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Abstract: A microstand is a small forest area with a homogeneous tree species, height, and density
composition. High-spatial-resolution GeoEye-1 multispectral (MS) images and GeoEye-1-based
canopy height models (CHMs) allow delineating microstands automatically. This paper studied
the potential benefits of two microstand segmentation workflows: (1) our modification of JSEG and
(2) generic region merging (GRM) of the Orfeo Toolbox, both intended for the microstand border
refinement and automated stand volume estimation in hemiboreal forests. Our modification of JSEG
uses a CHM as the primary data source for segmentation by refining the results using MS data.
Meanwhile, the CHM and multispectral data fusion were achieved as multiband segmentation for the
GRM workflow. The accuracy was evaluated using several sets of metrics (unsupervised, supervised
direct assessment, and system-level assessment). Metrics were calculated for a regular segment grid
to check the benefits compared with the simple image patches. The metrics showed very similar
results for both workflows. The most successful combinations in the workflow parameters retrieved
over 75 % of the boundaries selected by a human interpreter. However, the impact of data fusion and
parameter combinations on stand volume estimation accuracy was minimal, causing variations of
the RMSE within approximately 7 m3/ha.

Keywords: forest microstands; segmentation; GeoEye-1 stereo; JSEG; generic region merging; data
fusion

1. Introduction

Accurate information about forests’ qualitative and quantitative conditions (forest
inventory) is critical to effectively achieving forest management’s economic, environmental,
and social goals.

Remote sensing data provide spatially detailed information over vast areas and can
be used as a complementary information source for an automated forest inventory [1].
Especially, very-high-resolution (VHR) stereo satellite images may be beneficial by offering
up-to-date information about both the spectral and structural characteristics of the forest,
since the cycles of updating aerial imagery and LiDAR data throughout the given area are
much less frequent. For example, aerial photography of the entire territory of Latvia is
carried out every three years, while laser scanning was performed only once [2].

Various processing methods have been applied to support national forest inventories
(NFIs) depending on a remote sensing data source [3]. Data processing workflows can
be grouped by the employed datasets and by the spatial units in which forest inventory
variable estimations are carried out. For example, the spatial unit of an automated forest
inventory based on remote sensing data can be: (1) a pixel [4], (2) a single tree [5], and (3)
homogeneous image patches or forest microstands [6].

The most accurate forest inventory parameter estimations can be achieved by oper-
ating at the single-tree level [7]. However, a successful individual tree identification and
delineation greatly depend on the spatial resolution of the remote sensing data and forest
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conditions (such as the tree species composition and stand density) [8,9]. For example,
dense deciduous and mixed stands with a visually flat crown shape in remote sensing data
and overlapping tree crowns are frequent in hemiboreal mixed forests. As a result, the
detection of a single tree is limited under such conditions even when remote sensing data
of a high spatial resolution are available.

Thus, this study focused on microstands as operational units for potentially automated
forest inventory data collection. In the sense of remote-sensing-based forest inventory,
microstands are homogeneous forest patches [10], which are the same in terms of tree
species, height, and composition without restrictions on the minimal allowed area or bor-
ders imposed by management aspects. According to the legislation or forest management
needs, microstands can be combined into forest compartments.

During the general forest inventory procedure in the Baltic States, a map of forest
compartments that unites the stands of similar age, forest type, and height composition is
created according to the local legislation [11]. Those compartments serve as a basic spatial
unit for summarizing forest inventory variables such as stand volume, stand height, etc.
Compartment borders are generally associated with homogeneous forest patches, as well
as with management units and historically established compartment borders.

Typically, forest inventory specialists/evaluatorsacquire primary forest inventory pa-
rameters and refine compartment borders through field campaigns and remote sensing
data visual analysis (aerial images, LiDAR-based canopy height models (CHMs)). The al-
location of forest compartments is highly dependent on the experience of each particular
forest inventory specialist [12]. In addition, legalisation [11] in Latvia also states that the
minimum allowed forest compartment area is 0.3 ha; therefore, smaller forest features are
often overlooked.

