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Abstract: Obtaining relevant classification results for hyperspectral images depends on the quality
of the data and the proposed selection of the samples and descriptors for the training and testing
phases. We propose a hyperspectral image classification machine learning framework based on
image processing techniques for denoising and enhancement and a parallel approach for the feature
extraction step. This parallel approach is designed to extract the features by employing the wavelet
transform in the spectral domain, and by using Local Binary Patterns to capture the texture-like
information linked to the geometry of the scene in the spatial domain. The spectral and spatial features
are concatenated for a Support Vector Machine-based supervised classifier. For the experimental
validation, we propose a controlled sampling approach that ensures the independence of the selected
samples for the training data set, respectively the testing data set, offering unbiased performance
results. We argue that a random selection applied on the hyperspectral dataset to separate the samples
for the learning and testing phases can cause overlapping between the two datasets, leading to biased
classification results. The proposed approach, with the controlled sampling strategy, tested on three
public datasets, Indian Pines, Salinas and Pavia University, provides good performance results.

Keywords: classification; hyperspectral; LBP; support vector machine; controlled random sampling;
shock filters; anisotropic diffusion; wavelet transform

1. Introduction

Our environment is composed of different materials, which may seem similar to the
human eye in visible white light, but which have other characteristics in monochromatic,
infrared, or ultraviolet light [1]. Some of these features, which are not visible to the naked
human eye, are integrated into the field of hyperspectral imaging and spectroscopy [2]. The
hyperspectral image (HSI) takes the response of a surface/material under electromagnetic
radiation at different wavelengths, both inside and outside the visible spectrum to obtain a
characteristic spectral representation of it [2,3].

The importance and relevance of hyperspectral imaging is given by its ability to
discriminate between different materials based on the patterns exhibited in the spectral
domain/resolution of the data, but also by its ability to analyze a small spatial structure
or pattern in the spatial domain [4]. By combining rich spectral information with spatial
information, hyperspectral images can achieve increasingly accurate classifications of
great importance in agriculture [5], forestry [6] and other fields [7,8]. For example, the
classification of the hyperspectral image has become a dynamic and interesting field of
research. Making a comparison between the representation of traditional RGB images and
hyperspectral images, the latter look more like 3D data cubes; therefore, it is necessary to
explore the various classification methods properly designed and optimized for this special
type of data structures [9].
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In the three-dimensional representation of the hyperspectral images (HSI), the first
two dimensions represent the information stored in space (the 2D geometry of the object,
like any monochromatic/black and white image), having M rows, N columns; the third
dimension represents the spectral information of different scene objects spread across B
spectral bands. This manner used for data representation is illustrated in Figure 1. The
HSIs, of size M × N × B, like any captured data, are noisy, so assuming an additive noise
model, the observed HSI image, denoted as F is:

F = U + n, (1)

with U being the noise-free data and n the noise. As described in [10], the noise in HSI
images has different intensities along the spectral bands.

Figure 1. A representation of the hyperspectral image of size M × N × B, with the corresponding
spectral information along a large number B of narrow continuous wavelengths (left); an illustration
of different spectral information (along the B dimension) for a similarly looking spatial geometry
point/patch in the N ×M plane from 16 different object classes (right).

Most hyperspectral datasets are obtained from setups that collect a continuous repre-
sentation of the data along the spectrum (wavelength of light). This translates into large
amounts of information capable of providing a great deal of detail, but with the downfall
of having an increase in processing time during analysis. By reducing the problem to a
discrete number B of spectrally narrow bands, representations like those in Figure 1 can
be obtained.

For a similarly looking object or material, in terms of geometrical patterns, HSI pro-
vides cues for developing algorithms that can cope with the variability in the spectral
domain of the data and provide a relevant classification of objects and materials in the
scene for a better scene understanding. Each individual pixel is characterized by the
spectral signature for a certain type of material. Depending on the relationship between
different details in the spatial domain and those related to the scene (e.g., number of pixels
for a certain scene or object of similar material) some relevant information that can be
used for classification is given by the strong correlations between adjacent pixels. Those
relations foster the need for classification methods designed specifically for these types of
images [11], where spatial and spectral data are considered jointly and where it is possible
to encounter the phenomenon of the same object with different spectra and different objects
with the same spectrum [12]. These phenomena, on the other hand, restrict the accuracy of
classification, as the dimensionality of the problem increases and the size of the training set
may not be sufficient to extract all relevant parameters, causing overfitting of the classifier
(the Hughes phenomenon [13]). However, as spatial resolution increases, the HSI image
provides richer spatial structures and texture features, increasing the available data and
data variability along the spatial dimension as well, which helps to increase the accuracy of
the classification [14]. This also mitigates the problem of the low/medium spatial resolution
of HSI data for Earth observation, where, if pixels cover large spatial regions, there is a
tendency to generate mixed spectral signatures, leading in turn to high interclass similarity
in border regions [15].
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State-of-the-art classification techniques have been developed successfully for some
HSI applications [16]. However, the methods thus developed tend to face difficulties in
realistic situations, where the selection of labeled training samples available in the HSI
classification is usually small [17], which leads to the problem of classifying images based
on small sample sizes.

More than the problem of the insufficient labeled available datasets, hyperspectral
images may also present artifacts resulting from uncontrolled changes in the reflectance cap-
tured by the spectrometer (the presence of clouds/changes in the atmospheric conditions,
etc.) or instrumental noise corrupting spectral bands data [18].

To cope with the large amount of information stored in hyperspectral images, but
also to avoid the problem imposed by such large sizes of the data, two main families of
approaches are mentioned in the literature [19] focusing on methods for feature extraction
and, secondly, focusing on methods for feature selection. Methods for extracting new
features allow the creation of new descriptors from the original bands, whereas the feature
selection methods must allow the extraction from the data cube of the most relevant
information stored in the spectral bands. The two approaches will be combined in this
paper in the proposed processing framework.

In a previous work, [20], we investigated how hyperspectral images can be filtered and
enhanced so as not to destroy any of the relevant information existing in either the spatial
(geometry of the scene) dimension or the spectral one. In our study from [21], we focused
on feature descriptors for the complex HSI data and opened the case for approaching
this component in the processing pipeline, again considering the coupling of the two
dimensions of the data. In this work, we focused on proposing an end-to-end approach
for HSI data processing, consisting of filtering and enhancing stages, followed by a feature
extraction step and a classification phase. All stages consider the simultaneous processing
of the spatial and spectral information in the data. With this respect, we investigated how
the choice of partitioning the available HSI datasets into a training subset and a testing
subset when supervised learning classifiers are used can bias the results and provide
misleading classification results. Thus, in the proposed work we also include a method
for controlled data sampling, ensuring proper independence between the two subsets and,
subsequently, trustworthy labeling results.

We refer to our processing sequence as being an end-to-end parallel one by referring
to the classification in [22] where the difference between the integrative and the parallel is
given. More, by including a denoising step, data does not require any pre-processing.

The rest of the paper is organized as follows. Section 2 describes the related work. The
overall addressed challenges by this work and the proposed methods used are explained in
detail in Section 3. In Section 4 we detail the chosen datasets and their proposed partitioning
method, the experimental setup configuration and provide the results obtained both in
terms of accuracy in classification and visual results. The discussions are reserved for
Section 5 and the conclusions are given in Section 6.

2. Related Work

Spectral images, like any type of image, are affected by noise, [18], limiting the quality
of the desired classification results. To reduce the noise in a hyperspectral image, different
approaches have been advocated. Krishnamurthy, in [23], partitioned a hyperspectral cube
into anisotropic cells and maximized a penalized log-likelihood criterion. Furthermore,
variational approaches have been applied on HSI, such as the total variation (TV), proving
to be effective and capable of preserving the edges in the data. In [24], a spectral-spatial
adaptive model based on the seminal work of Rudin–Osher–Fatemi (ROF) from [25] was
employed, showing relevant classification results, even when the noise level is different
in each band. In [26], the authors proposed a hybrid spatial-spectral derivative-domain
wavelet shrinkage that benefits from the dissimilarity of the signal regularity in the spa-
tial and spectral dimensions of the HSI. The algorithm allows a degree of smoothness
that can be adjusted, but the spatial-spectral dependencies of HSI images are not consid-
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ered. Being a pseudo-3D data cube, the hyperspectral image is represented not only in
the spectral dimension but also in the spatial one. To consider those dependencies, the
combined spatial and spectral weighted hyperspectral total variation (CSSWHTV) model
is introduced in the work of Yuan [27], combining the total spectral and spatial weighted
hyperspectral variation.

Initially, the HSI classification was based only on information provided by the spectral
dimension, but those spectral features are not enough to represent and distinguish the
different objects or elements present in a hyperspectral image (HSI). In [28], a multi-scale
feature extraction classification framework is introduced, capable of improving the accuracy
of HSI classification due to the decomposition of the HSI into multi-scale structures through
a Gaussian pyramid model, with the advantage of preserving detailed structures at the
edge regions of the image.

