotes the unit vector from a satellite to the receiver; x refers to the receiver posi-
tion increment vector; c is the speed of light in a vacuum; dts,T , dtr are the satellite and
receiver clock errors, respectively; Is,T

r,1 is the slant ionospheric delay at frequency f s,T
1 ;

γT
i = ( f s,T

1 )
2
/( f s,T

i )
2

denotes the ionospheric factor at frequency band i; m is the wet map-
ping function; zwdr is the zenith wet delay; λs,T

i is the carrier phase wavelength; Ns,T
r,i is the

integer ambiguity at frequency band i; ds,T
r,i , ds,T

i are the receiver and satellite uncalibrated

code delay (UCD) at frequency f s,T
i , respectively; Ds,T

r,i , Ds,T
i are the receiver and satellite

uncalibrated phase delay (UPD) at frequency f s,T
i , respectively; es,T

r,i refers to the sum of the

observation noises for the pseudorange observations; ξs,T
r,i is the sum of the observation

noises for the carrier phase observations. To facilitate understanding, the following symbols
are usually defined: 

αT
m,n = ( f s,T

m )
2

( f s,T
m )

2−( f s,T
n )

2

βT
m,n = −( f s,T

n )
2

( f s,T
m )

2−( f s,T
n )

2

DCBs,T
PmPn

= ds,T
m − ds,T

n

DCBs,T
r,PmPn

= ds,T
r,m − ds,T

r,n

ds,T
IFm,n

= αT
m,n·ds,T

m + βT
m,n·ds,T

n

ds,T
r,IFm,n

= αT
m,n·ds,T

r,m + βT
m,n·ds,T

r,n

(3)

Due to the use of precise satellite clock products in PPP, which is calculated from the
IF model, the resulting satellite clock errors absorb the IF combination of the satellite UCD,
as shown below [34]:

c·dts,T
IF12

= c·dts,T + (αT
12·d

s,T
1 + βT

12·d
s,T
2 ) = c·dts,T + ds,T

IF12
(4)

where dts,T
IF12

is the precise clock correction provided by one of the analysis centers. Substi-
tuting Equations (3) and (4) into Equations (1) and (2) yields:

ps,T
r,1 = us,T

r ·x + c·dtr + ds,T
r,1 + m·zwdr + Is,T

r,1 − βT
12·DCBs,T

P1P2
+ es,T

r,1 (5)

ls,T
r,1 = us,T

r ·x + c·dtr − Is,T
r,1 + m·zwdr + ds,T

IF12
+ λs,T

1 ·(Ns,T
r,1 + Ds,T

r,1 − Ds,T
1 ) + ξs,T

r,1 (6)

ps,T
r,2 = us,T

r ·x + c·dtr + ds,T
r,2 + m·zwdr + γT

2 ·I
s,T
r,1 + αT

12·DCBs,T
P1P2

+ es,T
r,2 (7)

ls,T
r,2 = us,T

r ·x + c·dtr − γT
2 ·I

s,T
r,1 + m·zwdr + ds,T

IF12
+ λs,T

2 ·(Ns,T
r,2 + Ds,T

r,2 − Ds,T
2 ) + ξs,T

r,2 (8)

2.2. Inter-System Bias (ISB)

When performing multi-GNSS PPP, it is necessary to consider the inter-system bias
(ISB) among different satellite systems. ISB can be regarded as the difference in the receiver
clock errors of different satellite systems [11]. This requires a satellite system to be selected
as a reference. For example, based on GPS, the ISB parameters of GLONASS satellites are

ISBR
r = c·(TR − TG) + (dR

r,IF − dG
r,IF) (9)

where ISBR
r is the GLONASS ISB parameter; TR, TG are the time references of the GLONASS

and GPS systems, respectively; and dR
r,IF, dG

r,IF are the IF combinations of the UCDs at the
receiver ends. In this paper, only one ISB parameter is set to enhance the strength of the
model, i.e., if one satellite system is selected as the reference, the ISB is introduced for
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all remaining satellite systems when they all use the receiver clock offset of the reference
satellite system [35].

2.3. IFCB Models

This section compares the remaining three IFCB models (EG, QF, and LF models).
The NF model, which ignores the effects of IFCB, has been eliminated in the Introduction
chapter. We will choose two better models from these three remaining models and then
compare the two selected models in all aspects to determine the best model.

Excluding the NF model that ignores the influence of IFCB, the remaining models
include the LF model, which models IFCB as a linear function of the frequency channel,
the QF model, which models IFCB as a quadratic polynomial function of the frequency
channel, and the EG model, which estimates IFCB for each GLONASS satellite. To find
the best IFCB model, we first compare the LF model with the QF model. The QF model is
considered to be superior to the LF model in a previous study [31]. However, they only
provided the analyses of GLONASS and GPS/GLONASS. We now draw conclusions from
the principle.