After collecting in situ data, evaluatorssubmit the data of primary forest inventory
indicators, such as species composition, height, and diameter, to the State Forest Register,
where secondary inventory indicators are calculated from them, for example stand volume.

Microstands can also be delineated using remote sensing data by image segmentation
techniques [13] and can serve as a more robust spatial unit applicable in daily practice to
vast areas with complicated structures of forest stands. An example of such an approach
is the forest inventory procedure used in Finland, where forest areas are automatically
subdivided into irregular larger or smaller microstands according to remote sensing data [6].

Forest compartment and microstand delineation methods using remote sensing data
can be classified into two groups: (1) workflows based on segmentation methods and
(2) workflows based on the detection of single trees merged into microstands.

Many segmentation-based studies (first group) employ the popular Baatz and Schäpe
segmentation algorithm [14] implemented in the eCognition software [15–19]. The algo-
rithm includes the region-growing segmentation by minimizing the spectral and spatial
heterogeneity of the segments. Several datasets, including orthophotos [20], LiDAR-based
feature images [21], and optical and LiDAR data fusion [15], can be processed using this
method. The region-growing approach is also employed in other studies [22,23]. While
most methods work with raster images, Bruggisser et al. [24] employed the k-means
clustering of the LiDAR point cloud, followed by an iterative merging step to tackle
the oversegmentation.

The second approach unites smaller spatial units such as single-tree objects or grid cells
into microstands based on the mutual similarity between neighbouring units. Leckie et al. [25]
identified single-tree crowns using the valley-following approach, classified the tree species,
and formed stands by accounting for stem density and canopy closure. Deschesne et al. [26]
combined pixel-level features with the watershed-based single-tree extraction to segment
semantic forest classes. Instead of single-tree crowns, Koch et al. [12] analysed grid cells
to find uniform data units, while Jia et al. [27] applied cellular automation for stand delin-
eation.

A comparison of different studies to find an optimal dataset, data processing workflow,
and its parameters is burdened by the subjectivity factor in microstand borders and a lack
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of a set of unambiguous metrics allowing selecting the best segmentation result [28].
Wulder et al. [29] stated that an objective accuracy assessment of polygons using the
ground truth cannot be achieved in forest stand delineation, because stand borders are
not so clear as in the case of urban or agricultural applications. The selection of forest
stands by image analysts can differ between experts [12]. The microstand delineation
accuracy can be measured using two basic approaches: (1) system-level and (2) direct
assessments [28]. The system-level accuracy assessment means evaluating segmentation
results in a comprehensive workflow for estimating forest inventory variables. The higher
accuracy of those forest inventory variables hints at a more efficient segmentation [23,26].
The direct accuracy assessment includes evaluating the quality of the segments using
reference data such as stands delineated by experts (supervised assessment) [21] or segment
homogeneity criteria [17] (unsupervised assessment).

The objective of this research was to investigate the application of two microstand seg-
mentation workflows: (1) our modification of JSEG and (2) generic region merging (GRM)
of the Orfeo Toolbox, both for the microstand border refinement (to provide additional
input for traditional forest inventory process) and automated stand volume estimation in
hemiboreal mixed forests.

The main contribution of this research is related to the performance analysis of the
microstand segmentation algorithms in the case of highly heterogeneous hemiboreal for-
est stands.

Our contribution in this research also includes:

1. Development of modified JSEG segmentation [30] workflow in a way providing for
the CHM and multispectral data fusion;

2. Application of the JSEG workflow and freeware solution provided by the Orfeo
Toolbox: Generic Region Merging to four-band GeoEye-1 images and the CHM
prepared using the same GeoEye-1 stereo scene. The CHM produced in this manner
includes time compatibility with the spectral bands;

3. Extensive accuracy assessment for hemiboreal forests in Latvia using (1) unsuper-
vised and forest-specific metrics, (2) supervised, direct accuracy assessment using
2700 microstands delineated by an independent image analyst, and (3) system-level
assessment by estimating stand volume. All metrics were also calculated for grid cells
to evaluate the benefits of segmentation.