Based on the same concept of dependency between the two dimensions, spatial and
spectral, a spectral-spatial method for classification of hyperspectral images is presented
in [29], where an edge weighting function, based on low-frequency edge weighting is
designed for the spatial dimension, while a combined spectral and spatial Laplacian matrix
is used in classification.

Both [28] and [29] approaches take into consideration the HSI classification problem
by having an altered representation of the HSI data cube, incorporating a stage dedicated
to feature extraction followed by a stage for feature classification. Recent advances in deep
learning methods challenge this approach, by providing processing architectures that no
longer require handcrafting feature extraction methods, but rather rely on the training step
to extract information that structures the weights of a neural network. We refer the reader
to the work of Paoletti, in [7], for an extensive overview of the field, including discussions
regarding available datasets and dataset partitioning for training and testing limiting the
benefits of such approaches. Even in [17], it is argued that there is an extensive gap between
the benefits of deep learning methods and practical situations where the lack of labeled
data for training causes these deep learning methods to require further investigation and
research. In [17], the author does not consider, however, the unbiased partitioning of the
dataset between the training and testing phase of the experiments.

Feature extraction is the method that takes the input data, transforms and translates it
into another space of representation—one that contains most of the relevant information—
and is considered pertinent for the classification task [30]. The texture of an image can be
defined as a set of values used to quantify the perceived texture of an image. Regarding the
way the parameters describing the texture in an image are represented, one can mention
the frequency domain representation, the entropy of the image, the homogeneity, the local
binary pattern (LBP), etc.

A relevant use case for texture characterization and feature extraction is the reduction
of the dimensionality of the data, without losing valuable information from the original
data set [31]. Methods like the principal component analysis (PCA) [32], and the canonical
analysis (CA) [33], aim at this by transforming the hyperspectral pixel vectors into a new
set of coordinates.

Hyperspectral data is classified using different approaches such as k-closest-neighbors [33],
maximum probability criterion [34], support vector machine, and logistic regression [35].
The accuracy of the classification of these methods is mostly unsatisfactory, due to the
insufficient number of training samples compared to a large number of spectral bands [13].
With respect to this, random sampling of the data set to first train the model and then to
validate (test) it, generate distributions in the data that bias the classification results: almost
the same data is present in both subsets, so any new variability in the data when the model
is to be used on new measurements is not present, so claims regarding the classification
performance can be overstated. Furthermore, in [36], the case of perturbing only one
pixel with differential evolution in the deep learning architecture demonstrates the effect
and errors that are introduced in the classification. In [7], a spatially disjoint method is



Remote Sens. 2022, 14, 1475 5 of 29

discussed, supporting the strict spatial separation between the sets at a given distance.
However, this reduces only partially the bias, as boundary conditions are not addressed.

3. Methods and Materials
3.1. Addressing the Challenges in HSI Image Processing

Based on the shortcomings of each of the works previously presented, the question
arises as to how one can process this type of pseudo-3D image for classification purposes
starting from the actual data delivered by the sensor. This includes in all stages, relevant
existing research results (and even enhancing some of them) and, lastly, to get a trustworthy
estimate for the classification in the context of challenging available datasets. Overall, to
improve the classification performance, one must take into consideration both spectral
and spatial information, incorporating the spatial structure into all of the processing
steps. A general flow of HSI data processing based on the spatial-spectral approach
can thus be defined based on the following three elements: (1) data denoising/filtering
and enhancement, (2) feature extraction, and (3) classification. Moreover, a validation of
the results should challenge the random partitioning of an available dataset into a training
subset and a testing subset. This is because without ensuring true separation between the
two datasets, results cannot be considered relevant, but are rather biased.

With this respect, our proposed work investigates the processing pipeline from initial
HSI data filtering to labeling it, by considering state-of-the-art methods and proposing
enhanced alternatives at each step. The proposed results come together with a validation
approach that satisfies the independence hypothesis between testing and training data
partitioning in a supervised learning classification. We focus on getting the best classi-
fication accuracy in the context of existing available datasets, which are rather reduced
in the number of available samples, a challenge that deep learning approaches have not
yet overcome for spatial-spectral approaches as already mentioned when discussing the
related works from [7,17].

3.2. The Proposed Processing Method

The presented developed data processing workflow is depicted in Figure 2, where the
three major stages of the HSI processing, along with the corresponding applied methods,
are pipelined.

Figure 2. The parallel approach proposed for feature extraction of the hyperspectral data with mixed
spatial-spectral filtering and characterization.

Briefly, in the first stage, data is filtered using an anisotropic diffusion and shock
filter-based image denoising and enhancement method. For the second stage, a parallel
approach [22] concatenates two feature vectors: one obtained from the wavelet transform
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applied in the spectral domain, and respectively, the LBP feature vector obtained from the
spatial domain. For the spatial dimension, a principal component analysis is implemented
in order to reduce the dimensionality of the HSI prior to the LBP. The two form the final
feature vector used in the classification performed in stage 3. The figure emphasizes
the independence of the two steps from one another, in the commonly referred parallel
approach [22]. The SVM classifier takes the 1D concatenated feature vector and determines
the correct label from the list of defined classes.

Each stage is responsible for reducing some of the known problems of HSI (e.g., noise,
high intraclass variability, etc.) while contributing to increased classification performance.

3.2.1. The Spatial-Spectral Adaptive Shock Filtering Model

For hyperspectral images, the presence of noise can degrade the quality of the data,
thus limiting the accuracy based on which the data is mapped to the appropriate labels. In
this case, noise can damage both spatial and spectral information, generating challenges in
the classification phase [18]. As in the case of classic images, the noise cancelation process
for a hyperspectral image aims at the suppression of the noise on homogeneous regions
while preserving the high frequency details that characterize an image in a certain band.

Throughout the paper the following notation is used: Uk—the luminance function
corresponding to a band k, for the spatial coordinates (x, y).

The proposed spatial-spectral adaptive shock filtering method was designed under
the partial differential equations (PDE) framework and includes a smoothing term for
non-linear noise filtering acting on the spatial dimensions and a shock filter designed
to exploit the spectral dimension and to allow enhancement processes to also take part
without inter-band diaphony.

The continuous model for the spatial-spectral adaptive shock filtering approach is
inspired by the PDE-based fusion approach introduced in [37] and is driven in each HSI
pixel by a combination between a classic anisotropic diffusion Perona Malik equation and a
shock filter:

∂Uk

∂t
= div

(
g
(∣∣∣∇Uk

∣∣∣)∇Uk
)
− α× sign

(
UM

ηη

)∣∣∣∇Uk
∣∣∣, (2)

where:
M = argmax

j

(∣∣∣∇U j
∣∣∣), j = 1. . . B, (3)

with α being the weighting factor for the enhancement term.
The first term in Equation (2) is a Perona–Malik term responsible for intra-channel

denoising [20]. The second term is based on the shock filter theory, being able to inject
high frequency information when discontinuities are present. In a classic formulation, for a
generic luminance function U (x, y), the shock filter equation is:

∂U
∂t

= −sign
(
Uηη

)
|∇U|, (4)

with edge directions orthogonal to:

η =
∇U
|∇U| . (5)

In Equation (4), UM
ηη represents the second order derivative in the directions orthogonal

to the edges.
Depending on the sign of the second order derivative, the shock filter equation corre-

sponds to morphological continuous erosions and dilations:

∂U
∂t

= −|∇U|, (6)
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or:
∂U
∂t

= |∇U| , (7)

producing piecewise constant regions separated by jumps [20].
In the model given by the system of Equation (2) we consider that the pertinent

information is included in the spatial regions corresponding to rapid luminance function
changes associated to edges and fine-scale details.

From a spatial point of view, edges or fine-scale details are filtered out or enhanced
due to the first term, depending on the relationship between the spatial vector norm and
a diffusion threshold K, a parameter for the classic anisotropic equation. The goal of the
enhancement term is to reinforce high frequency information across the bands in which
local structures are coherent. Equation (3) is used to detect, for each pixel, the band in
which the spatial gradient vector norm has the highest value. For correlated local structures,
the enhancement term approaches in each band a backward diffusion process and injects
high frequency content and, thus, reinforces them. In case of uncorrelated structures, the
high frequency information is not injected by this term in the other bands, limiting the
channel mixing effects [20].