2.3.1. LF Model

This model can be expressed as follows:

ds,R
r,i = dR

r,i + Ks,R·∆R
r,i (10)

where dR
r,i is the IFCB for the satellite whose frequency channel is 0, Ks,R denotes the

frequency channel (from −7 to 6) of satellite i, and ∆R
r,i is the part of the IFCB that depends

on the frequency channel.

2.3.2. QF Model

This model can be expressed as

ds,R
r,i = dR

r,i + Ks,R·∆R
r,i + (Ks,R)

2·ΩR
r,i (11)

where dR
r,i, Ks,R, ∆R

r,i have the same meaning as they do in Equation (10); ΩR
r,i is part of the IFCB

that quadratically depends on the frequency channel. It is clear that Equations (10) and (11)
are special cases of the following polynomial function:

m

∑
i=0

aixi = a0 + a1x + a2x2 + . . . + amxm (12)

where ai is the polynomial coefficient, xi is the known observed value, and m is the order
of the polynomial. If we consider K in Equations (10) and (11) as x in Equation (12),
and similarly consider dR

r,i, ∆R
r,i, ΩR

r,i in Equations (10) and (11) as ai in Equation (12), then
Equations (10) and (11) are special cases of Equation (12). The difference between Equation (10)
and Equation (11) is that they have different degrees of order. Now, the problem translates
into whether it is better to use a high-degree polynomial to estimate observations or a
low-degree polynomial to estimate observations in mathematics.

From a mathematical point of view, we know that a quadratic function can be used to
fit data conforming to a linear function, except that the coefficient of the quadratic term
is very small during the fitting process. However, a linear function cannot fit data that
conform to the quadratic function because the high-order coefficients that dominate the
data trend do not exist and will cause a large error. Due to the influence of antennas and
other factors, the IFCB of some stations meets the LF model, and some IFCB meets the QF
model. For the IFCB that satisfies the LF model, if the QF model is used for estimation,
the coefficient of the quadratic term tends to zero. The drawback of this approach is that
the accuracy may not be as good as the IFCB estimated by the LF model, but it will not
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cause large errors. However, if the IFCB of some stations satisfies the QF model, but we use
the LF model for fitting, then a large error will result because the high-order coefficients
that dominate the data trend do not exist. Underfitting leads to errors, but overfitting
leads to fitting curve oscillation and sensitivity to noise data. The method of increasing
the dataset, which is easy for satellite positioning, can be used to solve the problem of
fitting curve oscillation caused by overfitting [36]. The actual performance of these two
IFCB models will be compared in the following Sections 3.1 and 3.2 by considering actual
data. Currently, only two models, the EG and QF models, are left to find the best method
to estimate the IFCB.

2.3.3. EG Model

This model can be expressed as

ds,R
r,i = dR

r,i + φs,R
r,i (13)

where dR
r,i has the same meaning as it does in Equation (10) and φs,R

r,i denotes the part
of the IFCB that depends on GLONASS satellite PRNs and their frequency. Moreover,
in this model, the ISB and IFB parameters are highly correlated. To avoid this strong
correlation, for each GLONASS satellite in PPP, the ISB and IFCB are combined into one
parameter, ISFB, for estimation. Substituting Equations (9) and (13) into Equations (5)–(8)
and re-parameterizing yield the equations below:

c·dtT
r = c·dtr + dT

r,IF12

ISFBs,R
r,12 = φs,R

r,2 − γR
2 ·φ

s,R
r,1 + ISBM

r

Is,C
r,1 = Is,C

r,1 + βC
12·DCBC

r,P1P2

Is,R
r,1 = Is,R

r,1 + βR
12·DCBR

r,P1P2
+ φs,R

r,1

Ns,C
r,1 = λC

1 ·(Ns,C
r,1 + DC

r,1 − Ds,C
1 ) + ds,C

IF12
− dC

r,IF12
+ βC

12·DCBC
r,P1P2

Ns,C
r,2 = λC

2 ·(Ns,C
r,2 + DC

r,2 − Ds,C
2 ) + ds,C

IF12
− dC

r,IF12
+ γC

2 ·βC
12·DCBC

r,P1P2

Ns,R
r,1 = λs,R

1 ·(Ns,R
r,1 + Ds,R

r,1 − Ds,R
1 ) + ds,R

IF12
− dR

r,IF12
+ φs,R

r,1 + βR
12·DCBR

r,P1P2

Ns,R
r,2 = λs,R

2 ·(Ns,R
r,2 + Ds,R

r,2 − Ds,R
2 ) + ds,R

IF12
− dR

r,IF12
+ γR

2 ·φ
s,R
r,1 + γR

2 ·βR
12·DCBR

r,P1P2

(14)

where M is the remaining satellite signals when one satellite signal is selected as the
reference, ISBM

r is the ISB parameter for all remaining satellite systems, and capital C is the
satellite system using CDMA technology such as GPS, BDS, and GALILEO.