Hemiboreal forests are characterised by the dominance of coniferous trees, but with a
significant presence of numerous deciduous tree species [31], resulting in high spectral and
structural variability within a stand and between stands. This diversity poses challenges
for both segmentation and machine learning algorithms.

The motivation for choosing JSEG [30] for this study was the ability of the algorithm to
capture uniform, high-level textures, which are specifically important for the delineation of
microstands. Texture created by tree crowns is one of the most important features observed
by image analysts when selecting microstands by hand. The JSEG segmentation method
has been proven efficient for extracting regions of similar texture without restrictions on
the region size [30]. Wang et al. [32] compared the classical and improved JSEG method
with the eCognition segmentation algorithm and concluded that improved JSEG could
retrieve boundaries better. However, comparatively, JSEG has been considered in a small
amount of studies. This could be the lack of open-source implementations and the high
computational complexity.

The generic region merging of Orfeo Toolbox (OTB) was chosen for comparison
because it is a freely available and easy-to-use implementation.

2. Materials and Methods
2.1. Study Site

Microstand segmentation was performed for an approximately 161 km2 large area
in the central-southern part of Latvia (56.46◦N, 25.04◦E) near the Lithuanian border; see
Figure 1. The study area includes hemiboreal mixed forest, in which the dominant tree
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species are Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), birch
(Betula pendula Roth and Betula pubescens Ehrh.), and black alder (Alnus glutinosa (L.) Gaertn).

Figure 1. Study site and six sample plots that were employed for additional reference data acquisition.
Centre coordinates 56.46◦N, 25.04◦E.

More than half of the area is owned by the Joint Stock Company “Latvia’s State Forests”
(LVM), but the rest is occupied by forests of private owners and non-forested land cover
types. The average stand age of the state-owned forests is 66 y, with a standard deviation of
34 y, according to the National Forest Inventory (NFI) database. State-owned forest stands
are under heavier management activities than private owners, resulting in visibly different
textures formed by tree crowns in the VHR images.

Microstand polygon reference data were acquired during this research for six sample
areas (for both state and private lands within the study site) with a total area of 19.5 km2.

2.2. Remote Sensing and Reference Data

We used GeoEye-1 stereo image pairs acquired at 9:27 on 7 August 2020. Each scene
includes 4-band (blue: 450–510 nm, green: 510–580 nm, red: 655–690 nm, and near-infrared:
780–920 nm) multispectral data with a spatial resolution of 2m/px and the panchromatic
band (450–800 nm) with a 0.5 m/px resolution [33].

The canopy height model (CHM) was prepared on a 0.5 m/px grid employing the
PCI Geomatica software, by using near-infrared stereo images from the same GeoEye-1
scene and the external digital terrain model (DTM) provided by the Latvian Geospatial
Information Agency.

Microstand segmentation was performed using only GeoEye-1 MS and CHM data.
For validation purposes, we also employed LiDAR-based CHM with a spatial resolution of
0.5 m/px, which allowed us to evaluate the approximate number of tree crowns within
a microstand.

The reference dataset included the NFI database for state forests within a study site
and 2770 microstand polygons drawn by the image analyst for 6 sample areas.

The image analyst (researcher in the field of forestry, hired for this research) visually
assessed the remote sensing datasets mentioned above by analysing the CHM first and
using multispectral information to split polygons found in the CHM if necessary. For every
polygon, the image analyst assigned 1 of 5 land cover class codes (1—pure stand containing
only 1 tree species, 2—mixed stand containing more than 1 tree species, 3—recently felled
area, 4—non-forest, 5—young stand) and the confidence level of microstand border position.
If the microstand border was clearly visible in the remote sensing data as in case of even-
aged pure stands, then the expert recorded a confidence level of 1 (high confidence). If the
borders selected might be ambiguous or hard to distinguish, then the confidence level of 0
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(low confidence) was assigned. A summary of the spatial characteristics for the six sample
areas is given in Table 1.