Such a filter can only be made stable in a discrete setting using slope-limiter functions.
Similar to [20], we employ the min-mod function m(.):

m(x, y) =
(

sign(x) + sign(y)
2

)
·min(|x|, |y|). (8)

Using the notations Un
i,j,k for denoting the luminance functions in a pixel having

the spatial coordinates (i, j) in a band k at time instant n, the corresponding numerical
approximation for the gradient vector norm is:

∣∣∣∇Uk
∣∣∣ =

√√√√√ m2
[

D+
x

(
Un

i,j,k

)
, D−i,j

(
Un

i,j,k

)]
+

m2
[

D+
y

(
Un

i,j,k

)
, D−y

(
Un

i,j,k

)] . (9)

For approximating the second order derivative:

Uηη =
UxxU2

x + 2UxyUxUy + UyyU2
y

|∇U| , (10)

we use the classic spatial forward and backward difference operators in each band D±x
(

Un
i,j,k

)
and D±y

(
Un

i,j,k

)
for the numerical approximation on the directional derivatives, [31] and

the following second-order derivatives approximations for each band:

Uxx
k = D+

x

[
D−x
(

Un
i,j,k

)]
= D+

x

[
Un

i,j,k −Un
i−1,j,k

]
,

= Un
i+1,j,k − 2Un

i,j,k + Un
i−1,j,k

(11)

Uyy
k = D+

y

[
D−y
(

Un
i,j,k

)]
= D+

y

[
Un

i,j,k −Un
i,j−1,k

]
,

= Un
i,j+1,k − 2Un

i,j,k + Un
i,j−1,k

(12)

Uxy
k =

Un
i+1,j+1,k + Un

i−1,j−1,k −Un
i+1,j−1,k −Un

i−1,j+1,k

4
. (13)

We employ the rational Perona-Malik function and an explicit time-discretization
scheme for approximating the solution of Equation (2).

We have showed preliminary results for our approach in [20] that illustrate that the
proposed spatial-spectral adaptive shock filtering model for the HSI image is capable of
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filtering and enhancing the data, ensuring that the hyperspectral information stays loyal to
its electromagnetic response for each band, without creating artefacts that may alter the
information, by avoiding bands mixing in the restoration process.

Other methods, [25,27], are more widely and commonly used to enhance and filter
the hyperspectral data. These will be compared in terms of experimental and visual
performance in the experimental section of the paper with this proposed approach based
on PDEs.

The first method is the TV (Total Variation) technique that takes into consideration
only the spatial dimension of the data. In [25] it was concluded that the total variation
method (TV) has good capabilities to eliminate noise, while retaining the edge information
in the images. Based on those results, the TV model was also applied as a noise elimination
technique for the HSI data. Even though this algorithm allows a degree of smoothness that
can be adjusted to three-dimensional data, it is not a method designed specifically for the
HSI pseudo-3D data.

The Combined Spatial and Spectral Weighted Hyperspectral Total Variation Model
from [27] is the second method considered in the experimental evaluation, which combines
the spatial and spectral dimensions. This model is based on the total variation model, with
two regularization parameters, one for the spatial, and one for the spectral dimensions, su-
pervising the reduction of the noise contained in the HSI image. This method was designed
with the intent of combining the TV regularizations in the two dimensions, the spectral
and the spatial one, as a unified framework, based on the pseudo-3D data format along
with the dependencies between the adjacent pixels. Those refinement steps are performed
by the weighted regularization terms, for the spatial dimension, and respectively for the
spectral dimension. The two weighted regularization terms are capable of automatically
penalizing the strength of each pixel in both the spatial and spectral dimensions. We refer
to [27] for a full description of the method.

3.2.2. The Parallel Approach Based on Wavelet and LBP for Feature Extraction

As mentioned, it is relevant to take advantage of both spatial and spectral information
and the dependencies between them in order to construct a jointly spatial-spectral classifier.
We propose to construct a feature descriptor by independently extracting information from
the spatial and spectral dimension (e.g., a parallel approach, as defined in [22]) and joining
the results in the form of a concatenated vector in order to preserve both types of contexts
in the labeling phase.

The local binary pattern (LBP) method, known as a powerful texture descriptor [30], is
proposed to be applied to the hyperspectral data sets. The LBP is employed only on a subset
of bands selected from the original high-resolution image, with the purpose of obtaining a
more relevant description of the texture information present in the spatial dimension.

For a center pixel in an image tc, the LBP value is computed by comparing its intensity
value with its neighbors. The neighbors used for comparison are placed in a specific
region with the corresponding binary label. Those labels take the following values: 0 if the
centered pixel has a smaller intensity value than the neighbor or 1 otherwise, as shown in
Figure 3.
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Figure 3. A representation of how the LBP code is calculated based on the function s(.) with a
uniform and non-uniform approach.

The neighboring pixels are selected starting from the center pixel, from which several
equally spaced samples over a circle of radius R are selected. The value of R determines the
number of neighboring pixels positioned all around the center pixel.

The local binary code expressed based on the selected P neighbors [38], is defined as:

LBPP,R( tc) =
P−1

∑
i=0

s(ti − tc)2i, (14)

where tc represents the intensity value of the center pixel having the coordinates xc and yc,
compared with each intensity value from the neighborhood represented by ti.

The function s(.) from Equation (14) gives the corresponding binary values for the
neighboring pixels illustrated by:

s =
{

1 i f ti − tc ≥ 0
0 i f ti − tc < 0

. (15)

When the LBP method is applied as a feature extraction technique, the set of param-
eters (P, R), given by the number of P neighbors distributed on a radius R, are usually
defined as (8, 1), (16, 2), etc. The obtained LBP hyperspectral texture features are defined
by the texture orientation and smoothness in a local region, defined by the (P, R) set. When
analyzing the texture in a certain region, of the HSI data set, textures with different orien-
tations are encountered. To avoid these issues, we propose the use of a rotation invariant
uniform local binary pattern, LBPriu2

P,R , introduced in [38]:

LBPriu2
P,R = min{ROR(LBPP,R , i)}

∣∣∣ i = 0, 1 . . . P− 1, (16)

where ROR(LBPP,R, i) is designed to perform a circular bit-wise right shift on the P-bit
number of the LBPP,R over a number of times proportional with the number of neighbors.
The rotation invariant LBP defined in Equation (16) can quantify the statistical occurrences
for each individual rotation invariant uniform pattern, represented by the superscript riu2,
that can be included into a specific microfeature, which will result in 2P different patterns
capable of characterizing various texture information present in a specific band. The LBP
obtained codes construct the corresponding LBP histogram of an image, as illustrated in
Figure 4.
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Figure 4. A representation of the final feature vector obtained based on the LBP patch histograms.

The wavelet transform is applied along the spectral dimension of the HSI data set.
This means that for a selected 1D hyperspectral pixel we use the wavelet transform in
order to perform a multiscale analysis of its content, by detecting the locations and scales
at which significant properties of the spectral signature do exist.

We use a wavelet transform to analyze the information in a signal, at multiple scales.
This analysis is done through a process based on scaling and translation, a process which
gives the frequency content quantification and the time localization for a classic time-
dependent signal. The process of scaling, noted as s, and translation, noted by the τ
coefficient, is illustrated for the function ψ(x), represented as ψs,(x) by the formula, [39,40]:

ψs, (t) =
1√

s
ψ

(
t−
s

)
, (17)

where ψ(x) is called the wavelet or the mother function.
The wavelet transform takes a signal x(t) and decomposes it on the set of basis func-

tions ψs,(x), producing a time-scale representation of the same signal:

Wx(s,) =
∞∫
−∞

ψs, (t)x(t)dt. (18)

In our proposed processing pipeline, we formally consider the time dimension of a 1D
wavelet to be the spectral band corresponding to a HSI image in the spectral signature. We
use the discrete wavelet transform (DWT) that offers different levels of decomposition for
the spectral signature content, as illustrated in Figure 5, separated in low-pass (L) and high–
pass components (H) of the spectral signature of the hyperspectral image. As illustrated
in Figure 5, the DWT-based wavelet processing induces a decimation operation based on
an iterative process on the low-pass (L) component, which produces new low-pass and
high-pass sub-bands for the illustrated hyperspectral pixel.

We used the Haar wavelet mother function in all our experiments. As illustrated in
our previous work from [21], both Haar and Daubechies provide good performance results.
In this paper we chose the Haar wavelet in order to reduce the border effects characteristic
to wavelets.
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Figure 5. An example of wavelet coefficients based on the Haar wavelet for a hyperspectral pixel in
the Indian Pines, [36], dataset: (a) hyperspectral signature, (b) the low (L) coefficients for the first level
decomposition (N = 1), (c) the high (H) coefficients for the first level of decomposition (N = 1), (d) the
low (LL) coefficients for the second level of decomposition (N = 2), (e) the high (LH) coefficients
for the second level of decomposition (N = 2), (f) the low (LLL) coefficients for the third level of
decomposition (N = 3), (g) the high (LLH) coefficients for the third level of decomposition (N = 3).

3.2.3. The Concatenation of the Spatial and Spectral Descriptors

The parallel approach used in this paper is shown in Figure 6, where different feature
descriptors, obtained independently from each other, are concatenated into a single feature
vector and fed to the classifier. Preliminary results, without using the adaptive filtering
approach, were included in [21] and demonstrate that, by reducing the dimensionality
of the classification process, overall good accuracy, in case of random sampling-based
train/test sample separation, can be obtained.



Remote Sens. 2022, 14, 1475 12 of 29

Figure 6. Feature vector used in classification composed of spatial and spectral descriptors.

Similar to [21], spectral features (wavelet-based) and spatial features (LBP histograms)
are concatenated in the last step in the feature extraction stage, to combine different
representations of the data in order to obtain better classification accuracy.