The QF model is described in Section 2.3.2. Substituting Equations (9) and (11) into
Equations (5)–(8) and re-parameterizing yield the equations below:

c·dtT
r = c·dtr + dT

r,IF12
∆R

r,12 = ∆R
r,2 − γR

2 ·∆R
r,1

ΩR
r,12 = ΩR

r,2 − γR
2 ·ΩR

r,1

Is,C
r,1 = Is,C

r,1 + βC
12·DCBC

r,P1P2

Is,R
r,1 = Is,R

r,1 + βR
12·DCBR

r,P1P2
+ Ks,R·∆R

r,1 + (Ks,R)
2·ΩR

r,1

Ns,C
r,1 = λC

1 ·(Ns,C
r,1 + DC

r,1 − Ds,C
1 ) + ds,C

IF12
− dC

r,IF12
+ βC

12·DCBC
r,P1P2

Ns,C
r,2 = λC

2 ·(Ns,C
r,2 + DC

r,2 − Ds,C
2 ) + ds,C

IF12
− dC

r,IF12
+ γC

2 ·βC
12·DCBC

r,P1P2

Ns,R
r,1 = λs,R

1 ·(Ns,R
r,1 + Ds,R

r,1 − Ds,R
1 ) + ds,R

IF12
− dR

r,IF12

+Ks,R·∆R
r,1 + (Ks,R)

2·ΩR
r,1 + βR

12·DCBR
r,P1P2

Ns,R
r,2 = λs,R

2 ·(Ns,R
r,2 + Ds,R

r,2 − Ds,R
2 ) + ds,R

IF12
− dR

r,IF12
+

γR
2 ·Ks,R·∆R

r,1 + γR
2 ·(Ks,R)

2·ΩR
r,1 + γR

2 ·βR
12·DCBR

r,P1P2

(15)



Remote Sens. 2022, 14, 1476 7 of 23

The symbols M, C have the same meaning as they do in Equation (14).

2.4. Parameter Estimation

For the EG and QF models, the estimated parameters for each station include the
increment of receiver position vector x, receiver clock error dtT

r , the ISFBs,R
r,12 for the ISB and

IFCB estimated for each GLONASS satellite, as shown in Equation (16), the ISBM
r for the

remaining three systems, and the ∆R
r,12, ΩR

r,12 for the GLONASS IFCB estimated as the QF
model, as shown in Equation (17), the tropospheric delay ZTD, the slant ionospheric delay
Is,T

r,1 , and the float ambiguity Ns,T
r,i . Equation (16) includes all of the estimated parameters for

the EG model, and Equation (17) includes all of the estimated parameters for the QF model.

X = [x, dtT
r , ISFBs,R

r,12, ZTD, Is,T
r,1 , Ns,T

r,i ]
T

(16)

X = [x, dtT
r , ∆R

r,12, ΩR
r,12, ISBM

r , ZTD, Is,T
r,1 , Ns,T

r,i ]
T

(17)

where X refers to the estimated parameter vector.

2.5. Data and Processing Strategies
2.5.1. Experimental Data

To conduct an overall analysis of these IFCB models, we select observations sampled
in 30 s from 140 stations of the IGS network on 1–7 September 2021. Figure 1 displays the
geographic distribution of the 140 selected stations.

Figure 1. Distribution of the selected 140 IGS stations.

2.5.2. Processing Strategies

Data processing and analysis were carried out by using self-developed C++ language
programming software. This software was developed based on other mature, open-source
software, such as RTKLIB, goGPS, PRIDE-PPPAR, and GAMP [37–40]. Figure 2 shows the
flow chart of the PPP processing strategy. Table 1 lists the detailed processing models and
strategies applied for combined PPP.
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Figure 2. The flow chart of PPP processing strategy.

Table 1. Detailed processing models and strategies applied for combined PPP.