Table 1. Characteristics of the sample areas derived from the reference data.

No. Area (km2)
Number of

Microstands

Percentage of the
Forested Area

Owned by
the State

Percentage of the
Area Formed by

Mixed Stands

Percentage of the
Area Delineated

with Low
Confidence

1 4.54 508 46 51.4 12.8

2 3.85 545 62 42.8 31.5

3 1.16 194 7 45.2 15.6

4 1.67 336 88 53.1 40.4

5 1.44 208 18 33.5 34.3

6 6.83 979 73 40.6 13.8

2.3. Methods
2.3.1. Modified JSEG Workflow

The JSEG describes local textures in the class-map image (see examples in Figure 2,
created by k-means) using a variable J [30] calculated in a pixel neighbourhood specified
by the window size. Higher J values indicate higher heterogeneity of the texture within a
neighbourhood. Then, the region-growing algorithm was initialised by seed regions. Seed
regions were found using a workflow based on thresholding, which selects areas with low
J values, indicating potentially uniform textures. The region growing can be employed
by combining J images of varying window sizes. For example, region seeds can be found
using the J image of a larger window size, while the pixel-by-pixel region growing can be
performed using some of the J images of smaller window sizes.Version March 8, 2022 submitted to Journal Not Specified 6 of 19

(a) (b)

(c) (d)
Figure 2. Examples of class-map images. a) GeoEye-1 based CHM, b) class-map image
of a) if 16 clusters are sought by k-means, c) GeoEye-1 based false colour image (NIR,
Green, Blue), d) class-map image of c) if 16 clusters are sought by k-means.
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excluded pixels with CHM value lower than 3 meters from further analysis, since208
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Scale 1. Find a seed image [30] using J I33 by setting the minimum allowed210

seed size as 512 pixels. Add homogeneous chunks of J I17 to the seed image and211

perform region growing pixel by pixel using J I17. The output is denoted as RCHM1.212

Scale 2. Find the refined seed image for RCHM1 using J I17 and 128 as the213

minimum allowed seed size, perform region growing by adding homogeneous214

chunks using J I7 and perform region growing pixel by pixel using J I7. The output215

is denoted as RCHM2.216

3. Calculate J images for the clustered (k = 16) multispectral image (MS) in three217
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a) for the first scale MS1, find new seeds for the region using J IMS33 and222

employ the pixel-by-pixel region growing using J IMS17. The output is denoted as223

Figure 2. Examples of class-map images. (a) GeoEye-1-based CHM, (b) class-map image of (a) if
16 clusters are sought by k-means, (c) GeoEye-1-based false colour image (NIR, green, blue), and
(d) class-map image of (c) if 16 clusters are sought by k-means.
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We modified the JSEG segmentation workflow described in [30], to incorporate se-
quential processing of the CHM and MS datasets.

The workflow for microstand delineation at a spatial resolution of 0.5 m/px includes
the following steps:

1. Calculate J images for clustered (number of clusters k = 16) CHM at three scales
with window sizes w = 33 px, w = 17 px, and w = 7 px as J I33, J I17, and J I7.
The number of clusters was set by the trial-and-error method, aiming to emphasise
microstands distinguishable by visual assessment. To emphasise sharp boundaries,
the morphological gradient of the CHM with a 5× 5 square structuring element was
merged with J images using the elementwise maximum operation;

2. Perform the multiscale segmentation of J images. To save the calculation time, we
excluded pixels with a CHM value lower than 3 m from further analysis, since we
were interested only in the tree-covered areas;

Scale 1: Find a seed image [30] using J I33 by setting the minimum allowed seed
size as 512 px. Add homogeneous chunks of J I17 to the seed image, and perform
region growing pixel-by-pixel using J I17. The output is denoted as RCHM1;