The size of the feature vector varies according to the number of wavelet coefficients for
the spectral features, the number of bands retained by the PCA dimensionality reduction
process and the number of bins for representing the LBP histograms.

For example, for a spatial signature for B bands and a single decomposition level,
considering only low pass coefficients, 10 PCA hyperspectral bands and an LBP operator
with P neighbors, the corresponding feature vector size is B/2 + 10 x (P + 1); for both
low pass and high pass wavelet coefficients the corresponding feature vector size will be
B + 10 x (P + 1).

3.2.4. Controlled Sampling for Classification Accuracy Estimation

Most of the supervised hyperspectral image classification approaches are designed to
classify the hyperspectral pixels, or the dimensional vectors from the same class. Those
vectors, if they are from the same classes, have similar spectral responses or spectral-spatial
features. Based on these assumptions, a trained classifier can be generalized to predict the
labels of unseen samples, known as the testing data set. However, this concept does not
always hold if the training and testing samples are not carefully selected. In the case of
supervised classification, the traditional design for spectral classification leads to unfair
or biased performance evaluation that are, generally, caused by the way the training and
testing samples are selected, usually by a random partition of the hyperspectral data set.
The phenomenon was already identified in experimental setups dealing with deep learn-
ing networks and HSI for joint spatial-spectral processing, where a comparison between
random selection of samples versus spatially disjoint sample selection was performed. The
conclusions demanded for more investigation of the matter. Details of this can be found
in [7]. This practice is used in order to compensate for the limited availability of benchmark
data and the high cost of having a large number of reference maps in the data collection.

Choosing the samples in an arbitrary, or random way from a data set results in
dependence between the samples in the training and testing data sets. In the case of
hyperspectral images, this sampling strategy, based on random selection, biases the results,
since testing samples may be located adjacent in terms of spatial position to the training
ones. So, the independence assumption between the two data sets, is flawed due to the
spatial correlation between the training and the testing samples [41].

As pointed out earlier, when discussing about the classification of the spectral-spatial
information, one must be careful when selecting the training and testing samples, in such a
way that the data sets do not interact with each other. The problem of overlapping pixels
from different classes is illustrated in Figure 7a. The emphasis here is on the fact that
spatial processing also considers the neighboring pixels, and, depending on the size of the
window/kernel used, with a random selection of the training data, or even with a spatially
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disjoint approach (due to boundary effects), there is a random number of pixels that have
overlapping areas, faulting the independence assumption between the training and testing
data samples.

Figure 7. A representation of the overlapping phenomenon between two pixels when a spatial
operation is performed, based on a window centered on a pixel: (a) random sampling, (b) proposed
controlled sampling ensuring no overlapping.

This overlapping phenomenon generally results in exaggerated classification accuracy.
Such, the information from the testing data set could be used in the training step by spatial
operations, leading to a biased evaluation result, leading to the need for the implementation
of a controlled sampling strategy. When using patch-based representation, as in [23], the
independence between the training set and the testing set must be considered.

To address the overlapping problem due to the applied spatial operations, a proposed
controlled partitioning is considered, as illustrated in Figure 7b.

By analyzing Figure 7a, one can observe that the two windows having the centered
red and blue pixels overlap. This overlapping can occur, for example in the case of the LBP
method applied on the spatial dimension. The LBP method is designed to determine the
LBP histograms for each pixel based on a square patch, as already shown in Figure 4. The
dimension of the window, along with the proximity of the selected samples, determine an
unbiased performance result. This is due to the similarity between the two pixels, since
the concatenated histograms along the spectral dimension, representing the feature vector,
being almost identical, will determine the biased classification results, in the learning phase
and in the testing phase.

A relevant controlled sampling strategy should have the capability to avoid selecting
samples homogeneously over the whole image and it also must penalize overlapping
between the data sets. It should also ensure that the selected training samples are represen-
tative for each class. Even though there are many samples in a specific class, those samples
can vary slightly between one another, helping for a better labeling of the data, due to
variation in the spectral dimension. Based on [35], and considering the aforementioned
arguments, the explanations and details of the proposed method are described below:
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Input: HSI data set U, the sampling rate ratio (the number of samples/percentage per class, the
reference map, the desired distance between the pixels, the window representing the populated
neighborhood

Output: training data set X_train
For each class c in U:

Determine all the partitions X in class C
For each partition x in X:

Get the centroid for each region in the partition
Get the spatial coordinates (i, j) of the corresponding centroid
Calculate the number of training samples tot in the partition:

no_of_desired_samples = tot * ratio
While visited register is empty:

Add the samples situated at an established distance from the centroid and from the previous
added sample

After each insertion of a sample in visited register, we verify:
if visited <= no_of_desired_samples; if not, continue with the region growing algorithm based

on a window dimension representing the populated neighborhood
End while

End for Combine all the visited registers from the corresponding regions for the training samples
End for
Combine all the samples from the partitions to obtain the final X_train training data set.

As a starting point for the proposed controlled sampling strategy, all the seed points
are randomly selected from different partitions of the classes. Then, the controlled sampling
process proceeds as follows: first, one must consider the different spatial positions of each
class, so one must determine for each partition, the positions for all the labels from which
the samples are selected.

The next step determines the distance at which each sample is selected, based on
the position of the previous selected one, making sure that the selected training samples
cover the spectral variance. This process is repeated until the number of selected points
reaches a predefined number or a ratio. After the samples are extracted for each individual
class, based on the expanding region already defined, given by a specified window, the
neighborhoods are constructed based on the specific window size. The process is repeated
until the training data set is selected.

4. Results
4.1. Hyperspectral Datasets

We performed experiments on the publicly available data sets [42]: Indian Pines,
Pavia University and Salinas. The class distribution of the scenes is presented in Figure 8
for the Indian Pines dataset, Figure 9 for the Pavia University dataset and Figure 10 for
the Salinas dataset, with the corresponding distributions of samples per class, based on
the proposed controlled sampling strategy and the corresponding window size for the
neighborhood construction.

The Indian Pines dataset was captured over an agricultural area in 1992 by the AVIRIS
sensor and is characterized by the presence of crops of regular geometry and irregular
forest groups. The reference dataset available is divided into 16 classes with 10,249 labeled
pixels overall. The Pavia University contains nine different classes belonging to an urban
environment with multiple solid structures, natural objects and shadows captured by the
ROSIS sensor. The Salinas data set is also captured by the AVIRIS sensor and consists of
data over several agricultural fields. The reference data is made up of 42,776 labeled pixels
(from a total of approx. 200,000). More details on the number of independent samples per
class for supervised learning are given in Section 4.2.

The Indian Pines scene is represented by a size of 145 × 145 and 200 spectral bands.
The Salinas scene has 204 spectral bands, with a dimensionality of 512 lines and 217 samples.
The Pavia University scene is composed of 103 bands, with the dimension of 610 × 340 pixels.
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Figure 8. Hyperspectral remote sensing scenes from the Indian Pines dataset for the most representa-
tive classes only: (a) sample band of the Indian Pines dataset, (b) reference map of the Indian Pines
dataset, (c) reference map classes for the Indian Pines scene and their respective number of samples.

Figure 9. Hyperspectral remote sensing scenes from the Pavia University dataset for the most
representative classes only: (a) sample band of the Indian Pines dataset, (b) reference map of the
Indian Pines dataset, (c) reference map classes for the Pavia University scene and their respective
samples number.
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Figure 10. Hyperspectral remote sensing scenes for the Salinas dataset: (a) sample band of the Salinas
dataset, (b) reference map of the Salinas dataset, (c) reference map classes for the Salinas scene and
their respective samples number.

4.2. Ensuring the Independence between Data Training and Data Testing

The results for the proposed processing pipeline for the HSI classification depend
greatly on the manner in which the data training and data testing steps are constructed.
This means that the classification accuracy strongly depends on the number of training
samples and how those sampled are selected with respected to the remaining ones.

We propose and evaluate the controlled sampled strategy for two different neighbor-
hoods sizes: one for a window size of 3x3 (w3) and one for a window size of 5 × 5 (w5).
In Figure 11 the constructed neighborhoods with the corresponding distance between
them are depicted. The three points, A, B and C, represent the samples selected for the
training dataset. In this representation we have singular pixels selected as samples used in
the learning phase, distributed at equal distances based on the dimension of the desired
window size.
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Figure 11. Examples of the sample distributions for the training set, when the distance between the
selected samples is set to a window size w = 3, for: (a) a class in the Indian Pines dataset, (b) a class
in the Pavia University dataset, (c) a class in the Salinas dataset.

In Figure 12 we illustrate for comparison the two strategies for selecting the samples:
a random strategy and the proposed controlled strategy for a better understanding of the
proposed method. One can observe that it is difficult to ensure the independence between
the training and data sets for the random selection.

Figure 12. Examples of the sample distribution for the training set for the Indian Pines dataset, for the
same number of samples per class as illustrated for the window size w = 3 for: (a) random selection,
(b) sampling-controlled strategy.