Item Models/Strategy

Constellations GPS, GLONASS, BDS, GALILEO
Observations Raw code and phase observations

Estimator Extended Kalman filter
Sampling rate 30 s

Elevation cut off angle 7◦

Weighing strategy A priori precision of 0.003 and 0.6 m for raw phase and code;
Elevation-dependent weighing (1 for E > 30◦ otherwise 2 × sin(E)) is used

Receiver phase center Corrected with the values from MGEX
Satellite phase center Corrected with the values from MGEX

Phase windup Corrected
Relativistic effect Relativistic models

Sagnac effect Corrected
Tidal effects Consider solid tides, ocean loading, and polar tides

Satellite orbit and clock precise products from MGEX
Differential code bias using MGEX DCB products
Receiver clock offset Set up for GPS and estimated as white noise

Receiver ISB estimated as 1-day constants
Station coordinates Estimated as constants/white noises in static/kinematic modes

Zenith tropospheric delay ZTD estimation; Estimated as random-walk noise (1.0 × 10−4 m/sqrt(s)); GMF is used
Slant ionospheric delay Estimated using two frequencies; Estimated as random walk (4 × 10−2 m/sqrt(s))

Phase ambiguities Estimated as float constants for each arc

GLONASS IFCB estimating IFCB for each GLONASS satellite and modelling IFCB
as a quadratic function of frequency channels

3. Results and Analyses
3.1. Positioning Accuracy

In this section, we analyze all the combinations, including the GLONASS data, from
the perspective of positioning accuracy. The accuracy of each combination is the average
accuracy of all selected stations. The positioning accuracy is assessed through a comparison
with IGS weekly solutions.

Figures 3–6 show the positioning accuracies of different combined solutions using the
NF model, LF model, QF model, and EG model for all IGS selected stations in static mode.
The abbreviations G, B, R, and E denote GPS, BDS, GLONASS, and GALILEO, respec-
tively. G/R, R/B, R/E, G/R/B, G/R/E, R/B/E, and G/R/B/E denote the GPS/GLONASS,
GLONASS/BDS, GLONASS/GALILEO, GPS/GLONASS/BDS, GPS/GLONASS/GALILEO,
GLONASS/BDS/GALILEO, and GPS/GLONASS/BDS/GALILEO, respectively. In each
figure, the positioning accuracies of different combined solutions are not very different
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in the three directions using the one-week observation data. Figures 3–6 demonstrate
that the positioning accuracies of the same combination for these four IFCB models in
static mode are comparable in three directions for the one-week observation data. The
highest accuracy in each figure is approximately 0.4 cm in the N direction, followed by
approximately 0.5 cm in the E direction, and the lowest accuracy is approximately 1.2 cm in
the U direction. Figures 7–10 show the positioning accuracy of different combined solutions
using the NF model, LF model, QF model, and EG model for all stations in kinematic
mode. The positioning accuracies of different combined solutions are very different in the
three directions for each figure. This is mainly because, in kinematic mode, the station
coordinates are estimated as white noise, unlike those in static mode that are estimated as
constants. The positioning accuracies of the same combination for these four IFCB models
are almost the same in the E, N, and U directions using the one-week observation data. In
kinematic mode, the average accuracies of all different combinations for these four IFCB
models in the E, N, and U directions are 4.4, 2.5, and 6.7 cm, respectively. However, for
GLONASS-only, the accuracy of the EG model in the N direction is the worst among all the
IFCB models. There are two possible reasons for the anomalous accuracy of the EG model
in the N direction, the first being that the station coordinates are estimated as random noise
in the kinematic mode, and the second being that the number of observed equations using
only GLONASS data is relatively small and that the EG model greatly increases the number
of parameters being estimated, thus affecting the accuracy of the solution. Figures 3–10
also reveal that the combined systems with GPS data have better positioning results than
other combined systems for both static and kinematic modes. In static mode, the average
accuracies in the E, N, and U directions are 0.4, 0.4, and 1.0 cm for the combinations that
contain the GPS data, respectively, and 0.5, 0.4, and 1.1 cm for the combinations that do not
contain the GPS data, respectively. In kinematic mode, the average accuracies in the E, N,
and U directions are 2.3, 2.0, and 5.4 cm for the combinations that contain the GPS data,
respectively, and 6.4, 3.1, and 8.6 cm for the combinations that do not contain the GPS data,
respectively. The foremost reason is that the stations that can receive GPS signals are most
widely distributed, and the GPS signal processing models are much more complete than the
models for other systems. These results make the combined solutions meaningful because
the combination of different systems can improve the positioning accuracy, especially in
kinematic mode.

Figure 3. Positioning accuracy of different combined solutions for the NF model in static mode. Note:
R, G/R, R/B, R/E, G/R/B, G/R/E, R/B/E, and G/R/B/E denote GLONASS, GPS/GLONASS,
GLONASS/BDS, GLONASS/GALILEO, GPS/GLONASS/BDS, GPS/GLONASS/GALILEO,
GLONASS/BDS/GALILEO, and GPS/GLONASS/BDS/GALILEO, respectively.
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Figure 4. Positioning accuracy of different combined solutions for the LF model in static mode.

Figure 5. Positioning accuracy of different combined solutions for the QF model in static mode.

Figure 6. Positioning accuracy of different combined solutions for the EG model in static mode.
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Figure 7. Positioning accuracy of different combined solutions for the NF model in kinematic mode.