Scale 2: Find the refined seed image for RCHM1 using J I17 and 128 as the minimum
allowed seed size; perform region growing by adding homogeneous chunks using J I7;
perform region growing pixel-by-pixel using J I7. The output is denoted as RCHM2;

3. Calculate J images for the clustered (k = 16) multispectral image (MS) at three scales
with the same window sizes w = 33, 17, 7 as J IMS33, J IMS17, and J IMS7;

4. Resegment each region in RCHM2. Statistical measures of the JSEG method were
calculated for each region from RCHM2 to be processed individually, and segmentation
again was performed at multiple scales:

(a) for the first scale MS1, find new seeds for the region using J IMS33, and
employ the pixel-by-pixel region growing using J IMS17. The output is denoted as
RCHM2,MS1,J I33,J I17, where the first index shows the CHM segmentation scale, the sec-
ond one reflects the MS scale, and the last ones indicate the J images employed;

(b) For the second scale MS2, find new seeds for the segmented image from the
previous Step (a) using J IMS17 and perform the pixel-by-pixel region growing using
J IMS7. The output is denoted as RCHM2,MS2,J I17,J I7;

(c) If three scales are employed, find new seeds (64 as the minimum allowed
seed size) for the output of Step (b) using J IMS7, and apply the pixel-by-pixel region
growing using J IMS7. The output is denoted as RCHM2,MS3,J I33,J I7,J I7;

5. An optional step is merging regions smaller than the specified threshold with the most
similar neighbour region, defining the similarity as the Euclidean distance between
the trimmed mean values of the regions under consideration.

2.3.2. Generic Region Merging

The GRM algorithm of the Orfeo Toolbox (OTB) starts by considering each pixel as a
separate segment and numbering it with a unique label. Adjacent segments are iteratively
combined if they meet the homogeneity criterion. The OTB implementation offers several
homogeneity criteria, but we employed the Baatz and Schape criterion [34]. The Baatz
and Schape criterion measures spectral and spatial homogeneity before and after merging
two adjacent segments. Adjacent segments are merged if the criterion value is below
the threshold T specified by the user. Weight coefficients can be applied to put higher
significance on spectral homogeneity ws or spatial compactness wc.

We applied GRM to MS, the CHM images separately, and a fused dataset as well.
Data fusion of 4 multispectral bands and the CHM was performed by simply adding the
CHM as the fifth band in the image. The CHM was normalised by setting all height values
larger than 50 m to 50 m and dividing the CHM by 50 to ensure values in the range [0, 1].
Multispectral bands were normalised by dividing each band with its maximum value to
keep values similarly distributed among the bands.
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Figure 3 provides a small sample of the input data for GRM: GeoEye-1 false-colour
image (NIR, green, blue as the red, green, blue layers), the GeoEye-1-based CHM and
fused multiband image (NIR, green, the CHM were used for visualisation as the red, green,
blue layers).
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(a) (b)

(c)
Figure 3. Example of GeoEye-1 data set combinations: a) false-colour MS image (NIR, Green, Blue
as image layers), b) CHM derived from the GeoEye-1 scene, c) fused multiband input for GRM
(NIR, Green, CHM as image layers).

Figure 3. Example of GeoEye-1 dataset combinations: (a) false-colour MS image (NIR, green, blue as
the image layers), (b) the CHM derived from the GeoEye-1 scene, and (c) fused multiband input for
GRM (NIR, green, CHM as the image layers).

2.3.3. Microstand Quality Assessment

Unsupervised image segmentation is by nature an ill-defined problem with many
potentially correct solutions [30]. Objects in the forests are not visually clearly separable,
and the reference data also depend on the image analyst’s subjective opinions. Therefore,
the reference dataset as well do not represent the sole and full-fledged solution [12]. Thus,
finding the best segmentation algorithm or parameter combination according to numerical
metrics is also challenging. Räsänen et al. [28] studied different direct supervised and
system-level metrics for forest habitat mapping and concluded that different segmentation
results were considered the best when different metrics were used.