4.3. The Experimental Configuration

We evaluate the performance in classification of the proposed end-to-end processing
pipeline for HSI using a validation approach similar to the one in [25]: the number of the
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PCA selected bands was fixed to 10, and the patch size used for computing the histograms
of the LBPs were set to 3 × 3 and 5 × 5 for all the datasets. The window sizes for the
proposed controlled sampling strategy were set to 3, respectively 5, corresponding to the
selected neighborhood dimensions, of w = 3, respectively, of w = 5. When we considered
the selected window for the controlled strategy as 3 × 3, the distance between the centered
neighborhoods is therefore 5. If we considered the windows to be 5 × 5, then the distance
between the center of the neighborhood is 7. For the denoising and enhancing method,
the parameters used in paper [20] were kept for each data set, the number of iterations
depending on the complexity of the stored information in the HSI.

The same window size was used for all the experiments dealing with the LBP his-
togram computation. To ensure the independence between the training and testing samples,
the proposed controlled sampling strategy, grouped as the collected samples based on
neighborhoods, situated at certain distances. This determined a selection of a smaller
number of samples per class in comparison with a random strategy approach.

We used the LBP feature descriptors for which a histogram of LBP values on a patch
centered on a given pixel was created. The rotational invariant LBP model uses different
values for the set of parameters (P, R), like (8,1) or (16,2). The corresponding distance
between the neighborhoods of the selected training samples ensures a minimal overlapping
of the LBP histogram computation to ensure the independence between the training and
the data sets.

The feature vector, for each pixel in the data cube, is built by concatenating the patch
histograms of each band along with the spectral wavelet features, and then fed into the
SVM classifier to evaluate the overall accuracy of the processing pipeline. Table 1 illustrates
how the size of the feature vector fed into the SVM is determined.

Table 1. Size of the feature vector fed into the SVM for Indian Pines having 200 bands, for N = 1 and
N = 2 wavelet decomposition levels.

Number of Bands
after the PCA Band

Reduction
Process

(n1)

Number of
Neighbors

(Param. P of LBP)
(n2)

Spatial
Features

Spectral
Features Size of the

Feature
Vector

Number of LBP
Histogram Bins

(nbins)

Wavelet
Level

10 8 9
N = 1 (L) 100 190

N = 2 (LL) 50 140

To evaluate the classification performance of the proposed architecture, we compared
the obtained results with the state-of-the-art support vector machine (SVM) classifier,
with the radial basis function (RBF) kernel, where gamma has the value 0.001 and the
regularization parameter c is set to 200. The corresponding parameters for SVM were
obtained through a grid search for each data set. For the wavelet filters, an important
parameter is represented by the level of decomposition (N) which gives the number of
components of the hyperspectral vector for the spectral domain. Therefore, considering
different decomposition levels, the wavelet filter can extract the desired features from
the input for a better representation of the signal. In this paper, we denote for the first
level decomposition (N = 1) the low (L) coefficients to cA. Similar, for the second level of
decomposition (N = 2) the low (LL) coefficients are represented by the same cA notation. For
the third level of decomposition (N = 3), we combine the low (LLL) coefficients, represented
by the same cA, with the high (LLH) coefficients denoted in this situation as cD.

We illustrate the performance of the proposed model for three decomposition levels,
N = 1, N = 2 and N = 3. Alongside the three levels, we have chosen for the first two levels
only the low (L) coefficients, denoted as cA, and for the third level, we have chosen to
concatenate the complete low pass coefficients with the high pass (H) coefficients. For
N = 3 levels, the high coefficients are denoted as cD.
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4.4. Obtained Experimental Results

For all the experiments, we used the overall accuracy (OA) evaluation as a measure-
ment of how well the proposed processing pipeline behaves, along with the controlled
strategy and how this can increase the classification performance. In this case, the OA rep-
resents the number of correctly classified samples. The performance results were averaged
over 10 experiments.

We tested the performance of the proposed three stage pipeline: data denoising
and enhancement, feature extraction followed by data classification. We tested the data
filtering and enhancement techniques based on the shock filters and compared it with the
results obtained from the TV and the CSSWHTV methods. After each filtering method,
we extracted the spatial and spectral features. At the end of the concatenation step, the
classifier analyzed the spatial-spectral concatenated features to establish the corresponding
label for each feature vector.

The obtained results are presented according to the validation they bring to the
end-to-end approach, starting from the introduction of the controlled sampling strategy,
continuing with the illustration of the influence of either dimension of the data (e.g., spatial
and spectral) to the classification. This approach follows the most appropriate feature
selection combination for the parallel approach (where spectral and spatial descriptors are
combined) and illustrates the added value brought by the denoising and enhancement
stage. We include in the manuscript the gradual improvements added by each of the
proposed methods and reach the processing pipeline described in Figure 2 referring to the
Indian Pines dataset. Then, we provide, for comparison, the results for all the datasets in
Section 4.1.

4.4.1. Random Sampling vs. Controlled Sampling Evaluation

To understand the influence of the sampling strategy on the classification and the
bias introduced when there is no control over the independence between the test and
the training dataset partition, for different window sizes, w = 3, w = 5, and w = 11, we
performed a classification of the Indian Pines dataset experiment using a random sampling
strategy. Results are illustrated in Table 2.

Table 2. Classification accuracy (OA) using the random sampling, for the Indian Pines dataset, with
different windows size, of dimension 3 × 3, 5 × 5 and 11 × 11, for the LBP histogram computation.

Feature Extraction Method
Window Size

w3 w5 w11

LBP method
only

LBPriu2
8,1 75.35 ± 1.42 97.69 ± 1.81 98.19 ± 0.71

LBPriu2
16,2 77.09 ± 1.67 97.30 ± 1.24 99.93 ± 0.55

The high values of the obtained results, as the size of the window increases, are
associated to an increasing similarity between the test and training dataset used, in the case
of a window size of 11 × 11, challenging the random partitioning approach.

In all subsequent experiments we used our controlled sampling strategy for the
validation of the results.

4.4.2. Spatial vs. Spectral Information for Feature Extraction

Next, we tested the influence of independently considering the spatial information
and the spectral information to classify the Indian Pines dataset. The approach aimed at
validating the usage of a control sampling strategy, capable of decorrelating and ensuring
independence between samples in the spatial dimension of the data.

As illustrated in Table 3, for the controlled sampling strategy presented in this paper,
when we use only the LBP histogram, we do not have high classification rates.
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Table 3. Classification accuracy (OA) for the Indian Pines dataset with different windows size, of
dimension 3 × 3 and 5 × 5, for the controlled sampling strategy, without filtering, using the window
size for the LBP histogram computation, or the wavelet transform on three levels, with low pass
coefficients (cA), respectively high pass coefficients (cD).

Methods and Corresponding Parameters
Window Size

w = 3 w = 5

LBP method
only

LBPriu2
8,1 25.74 ± 1.21 26.27 ± 0.99

LBPriu2
16,2 25.74 ± 1.29 26.27 ± 1.32

Wavelet method
only for the three levels

N = 1 (cA) 76.40 ± 1.52 75.68 ± 1.78

N = 2 (cA) 76.85 ± 1.98 78.05 ± 1.78

N = 3 (cA + cD) 80.52 ± 1.18 74.91 ± 1.27

When we use the wavelet method, compared with the LBP one, we have a significant
increase in classification performance, independent of the window size desired. However,
spatial information is still relevant to the classification.

4.4.3. Parallel Spatial-Spectral Feature Extraction and Classification

Based on the processing pipeline presented in this paper, we test different options of
combining the spectral and spatial features extracted by a parallel approach to improve the
quality of the overall feature vectors for the HSI data. The obtained results are presented in
Table 4 for the Indian Pines dataset without filtering.

Table 4. Classification accuracy for the Indian Pines dataset, without filtering, with wavelet transform
up to three levels, with the corresponding window size, of dimension 3 × 3 and 5 × 5, for the
controlled sampling strategy and LBP histogram computation, w3 and w5 (OA).

Spectral Feature Window Size

Spatial
feature Wavelet Level High/Low Pass

Coefficients w3 w5

LBPriu2
8,1

N = 1 cA 84.49 ± 1.54 83.62 ± 1.78

N = 2 cA 83.45 ± 1.32 82.42 ± 1.69

N = 3 cA + cD 81.59 ± 1.25 78.04 ± 2.12

LBPriu2
16,2

N = 1 cA 84.98 ± 1.82 84.54 ± 1.89

N = 2 cA 84.10 ± 1.63 82.41 ± 1.33

N = 3 cA + cD 83.23 ± 1.47 72.24 ± 1.85

The table illustrates the importance of combining the spectral and spatial information,
leading to better classification results obtained under the same conditions for the training
and testing selection of the data, compared to the previous case in Table 2 when only one
dimension was considered.

4.4.4. Contribution of the Data Filtering for End-to-End Classification

Finally, we included a filtering step to further improve our results, according to the
proposed end-to-end parallel approach.