Figure 8. Positioning accuracy of different combined solutions for the LF model in kinematic mode.

Figure 9. Positioning accuracy of different combined solutions for the QF model in kinematic mode.
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Figure 10. Positioning accuracy of different combined solutions for the EG model in kinematic mode.

3.2. Convergence Time

To compare the effectiveness of these IFCB models for different combinations, we
comprehensively measure their convergence time for different combinations. We define the
PPP performance as the time taken for 68% and 95% of all stations to reach the specified
accuracy and retain this accuracy for 20 sequence epochs. For static PPP, the specified
accuracy is 2 cm for the E, N, and U components; for kinematic PPP, the specified accuracy
is 10 cm for the E, N, and U components.

To purely compare the performances of the NF, LF, and QF models, we only analyze
the convergence time of these three models in combination R to identify the best model.
Table 2 shows the convergence times of the NF model, LF model, and QF model in the
three directions under static and kinematic conditions. In the table, 68% and 95% represent
the time required for 68% and 95% of the total stations to reach the convergence accuracy
in three directions, respectively. The receiver of station DAE2 is Trimble NetR9, and its
IFCB satisfies the LF model according to Shi’s article; the receiver of station LPGS is JAVAD
TRE_G3 DELTA, and its IFCB satisfies the QF model according to Shi’s article [30]. Table 2
shows that, overall, the convergence time of the LF model is better than that of the NF
model. For 68% of the total stations, compared to those of the NF model, the convergence
times of the LF model are improved by 23%, 25%, and 24% in the E, N, and U directions in
the static case, respectively, and by −6%, 20%, and 19% in the kinematic case, respectively;
for 95% of the total stations, the improvements are 19%, 27%, and 0% in the static case,
and 10%, 19%, and 33% in the kinematic case. Overall, the convergence time of the QF
model is better than that of the LF model. For 68% of the total stations, compared to those
of the LF model, the convergence times of the QF model are improved by 3%, 0%, and
0% in the E, N, and U directions in the static case, respectively, and by 4%, −4%, and 7%
in the kinematic case, respectively; for 95% of the total stations, the improvements are
29%, −5%, and 36% in the static case, and 1%, 3%, and 0.4% in the kinematic case. For
station DAE2, even if its IFCB satisfies the LF model, the convergence times of the LF and
QF models are comparable in the static case, and the convergence times of the QF model
in the kinematic case are improved by 24%, 51%, and 23% in the E, N, and U directions,
respectively, compared to those of the LF model. For station LPGS, even if its IFCB satisfies
the QF model, the convergence times of the QF model in the static case are improved by
8%, 12%, and 5% in the E, N, and U directions, respectively, compared to those of the LF
model, and the convergence time of the LF and QF models are comparable in the kinematic
case. This indicates that the QF model can also be used to estimate the IFCB, satisfying the
LF model well. The results in Table 2 also prove the contents of Section 2.3.2.
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Table 2. Convergence times of the NF model, LF model, and the QF model in combination R (unit: min).

Static Kinematic

E N U E N U

68%
NF 116 67 97 109 84 175
LF 89 50 73 115 68 142
QF 86 50 73 110 71 132

95%
NF 298 126 244 207 178 374
LF 241 92 244 187 144 250
QF 170 97 159 185 139 249

DAE2
LF 63 81 244 78 61 81
QF 63 81 244 61 30 62

LPGS
LF 106 106 102 236 264 269
QF 97 93 97 233 264 269

Now, the two remaining better IFCB models are the QF model and the EG model. To
determine the best model for estimating IFCB, the following will compare these two IFCB
models in various aspects. Tables 3–18 present the convergence time for all combinations,
including the GLONASS data. All tables show that the convergence times of the EG and
QF models have no obvious law under the same convergence evaluation conditions. For
the GLONASS-only combination, when 68% of the total stations reach the convergence
accuracy, compared to those of the QF model, the improvements of the convergence time
for the EG model in the three directions are 15%, 20%, and −15% in static mode, and 10%,
19%, and 0% in kinematic mode; when 95% of the total stations reach the convergence
accuracy, the improvements are 10%, 18%, and −3% in static mode, and 14%, 19%, and
6% in kinematic mode. For the combinations including GPS data, when 68% of the total
stations reach the convergence accuracy, the performance of the EG model and that of the
FQ model are roughly the same; when 95% of the total stations reach the convergence
accuracy, the convergence time of the EG model in the E direction is better than that of the
QF model, with the improvement being approximately 22%, and the convergence times
in the N and U directions are roughly the same. The reason may be that GPS satellites
are widely distributed around the world, and the number of GPS satellites that can be
observed in each epoch is large and does not change much over time. This is beneficial
for the EG model with many unknown parameters. For the remaining combinations, the
convergence speed of the EG model is much slower than that of the QF model. When 68%
of the total stations reach the convergence accuracy, compared with those of the EG model,
the convergence speeds of the QF model in the E, N, and U directions are increased by
11%, 9%, and 18% in the static case, respectively, and 6%, 16%, and 18% in the kinematic
case; when 95% of the total stations reach the convergence accuracy, the improvements
are 8%, 22%, and 24% under static conditions and 29%, 54%, and 52% under kinematic
conditions. This is mainly because the EG model greatly increases the number of estimated
parameters, and these satellites are affected by factors such as geography and time, leading
to a large variation in the number of available satellites that can be observed per epoch.
As a result, the numerical solution is unstable. The above results show that the EG model
converges slightly better than the QF model in some directions for some combinations,
and the improvement rate does not exceed 22%. However, the QF model converges much
faster than the EG model in some directions for some combinations, and the improvement
rate in some directions is more than 50%. The experimental results also show that the
convergence time of the EG model is shorter than that of the QF model in three directions
for combination R, but the convergence time of the QF model is shorter than that of the EG
model in three directions for the combination R/B. This means that the convergence time is
related not only to the IFCB models, but also to the addition of other constellations.
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Table 3. Convergence time of the EG method (unit: min) (R).