We calculated 3 sets of metrics to capture different aspects of the segmentation results
in hemiboreal forests: (1) unsupervised metrics characterizing internal homogeneity and
intersegment heterogeneity, (2) direct, supervised overlap metrics with microstands delin-
eated by the image analyst, and (3) the system-level RMSE for stand volume estimation
using different segmentations as a basic spatial unit; see Table 2.

All metrics were calculated for the microstand segments and between forest micro-
stand segments only if adjacent segments were analysed, not including segments belonging
to other land cover types. Forest segments were selected by setting a height threshold
to the CHM. A segment was considered a forest microstand only if its average GeoEye-1
CHM value was greater than or equal to 3 m. According to local legislation, a stand with an
average height of at least 5 m is considered a forest. This threshold was reduced to consider
the spacing between the trees and the lower parts of the tree crowns, which were included
in the calculation of the average value.

Metric wVarNormCHM characterises the height variance of the pixels belonging to the
same microstand [21]. The upper bound of wVarNormCHM is equal to 1 when the variance
of the segment is equal to the variance of the whole segmented image, while the lower
bound is 0 when all pixel values within a segment are the same. Lower values indicate
higher internal homogeneity of the segments. This metric is unsuitable if gaps between
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trees are clearly visible in the CHM. Height values of those gaps would affect the height
variance values, but those gaps are not undesirable in a microstand, if the stand density is
low, but forms a regular macrotexture. We calculated wVarNormCHM for GeoEye-1-based
CHM, where individual tree crowns are not clearly visible.

Table 2. Accuracy metrics employed in this study. The last column shows if a higher or lower value
indicates better segmentation: ↑—a higher metric value indicates higher quality, ↓—a lower metric
value indicates higher quality.

Abbreviation Metric Group Higher Accuracy

wVarNormCHM Normalised height variance Direct, unsupervised ↓

SCHM
Average difference in mean height between
adjacent microstands Direct, unsupervised ↑

SMS
Average Euclidean distance between the mean
spectral vectors of adjacent microstands Direct, unsupervised ↑

SLMH
Average difference in mean heights of local
maximums between adjacent microstands Direct, unsupervised ↑

OS Oversegmentation Direct, supervised ↓
US Undersegmentation Direct, supervised ↓
D Summary score Direct, supervised ↓
CB Boundary similarity Direct, supervised ↑

RMSE Root-mean-squared error for stand volume
estimation

System-level,
supervised ↓

Metric S f shows the average difference in feature f values between adjacent micro-
stands (microstands with a common border):

S f =
∑n

i=1 ∑n
j=1 wij(|| fi − f j||)

∑ wij
, (1)

where n is the number of microstands;
fi, f j is the average value of the feature f for microstand i and microstand j;
wij = 1 if microstand numbers i and j have a common border and i 6= j, otherwise

wij = 0.
We employed several features: SCHM, SMS, and SLMH . SCHM shows the average

difference of the GeoEye-1-based mean CHM values of adjacent microstand pairs in metres,
while SMS shows the average Euclidean distance between the mean spectral vectors of
adjacent microstands. SLMH was calculated using the LiDAR-based CHM where individual
tree crowns can be separated by simple local maximum filtering with a filter size of
3.5 m. SLMH shows the difference in the average local maximum height for adjacent
microstands. Higher S f values indicate better segmentation results for all metrics because
the neighbouring microstands are less similar in the context of forest-related features.

Supervised, direct polygon overlap metrics included OS, US, D, and CB.
Oversegmentation (OS), undersegmentation (US), and summary score (D) explained

in [21,35] were used as area-based metrics to characterise the overlap between microstand
polygons delineated by the image analyst and the segmentation workflow. Thus, the values
close to zero indicate higher accuracy, but those close to one indicate low accuracy.