The classification results based on the proposed framework are presented in Table 5.
Each corresponding table depicts the results obtained by one of the three filtering techniques.
By analyzing the results, we observe that there is only a slight difference in performance
when comparing the results from LBPriu

8,1 and LBPriu
16,2.
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Table 5. Classification accuracy for the Indian Pines dataset, using the TV, the CSSWHTV and the
anisotropic diffusion and shock filter-based approaches, with wavelet transform for three levels, with
the corresponding window size, of dimension 3 × 3 and 5 × 5, for the controlled sampling strategy
and LBP histogram computation, w3 and w5 (OA).

Filtering
Method

Spatial
Feature

Spectral Feature Window Size

Wavelet
Level

High Pass (cD)/Low
Pass (cA) Coeff. w3 w5

TV
filtering

LBPriu2
8,1

N = 1 cA 90.2 ± 1.3 87.83 ± 0.96

N = 2 cA 88.16 ± 0.92 86.69 ± 1.62

N = 3 cA + cD 80.99 ± 1.45 82.95 ± 1.55

LBPriu2
16,2

N = 1 cA 90.36 ± 0.96 88.12 ± 1.02

N = 2 cA 88.24 ± 1.78 86.45 ± 1.63

N = 3 cA + cD 81.1 ± 1.65 83.15 ± 1.54

CSSWHTV
filtering

LBPriu2
8,1

N = 1 cA 86.46 ± 1.26 84.56 ± 1.65

N = 2 cA 84.12 ± 1.24 82.83 ± 1.28

N = 3 cA + cD 74.73 ± 1.96 83.03 ± 1.63

LBPriu2
16,2

N = 1 cA 86.46 ± 1.62 84.56 ± 1.21

N = 2 cA 84.12 ± 0.76 82.83 ± 1.03

N = 3 cA + cD 74.73 ± 1.26 83.03 ± 1.69

proposed
anisotropic
diffusion

and
shock filter

LBPriu2
8,1

N = 1 cA 93.85 ± 1.57 90.04 ± 0.99

N = 2 cA 91.38 ± 1.2 89.4 ± 1.85

N = 3 cA + cD 81.64 ± 1.87 85.95 ± 1.27

LBPriu2
16,2

N = 1 cA 93.37 ± 1.25 90.73 ± 1.12

N = 2 cA 91.53 ± 1.22 88.84 ± 1.28

N = 3 cA + cD 83.25 ± 1.98 85.88 ± 1.22

One can observe that the shock filtering method performs better in comparison with
the TV and CSSWHTV methods, also in terms of visual results for the classification maps
(Figure 13d) and in terms of the confusion matrices (Figure 14c). Moreover, when compared
in terms of overall classification results based on different window sizes, w3 and w5, there is
an increase in performance with smaller window size. We attribute this to the larger number
of samples per class in the case of a window of size 3, compared to 5. Figure 13 shows the
classification maps for the three filtering methods, for the LBPriu2

8,1 with an N = 1 number of
wavelet decomposition levels. Figure 14 presents the corresponding confusion matrices.

We include also the confusion matrix in order to provide more insights about the
classification accuracy especially when dealing with imbalanced datasets due to the original
sample distribution or to the number of resulting samples after applying the controlled
sampling strategy. We used it to compute the mean accuracy in Table 6 to assess the
classifier performance on each class.

Results in Table 6 regarding the obtained results in terms of the Average accuracy (AA)
performance per class validate that there is no major difference due to the available number
of samples among classes.

4.4.5. Classification Results on the Salinas Datasets

The classification results based on the proposed model for the Salinas dataset are
presented in Table 7, illustrating the results for one of the three filtering techniques. By
analyzing the results, one can observe that there is only a slight difference in performance
when the results from LBPriu2

8,1 and LBPriu2
16,2 are compared.
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A difference in classification performance can be observed based on the selected filter-
ing method. The shock filtering method brings an increase in performance, by ~2% when
compared with the TV method and ~3% when compared with the CSSWHTV method. The
visual results for the Salinas dataset, in terms of classification maps, based on the different
filtering methods used, are presented in Figure 15.

4.4.6. Classification Results on the Pavia University Datasets

The classification results based on the proposed model for the Pavia University dataset
are presented in Table 8. By analyzing the results, one can observe that there is only a slight
difference in performance when the results from LBPriu

8,1 and LBPriu
16,2 are compared.

Figure 13. Classification maps obtained for the Indian Pines dataset with a controlled sampling
strategy based on the 3 × 3 (w3) window size for the training set, for N = 1 wavelet transform level
and LBPriu2

8,1 (a) Reference map, (b) TV filtering, (c) CSSWHTV filtering, (d) anisotropic diffusion and
shock filter-based approach.
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Figure 14. The confusion matrix obtained for the Indian Pines dataset with controlled sampling
strategy based on the 3 × 3 (w3) window size for the training set, for N = 1 wavelet transform level
and LBPriu2

8,1 : (a) TV filtering, (b) CSSWHTV filtering (c) anisotropic diffusion and shock filter.

Table 6. Average accuracy performance per class (%), for the Indian Pines dataset, for the TV, the
CSSWHTV and the anisotropic diffusion and shock filter methods, with a controlled sampling based
on the 3 × 3 (w3) window size for the training set, N = 1 wavelet transform level and LBPriu2

8,1 .

Indian Pines Class Name
Average Accuracy for Each Method

TV(%) CSSWHTV (%) Anisotropic Diffusion (%)

Corn-notill 87.54 81 90.09

Corn-mintill 87.91 76.37 91.76

Grass-pasture 95.9 92.43 95.9

Grass-trees 97.37 96.24 99.06

Hay-windrowed 98.27 99.14 99.71

Soybean-notill 70.91 67.84 70.18

Soybean-mintill 90.42 85.03 92.79

Soybean-clean 93.4 87.07 95.25

Woods 99.12 98.75 99.37
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Table 7. Classification accuracy for the Salinas dataset, using the TV, the CSSWHTV and the
anisotropic diffusion and shock filter-based approaches, with wavelet transform for three levels, with
the corresponding window size, of dimension 3 × 3 and 5 × 5, for the controlled sampling strategy
and LBP histogram computation, w3 and w5 (OA).

Filtering
Method

Spatial
Features

Spectral Feature Window Size

Wavelet
Level

High Pass (cD)/Low
Pass (cA) Coeff. w3 w5

TV
filtering

LBPriu2
8,1

N = 1 cA 94.1 ± 1.45 93.59 ± 1.87

N = 2 cA 93.88 ± 1.85 93.45 ± 1.48

N = 3 cA + cD 92.78 ± 1.89 95.7 ± 1.75

LBPriu2
16,2

N = 1 cA 94.85 ± 1.42 93.77 ± 1.49

N = 2 cA 93.56 ± 1.85 93.41 ± 1.47

N = 3 cA + cD 95.93 ± 1.45 92.67 ± 1.81

CSSWHTV
filtering

LBPriu2
8,1

N = 1 cA 92.82 ± 1.98 92.67 ± 1.52

N = 2 cA 92.81 ± 1.84 92.67 ± 1.22

N = 3 cA + cD 90.68 ± 1.14 92.13 ± 1.87

LBPriu2
16,2

N = 1 cA 92.99 ± 1.48 92.81 ± 1.47

N = 2 cA 92.47 ± 1.85 92.12 ± 1.36

N = 3 cA + cD 91.62 ± 1.58 92.69 ± 1.74

proposed
anisotropic
diffusion

and
shock filter

LBPriu2
8,1

N = 1 cA 95.41 ± 1.22 95.1 ± 1.22

N = 2 cA 95.49 ± 1.82 94.71 ± 1.56

N = 3 cA + cD 94.36 ± 1.32 94.1 ± 1.75

LBPriu2
16,2

N = 1 cA 96.54 ± 1.87 94.91 ± 1.78

N = 2 cA 95.88 ± 1.45 93.89 ± 1.36

N = 3 cA + cD 93.78 ± 1.61 93.22 ± 1.55

Figure 15. Classification maps obtained for the Salinas dataset with a controlled sampling strat-
egy based on w3 window size for the training set, for N = 1 wavelet transform level and LBPriu2

8,1
(a) Reference map, (b) TV filtering, (c) CSSWHTV filtering, (d) anisotropic diffusion and shock
filter-based approach.
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Table 8. Classification accuracy for the Pavia University dataset, using the TV, the CSSWHTV and the
anisotropic diffusion and shock filter-based approaches, with wavelet transform for three levels, with
the corresponding window size, of dimension 3 × 3 and 5 × 5, for the controlled sampling strategy
and LBP histogram computation, w3 and w5 (OA).