Static PPP Kinematic PPP

E N U E N U
68% 73 39 85 99 61 132
95% 153 83 163 158 125 232

Table 4. Convergence time of the QF method (unit: min) (R).

Static PPP Kinematic PPP

E N U E N U
68% 86 50 74 110 75 132
95% 170 102 159 185 139 249

Table 5. Convergence time of the EG method (unit: min) (G/R).

Static PPP Kinematic PPP

E N U E N U
68% 44 28 66 20 9 24
95% 99 51 163 47 20 39

Table 6. Convergence time of the QF method (unit: min) (G/R).

Static PPP Kinematic PPP

E N U E N U
68% 43 28 59 21 9 23
95% 148 67 165 47 20 40

Table 7. Convergence time of the EG method (unit: min) (R/B).

Static PPP Kinematic PPP

E N U E N U
68% 108 58 107 74 40 80
95% 216 202 250 170 105 279

Table 8. Convergence time of the QF method (unit: min) (R/B).

Static PPP Kinematic PPP

E N U E N U
68% 95 53 88 68 36 60
95% 149 141 229 130 72 147

Table 9. Convergence time of the EG method (unit: min) (R/E).

Static PPP Kinematic PPP

E N U E N U
68% 88 43 95 35 24 57
95% 196 115 329 163 146 347

Table 10. Convergence time of the QF method (unit: min) (R/E).

Static PPP Kinematic PPP

E N U E N U
68% 72 41 79 39 17 49
95% 210 88 233 127 32 110
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Table 11. Convergence time of the EG method (unit: min) (G/R/B).

Static PPP Kinematic PPP

E N U E N U
68% 42 29 60 21 8 26
95% 99 69 157 36 16 39

Table 12. Convergence time of the QF method (unit: min) (G/R/B).

Static PPP Kinematic PPP

E N U E N U
68% 43 29 62 22 9 24
95% 149 69 156 41 17 41

Table 13. Convergence time of the EG method (unit: min) (G/R/E).

Static PPP Kinematic PPP

E N U E N U
68% 47 31 64 16 6 17
95% 127 56 164 34 14 49

Table 14. Convergence time of the QF method (unit: min) (G/R/E).

Static PPP Kinematic PPP

E N U E N U
68% 44 28 62 18 8 20
95% 145 50 164 35 14 49

Table 15. Convergence time of the EG method (unit: min) (R/B/E).

Static PPP Kinematic PPP

E N U E N U
68% 87 46 106 54 25 55
95% 154 122 269 163 94 161

Table 16. Convergence time of the QF method (unit: min) (R/B/E).

Static PPP Kinematic PPP

E N U E N U
68% 84 38 84 42 15 46
95% 154 105 172 93 38 90

Table 17. Convergence time of the EG method (unit: min) (G/R/B/E).

Static PPP Kinematic PPP

E N U E N U
68% 49 30 77 19 7 20
95% 125 67 171 37 14 45

Table 18. Convergence time of the QF method (unit: min) (G/R/B/E).

Static PPP Kinematic PPP

E N U E N U
68% 50 29 77 19 9 20
95% 145 56 171 41 13 45
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To better investigate the convergence speeds of the two IFCB models (the EG and
QF models) in three directions for different combinations, we studied the convergence
time when the convergence accuracies of these two IFCB models in the three directions
reached 0.02, 0.04, 0.06, 0.08, and 0.1 m in static mode and 0.05, 0.1, 0.15, 0.2, and 0.25 m in
kinematic mode. Figure 11 shows the time required for 68% of the total stations to reach
the convergence accuracy. Figure 12 shows the time required for 95% of the total stations to
reach the convergence accuracy. Each picture includes four parts (a), (b), (c), and (d), and
each part includes four subplots. It means that each figure includes 16 subplots. The left
column of each part shows the convergence times of the two IFCB models in static mode
with different convergence accuracy requirements, while the right column of each part
shows the convergence times of the two IFCB models in kinematic mode with different
convergence accuracy requirements. These two figures show that the convergence speed
in the N direction is faster than that in the E and U directions for all combinations. The
figures also show that, regardless of static or kinematic mode, when the accuracy threshold
value is set relatively low, the convergence speeds of the two IFCB models for the same
combination in the three directions are roughly the same. The convergence speed of the
EG model in some directions for the combinations including the GPS data is slightly better
than that of the QF model when the accuracy threshold value is set relatively high, but
the improvement is limited. In other combinations, such as combination R/B or R/B/E,
the EG model generally has a worse convergence speed than the QF model, and in some
directions, the convergence speed of the QF model is much better than that of the EG model.
This means that, although the EG model has slightly better convergence time in some
directions for some combinations than the QF model, the improvement is limited. In the
G/R combination, for example, the convergence time of the EG model is better than that of
the QF model, which is consistent with the conclusions reported in a previous study [31].
In other combinations, the EG model lags far behind the QF model in some directions,
such as the B/E combination. The reasons for this result are that the EG model greatly
increases the number of unknown parameters, and the number and quality of observation
satellites in the combinations without the GPS data are related to the geographical location
of the station, receiving antennas, etc. Both of these reasons will have a great impact on the
convergence time and accuracy of the solution.

Figure 11. Cont.
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Figure 11. The corresponding time when 68% of the total stations reach the convergence accuracy in
three directions. The figure includes four parts (a–d), and each part includes four subplots. The left
column of each part shows the convergence times of the two IFCB models in static mode with different
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convergence accuracy requirements, while the right column of each part shows the convergence
times of the two IFCB models in kinematic mode with different convergence accuracy require-
ments. Note: EEG, NEG, and UEG indicate the accuracies of the EG model in the E, N, and U
di-rections, respectively; EQF, NQF, and UQF indicate the accuracies of the QF model in the E, N, and
U directions, respectively.

Figure 12. Cont.
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Figure 12. The corresponding time when 95% of the total stations reach the convergence accuracy in
three directions. The figure includes four parts (a–d), and each part includes four subplots. The left
column of each part shows the convergence times of the two IFCB models in static mode with different
convergence accuracy requirements, while the right column of each part shows the convergence
times of the two IFCB models in kinematic mode with different convergence accuracy requirements.

3.3. Data Utilization

Since the Kalman filter is used in the calculation process, one solution should be
obtained for each epoch. However, the experimental results show that the EG model cannot
output solutions in some epochs for some combinations, while the QF model can almost
provide output solutions for each combination in each epoch. Therefore, it is necessary to
study the difference in data utilization between these two models (EG and QF models). In
this paper, the data utilization is defined as the ratio of the number of solutions output by
each station for both methods, and the QF method is used as a reference. In other words,
data utilization is the ratio of the number of solutions of the EG method to the number
of solutions of the QF method at each station. Table 19 gives the data utilization for each
satellite combination. These data are the average data utilization of all stations. From these
data, R/B has the lowest data utilization, followed by R/E, R/B/E, and R. However, in the
combinations that contain GPS data, the data utilization is almost 100%. This is because the
stations that can receive GPS signals are widely distributed around the world, and more
GPS satellites can be observed in each epoch, which increases the number of observation
equations and is good for the EG method with more unknown parameters. Thus, the data
utilization values of these two IFCB methods are approximately the same. However, in
the combinations that do not contain GPS data, the number of satellites is affected by time,
geography, and receiver antennas, and the EG model has more parameters to be estimated
than the QF model. These reasons lead to the EG model not being able to output solutions
in some epochs, so the data utilization rate decreases.
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Table 19. Data utilization of the EG model (based on the QF model).