Filtering
Method

Spatial
Feature

Spectral Feature Window Size

Wavelet
Level

High Pass (cD)/Low
Pass (cA) Coeff. w3 w5

TV
filtering

LBPriu2
8,1

N = 1 cA 84.02 ± 1.52 83.86 ± 1.42

N = 2 cA 88.29 ± 1.77 83.25 ± 1.33

N = 3 cA + cD 82.93 ± 0.99 82.01 ± 1.02

LBPriu2
16,2

N = 1 cA 85.51 ± 1.47 82.25 ± 1.41

N = 2 cA 87.62 ± 1.78 82.45 ± 1.30

N = 3 cA + cD 82.85 ± 1.31 82.07 ± 1.52

CSSWHTV
filtering

LBPriu2
8,1

N = 1 cA 89.86 ± 1.52 85.91 ± 1.28

N = 2 cA 88.4 ± 1.27 82.66 ± 1.34

N = 3 cA + cD 83.73 ± 1.87 83.98 ± 1.85

LBPriu
16,2

N = 1 cA 89.16 ± 1.74 84.88 ± 1.51

N = 2 cA 87.25 ± 1.31 83.62 ± 1.78

N = 3 cA + cD 83.96 ± 1.88 82.11 ± 1.39

proposed
anisotropic
diffusion

and
shock filter

LBPriu2
8,1

N = 1 cA 92.86 ± 1.32 91.41 ± 1.78

N = 2 cA 92.29 ± 1.99 90.98 ± 1.22

N = 3 cA + cD 91.75 ± 1.18 89.89 ± 1.54

LBPriu2
16,2

N = 1 cA 92.12 ± 1.94 90.27 ± 1.83

N = 2 cA 90.51 ± 1.15 89.15 ± 1.48

N = 3 cA + cD 90.02 ± 1.54 87.32 ± 1.52

The Pavia University data set is represented by a multitude of small structures, for
which it is difficult to ensure a vast representation of samples grouped in neighborhoods.
Even though the structure of the data set is represented in this way, an increase in perfor-
mance is ensured by the proposed processing pipeline.

The visual results for the Pavia University, based on the different filtering methods
used, are presented in Figure 16, in terms of classification maps. A difference in classification
performance can be observed considering the selected filtering method. The same behavior
remains for this data set as in the case of the previous two analyzed datasets: the shock
filtering method can bring an increase in the performance by ~8% when compared with
the TV method and by ~4% when compared with the CSSWHTV method. The analysis of
the classification performance shows that the type of content in the data set influences the
results for the specific controlling sampling strategy proposed.
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Figure 16. Classification maps obtained for the Pavia University dataset with a controlled sampling
strategy based on w3 window size for the training set, for N = 1 wavelet transform level and LBPriu2

8,1
(a) reference map, (b) TV filtering, (c) CSSWHTV filtering, (d) anisotropic diffusion and shock
filter-based approach.

5. Discussion

The results obtained in Table 2, under the same experimental conditions for the data set,
when we consider a random sampling strategy, show higher classification rates compared
with the values presented in Table 3. The disadvantage in this situation, is represented by
the inability to ensure the independence between the two data sets, for training, respectively
testing, which determines the network to learn and validate approximatively the same
samples each time. In addition, when we increase the window size, the samples selected
have a larger proportion of overlapping between each other.

In Table 4 we present the classification results obtained for the Indian Pines dataset,
when data is unfiltered. Table 5 illustrates the importance of the filtering phase, its absence
leading to significantly lower classification results obtained under the same conditions for
the training and testing selection of the data. The shock filtering method brings an increase
in performance, by ~3% when compared to the TV method, by ~6% when compared to the
CSSWHTV method and by ~8% when compared to the case when no filtering was used.
Based on these results, we conclude that a relevant filtering and enhancing stage brings
significant contributions to the selected features for the spatial and spectral dimensions.

In general, but also in the case of deep learning methods, one could increase the
overall performance of the model by adopting a random sampling strategy, as illustrated
and presented in Figure 12. Regarding this random strategy, we performed the same
classification of the data, after passing it through the proposed framework, using the TV
filtering method. For the Indian Pines dataset, with random sampling, by selecting the
corresponding number of samples per class corresponding with the window size of w3, we
obtained ~95.53% accuracy, a significantly larger value in comparison with the proposed
controlled sampling where we obtain ~90.02% accuracy, as seen in Table 5.

By analyzing the difference in performance of the data sets, of approximately 5%, one
can initially deduce that the random sampling offers better results in terms of performance.
However, this is not entirely correct, due to the fact that one cannot ensure that there is
independence between the training and the testing data sets. In addition, as we increase
the window size for the LBP histogram calculation, we have more overlapping between
the windows, generating results with ~98–99% accuracy (see Table 2), which cannot be
considered as a valid classification choice due to the bias in the experiment introduced by
similarities between the samples in the training and testing data sets.
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Compared to existing deep learning methods, where HSI data is directly fed to the
neural network, our proposed work and sampling method provides better results. Table 9
summarizes the differences in performance (in terms of OA).

Table 9. Classification accuracy of the proposed method compared to deep learning methods reported
in the literature.

Model Name Indian Pines Dataset Pavia University Dataset

CNN2D40 with disjoint sample
selection (results taken from [7]) 82.97 84.98

CNN3D with disjoint sample
selection (results taken from [7]) 79.58 86.82

Proposed end-to-end (results taken
from Tables 5 and 7) 93.85 92.86

We also tested the performance of the spatially disjoint method presented in [7] for
training and testing distribution according to our proposed controlled sampling strategy,
using the code provided by the authors, and we obtained an overall accuracy of 77.35% for
the Indian Pines data set.

6. Conclusions

We proposed a processing pipeline for hyperspectral images based on three stages:
filtering and enhancing, followed by feature extraction designed to take into consider-
ation both the spatial and spectral dimension, and ending with the classification stage.
Along with the proposed architecture designed to deal with the high dimensional data,
we presented a controlled sampling strategy, based on the need to ensure the indepen-
dence between the training data set and the testing data set, guaranteeing validity in the
interpretation of the classification results when the available data set is relatively small in
sample number count. We demonstrated the fact that the structure of the datasets and the
elements used for representing the information has an influence on the performance of
the classifier as well, where all dimension in the data need to be considered consistently:
both the spatial or the geometry of the objects in the scene and their spectral representa-
tion. The experimental results illustrated the importance of the filtering and enhancing
step for the hyperspectral image, even if we had a smaller number of samples per class.
The anisotropic diffusion and shock filter-based proposed approach technique gave the
best results in classification compared with the CSSWHTV or TV methods. A decrease
in classification performance was observed when the filtering phase was eliminated, so
one can conclude that the filtering and enhancement step was of foremost importance and
relevance. In addition, a controlled sampling strategy, like the proposed one, defined by
the two parameters, the distance between the selected samples, and the window sizes, was
critical for ensuring the independence between the two data sets (training and testing) used
in the classification phase and obtaining results that were not biased.

We also showed that the proposed work outperformed the reported results in the
state-of-the-art using joint spectral and spatial information processing and deep-learning
architectures. However, further investigation needs to be made on how the proposed
controlled sampling strategy can be used together with CNN based methods, especially
within the challenge of even smaller sample populations.
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Abbreviations

HSI Hyperspectral image
TV Total variation
CSSWHTV Combined spatial and spectral weighted hyperspectral total variation
LBP Local binary pattern
PCA Principal component analysis
CA Canonical analysis
SVM Support vector machine
PDE Partial differential equation
DWT Discrete wavelet transform
OA Overall accuracy
cA Low pass (L) coefficients of the wavelet
cD High pass (H) coefficients of the wavelet

References
1. Chang, C.-I. Hyperspectral Imaging: Techniques for Spectral Detection and Classification; Springer Science & Business Media: New York,

NY, USA, 2003; Volume 1.
2. Liang, G.; Smith, R.T. Optical hyperspectral imaging in microscopy and spectroscopy—A review of data acquisition. J. Biophotonics

2015, 8, 441–456.
3. Que, D.; Li, B. Medical images denoising based on total variation algorithm. In Proceedings of the International Conference on

Environment Science and Biotechnology ICESB, Maldives, Spain, 25–26 November 2011; Volume 23, p. 227.
4. Signoroni, A.; Savardi, M.; Baronio, A.; Benini, S. Deep learning meets hyperspectral image analysis: A multidisciplinary review.

J. Imaging 2019, 5, 52. [CrossRef] [PubMed]
5. Teke, M.; Deveci, H.S.; Haliloglu, O.; Gürbüz, S.Z.; Sakarya, U. A short survey of hyperspectral remote sensing applications in

agriculture. In Proceedings of the 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul,
Turkey, 12–14 June 2013; pp. 171–176.

6. Adão, T.; Hruška, J.; Pádua, L.; Bessa, J.; Peres, E.; Morais, R.; Sousa, J.J. Hyperspectral Imaging: A Review on UAV-Based Sensors,
Data Processing and Applications for Agriculture and Forestry. Remote Sens. 2017, 9, 1110. [CrossRef]

7. Paoletti, M.; Haut, J.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm.
Remote Sens. 2019, 158, 279–317. [CrossRef]

8. Fei, B. Hyperspectral imaging in medical applications. In Data Handling in Science and Technology; Elsevier: Amsterdam,
The Netherlands, 2020; Volume 32, pp. 523–565.

9. Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern Trends in Hyperspectral Image Analysis: A Review. IEEE
Access 2018, 6, 14118–14129. [CrossRef]

10. Rasti, B.; Scheunders, P.; Ghamisi, P.; Licciardi, G.; Chanussot, J. Noise Reduction in Hyperspectral Imagery: Overview and
Application. Remote Sens. 2018, 10, 482. [CrossRef]

11. Gómez-Chova, L.; Tuia, D.; Moser, G.; Camps-Valls, G. Multimodal Classification of Remote Sensing Images: A Review and
Future Directions. Proc. IEEE 2015, 103, 1560–1584. [CrossRef]

12. Bowker, D.E. Spectral Reflectances of Natural Targets for Use in Remote Sensing Studies; NASA: Washington, DC, USA, 1985;
Volume 1139.

13. Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [CrossRef]
14. Zhang, X.; Cui, J.; Wang, W.; Lin, C. A Study for Texture Feature Extraction of High-Resolution Satellite Images Based on a

Direction Measure and Gray Level Co-Occurrence Matrix Fusion Algorithm. Sensors 2017, 17, 1474. [CrossRef]
15. Gomez, C.; Drost, A.; Roger, J.-M. Analysis of the uncertainties affecting predictions of clay contents from VNIR/SWIR

hyperspectral data. Remote Sens. Environ. 2015, 156, 58–70. [CrossRef]

http://doi.org/10.3390/jimaging5050052
http://www.ncbi.nlm.nih.gov/pubmed/34460490
http://doi.org/10.3390/rs9111110
http://doi.org/10.1016/j.isprsjprs.2019.09.006
http://doi.org/10.1109/ACCESS.2018.2812999
http://doi.org/10.3390/rs10030482
http://doi.org/10.1109/JPROC.2015.2449668
http://doi.org/10.1109/TIT.1968.1054102
http://doi.org/10.3390/s17071474
http://doi.org/10.1016/j.rse.2014.09.032


Remote Sens. 2022, 14, 1475 29 of 29

16. Engesl, J.M.; Chakravarthy, B.L.; Rothwell, D.; Chavan, A. SEEQ™ MCT wearable sensor performance correlated to skin irritation
and temperature. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Milan, Italy, 25–29 August 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 2030–2033.

17. Jia, S.; Jiang, S.; Lin, Z.; Li, N.; Xu, M.; Yu, S. A survey: Deep learning for hyperspectral image classification with few labeled
samples. Neurocomputing 2021, 448, 179–204. [CrossRef]

18. Mohan, B.K.; Porwal, A. Hyperspectral image processing and analysis. Curr. Sci. 2015, 108, 833–841.
19. Taskin, G.; Kaya, H.; Bruzzone, L. Feature Selection Based on High Dimensional Model Representation for Hyperspectral Images.

IEEE Trans. Image Process. 2017, 26, 2918–2928. [CrossRef] [PubMed]
20. Miclea, A.; Borda, M.; Terebes, R.; Meza, S. Hyperspectral Image Enhancement using Diffusion and Shock Filtering Techniques.

In Proceedings of the 2019 E-Health and Bioengineering Conference (EHB), Iasi, Romania, 21–23 November 2019; pp. 1–6.
21. Miclea, A.; Terebes, R. A Novel Local Binary Patterns and Wavelet Transform-based Approach for Hyperspectral Image

Classification. Acta Teh. Napoc. 2021, 61, 29–34.
22. Cernadas, E.; Delgado, M.F.; González-Rufino, E.; Carrión, P. Influence of normalization and color space to color texture

classification. Pattern Recognit. 2017, 61, 120–138. [CrossRef]
23. Willett, R.; Krishnamurthy, K.; Raginsky, M. Multiscale photon-limited spectral image reconstruction. SIAM J. Imaging Sci. 2010,

3, 619–645.
24. Shen, H.; Yuan, Q.; Zhang, L. Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE

Trans. Geosci. Remote Sens. 2012, 50, 3660–3677.
25. Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60,

259–268. [CrossRef]
26. Othman, H.; Qian, S. Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage.

IEEE Trans. Geosci. Remote Sens. 2006, 44, 397–408. [CrossRef]
27. Cheng, J.; Zhang, H.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral image denoising with a combined spatial and spectral weighted

hyperspectral total variation model. Can. J. Remote Sens. 2016, 42, 53–72.
28. Tu, B.; Li, N.; Fang, L.; He, D.; Ghamisi, P. Hyperspectral Image Classification with Multi-Scale Feature Extraction. Remote Sens.

2019, 11, 534. [CrossRef]
29. Elham, K.G. Hyperspectral image classification using a spectral–spatial random walker method. Int. J. Remote Sens. 2019,

40, 3948–3967.
30. Wei, L.; Chen, C.; Su, H.; Qian, D. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification.

IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693.
31. Demel, M.; Ecker, G.; Janecek, A.; Gansterer, W. On the relationship between feature selection and classification accuracy. In

Proceedings of the Machine Learning Research, New Challenges for Feature Selection in Data Mining and Knowledge Discovery,
Antwerp, Belgium, 15 September 2008; Volume 4, pp. 90–105.

32. Shan, J.; Rodarmel, C. Principal component analysis for hyperspectral image classification. Surveying and Land Information
System. Surv. Land Inf. Sci. 2002, 62, 115.

33. Samat, A.; Persello, C.; Gamba, P.; Liu, S.; Abuduwaili, J.; Li, E. Supervised and Semi-Supervised Multi-View Canonical
Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification. Remote Sens.
2017, 9, 337. [CrossRef]

34. Fang, B.; Li, Y.; Zhang, H.; Chan, J.C.-W. Hyperspectral Images Classification Based on Dense Convolutional Networks with
Spectral-Wise Attention Mechanism. Remote Sens. 2019, 11, 159. [CrossRef]

35. Li, J.; Bioucas-Dias, M.; Plaza, A. Semisupervised Hyperspectral Image Segmentation Using Multinomial Logistic Regression
with Active Learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [CrossRef]

36. Su, J.; Vargas, D.V.; Sakurai, K. One Pixel Attack for Fooling Deep Neural Networks. IEEE Trans. Evol. Comput. 2019, 23, 828–841.
[CrossRef]

37. Pop, S.; Lavialle, O.; Donias, M.; Terebes, R.; Borda, M.; Guillon, S.; Keskes, N. A PDE-Based Approach to Three-Dimensional
Seismic Data Fusion, Geoscience and Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1385–1393. [CrossRef]

38. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

39. Feng, S.; Yuki, P.; Duarte, M. Wavelet-Based Semantic Features for Hyperspectral Signature Discrimination. arXiv 2016,
arXiv:1602.03903.

40. Ghaderpour, E.; Pagiatakis, S.D.; Hassan, Q.K. A Survey on Change Detection and Time Series Analysis with Applications. Appl.
Sci. 2021, 11, 6141. [CrossRef]

41. Qian, Y.; Wen, L.; Bai, X.; Liang, J.; Zhou, J. On the sampling strategy for evaluation of spectral-spatial methods in hyperspectral
image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 862–88042.

42. Hyperspectral Remote Sensing Scenes. Available online: http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_
Sensing_Scenes (accessed on 16 March 2022).

http://doi.org/10.1016/j.neucom.2021.03.035
http://doi.org/10.1109/TIP.2017.2687128
http://www.ncbi.nlm.nih.gov/pubmed/28358688
http://doi.org/10.1016/j.patcog.2016.07.002
http://doi.org/10.1016/0167-2789(92)90242-F
http://doi.org/10.1109/TGRS.2005.860982
http://doi.org/10.3390/rs11050534
http://doi.org/10.3390/rs9040337
http://doi.org/10.3390/rs11020159
http://doi.org/10.1109/TGRS.2010.2060550
http://doi.org/10.1109/TEVC.2019.2890858
http://doi.org/10.1109/TGRS.2008.916209
http://doi.org/10.1109/TPAMI.2002.1017623
http://doi.org/10.3390/app11136141
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

	Introduction 
	Related Work 
	Methods and Materials 
	Addressing the Challenges in HSI Image Processing 
	The Proposed Processing Method 
	The Spatial-Spectral Adaptive Shock Filtering Model 
	The Parallel Approach Based on Wavelet and LBP for Feature Extraction 
	The Concatenation of the Spatial and Spectral Descriptors 
	Controlled Sampling for Classification Accuracy Estimation 


	Results 
	Hyperspectral Datasets 
	Ensuring the Independence between Data Training and Data Testing 
	The Experimental Configuration 
	Obtained Experimental Results 
	Random Sampling vs. Controlled Sampling Evaluation 
	Spatial vs. Spectral Information for Feature Extraction 
	Parallel Spatial-Spectral Feature Extraction and Classification 
	Contribution of the Data Filtering for End-to-End Classification 
	Classification Results on the Salinas Datasets 
	Classification Results on the Pavia University Datasets 


	Discussion 
	Conclusions 
	References