Combinations Static Kinematic

R 99.99% 99.97%
G/R 100.00% 100.00%
R/B 84.86% 84.12%
R/E 94.14% 94.10%

G/R/B 99.90% 100.00%
G/R/E 100.00% 100.00%
R/B/E 99.24% 99.18%

G/R/B/E 100.00% 100.00%

4. Discussion

This paper discussed four IFCB models, among which two poor models are eliminated
through theoretical analysis at the very beginning. The remaining two methods are studied
in detail in terms of positioning accuracy, convergence time, and data utilization. In some
combinations, such as G/R and R, the convergence time of the EG model is comparable
to that of the QF model and, in some directions, is even slightly better than that of the QF
model. These results are consistent with previous research results [31]. However, for other
combinations, such as R/B, the convergence time of the QF model is much better than that
of the EG model. The main reason is that the EG model has too many unknown parameters,
and the number of available satellites is sometimes too small for some combinations. Due
to the geometric distribution of some satellite systems (BDS, GLONASS, and GALILEO)
and the problems of IGS station receiver antennas, many stations cannot receive a sufficient
number of satellites, which is the main factor leading to the different performances of the
two IFCB models. From the above, we can infer that when the receiver can receive more
satellites from any satellite system in the future and the error models of these satellites can
be well corrected, the accuracy of the EG model may be as good as that of the QF model.
In the next step, the main research direction is to fix the ambiguity of GLONASS with the
addition of IFCB correction.

5. Conclusions

This paper provides a much more detailed analysis of the two IFCB models for
combined PPP. We first propose a universal PPP model that uses raw pseudorange and
carrier phase observations instead of other combined observations to amplify noise errors.
In this model, two better IFCB handling schemes, the EG and QF schemes, from the four
commonly used schemes are comprehensively compared and analyzed. To obtain the
full-rank function model, we recombine the unknown parameters. The data from 140 IGS
stations obtained between 1–7 September 2021 are used to validate the feasibility of these
proposed IFCB models, and the results are presented.

First, the positioning accuracy of four IFCB models for different combined solutions is
analyzed in both static and kinematic modes with respect to the IGS weekly solutions. The
positioning accuracies of different combined solutions for the same IFCB model are not
very different in the three directions using the one-week observation data in static mode.
The positioning accuracies of the same combination for these four IFCB models in static
mode are also compatible in the three directions using the one-week observation data. In
static mode, the average accuracies of the positioning results are 0.5, 0.4, and 1.2 cm in the E,
N, and U directions, respectively. In kinematic mode, the positioning accuracies of different
combined solutions are very different in the three directions for each IFCB model. However,
the positioning accuracies of the same combination for these four IFCB models are almost
the same in the E, N, and U directions using the one-week observation data. In kinematic
mode, the average accuracies of the positioning results in the E, N, and U directions are 4.4,
2.5, and 6.7 cm, respectively. The results also reveal that the combinations with GPS data
have better accuracy in three directions than other combinations in kinematic mode.
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Second, the results show that the convergence time of the LF model overall is better
than that of the NF model. For 68% of the total stations, compared to those of the NF
model, the convergence times of the LF model in the E, N, and U directions are improved
by 23%, 25%, and 24% in the static case, respectively, and by −6%, 20%, and 19% in the
kinematic case, respectively; for 95% of the total stations, the improvements are 19%, 27%,
and 0% in the static case, and 10%, 19%, and 33% in the kinematic case. For 68% of the total
stations, compared to those of the LF model, the convergence times of the QF model in
the E, N, and U directions are improved by 3%, 0%, and 0% in the static case, respectively,
and by 4%, −4%, and 7% in the kinematic case, respectively; for 95% of the total stations,
the improvements are 29%, −5%, and 36% in the static case, and 1%, 3%, and 0.4% in the
kinematic case. The experimental results also show that the quadratic function can be used
to estimate the IFCB regardless of whether the IFCB satisfies the primary function or the
quadratic function.

For the QF model and EG model, the convergence time of the EG model is better
than that of the QF model for combinations such as GLONASS-only and GPS/GLONASS,
which is consistent with the conclusions in the previous study [31], but the improvement
rate does not exceed 22%. For the rest of the combinations that do not contain GPS data,
the convergence speed of the QF model is much better than that of the EG model. The
improvement rate in some directions is more than 50%. The results also show that the
convergence time is related not only to the IFCB models, but also to the addition of other
constellations. To better study the IFCB model, we study the convergence speed of the
combined solutions with different accuracy thresholds. The results show that for some
combinations, the EG models indeed converge slightly faster than QF models, but in some
combinations, the QF models converge much faster than the EG models.

Third, in the combinations that contain GPS data, the EG model and QF model
have almost the same data utilization in both static and kinematic modes, while in the
combinations that do not contain GPS data, the data utilization of the EG model is less
than that of the QF model in both static and kinematic modes. In summary, the EG model
and the QF model can achieve the same accuracy in both static and kinematic modes after
long-term observation. In some combinations, the convergence time of the EG model is
better than that of the QF model in three directions, but the improvement is limited. In other
combinations, the convergence time of the QF model is much better than that of the EG
model in three directions. For the combinations including GPS data, the QF model and EG
model have almost the same data utilization values; for the combinations not including GPS
data, the QF model has higher data utilization than the EG models. Therefore, considering
the positioning accuracy, convergence time, data utilization, and reliability of the function
model, we suggest using the QF model to estimate IFCB.
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