We also calculated the boundary similarity metric CB similar to outline proportions
within the buffer zones presented by Neubert and Herold [36]. Lucieer et al. [37] suggested
calculating the average distance between a segment boundary pixel and the reference
boundary (D(b)) to characterise the quality and dissimilarity of the borders. However,
a visual comparison showed that there were cases where the border found by the workflow
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actually was more accurate than the border selected by the image analyst. In those cases,
the average distance can give the impression of errors. A more accurate interpretation
would be considering these offsets as natural differences between the border generalisation
by a human interpreter and a pixel-by-pixel analysis of the computer method. Therefore,
we used the metric CB, which allows one to evaluate the percentage of the reference border
located close to the segmentation borders (see Figure 4). It can be defined as follows:

CB = ∑(Br AND Bm,dilated)/ ∑(Br), (2)

where Br is the rasterised reference boundary, one pixel thick at the same spatial resolution
as the remote sensing dataset;

Bm is the one-pixel-thick boundary created by the segmentation workflow. A binary
dilation with a square structuring element of size T× T was employed to create a buffer
zone around the boundary denoted by Bm,dilated.

The threshold T sets the spatial distance in which we still consider Br and segmentation
border Bm as well matched. In our study, we set T = 10 m according to the visual assessment.
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(a) (b) (c)
Figure 4. Example showing the interpretation of CB. The length of Br in the extent is
1775 pixels, the length of Bm = 1185 pixels, the matched border length is 658 pixels,
CB = 37%. a) CHM as the background layer, reference border Br marked with white
line, segmentation border Bm marked with black, b) segmentation border Bm,dilated (in
black) dilated with a square structuring element, c) Br AND Bm,dilated: fragments
of the microstand border selected by the image analyst which are located close to the
microstand border marked by the data processing workflow.
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Figure 4. Example showing the interpretation of CB. The length of Br in the extent is 1775 px;
the length of Bm = 1185 px; the matched border length is 658 px, CB = 37%. (a) The CHM
as the background layer; reference border Br marked with white line, segmentation border Bm

with black. (b) Segmentation border Bm,dilated (in black) dilated with a square structuring element.
(c) Br AND Bm,dilated: fragments of the microstand border selected by the image analyst that are
located close to the microstand border marked by the data processing workflow.

Finally, the system-level assessment was performed by applying the random forest
regressor [38] for stand volume estimation at the microstand level using the NFI data as
the ground truth. If the microstand overlaps with the forest compartment by more than
50%, then the stand volume of the dominant tree species within the forest compartment is
assigned to the microstand; otherwise, the microstand is not used for further processing.
Each of the microstands was described by the following remote sensing data features:
mean values of 4 GeoEye-1 spectral bands, the GeoEye-1 CHM mean value and standard
deviation, the number of local maximums in the LGIA CHM (maximum filter size 7 m),
and the average height value of local maximums in the LGIA CHM. As a result, each
microstand was characterised by 8 features.

The described microstands with assigned reference stand volume values were split
into training and test datasets using 70% for fitting the random forest and 30% for testing.
Once random forest predictions for the test set were made, the RMSE was calculated as
a quality metric. A lower RMSE indicates lower prediction errors. As microstands were
employed as the basic spatial units, a lower RMSE for the segmentation case would indicate
a better segmentation result for stand volume estimation purposes.
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2.3.4. Adjusting Workflow Parameters

Parameters for the JSEG-based workflow were set based on a visual assessment to
produce segments as similar as possible to the segments delineated by the image analyst.

Parameters for the GRM-based workflow were adjusted using computational parame-
ter tests. In the parameter tests, all meaningful combinations of the most important GRM
parameters T, ws, and wc were tested. The two best segmentation results for each dataset
were produced using two different optimisation criteria:

1. D: lowest D score showing the best match with segments delineated by the image
analyst;

2. RMSE: lowest RMSE when segments are employed as the basic spatial units for
stand volume estimation.

Due to a large amount of VHR data in our study site, we applied data parallelism to
the segmentation workflows by splitting the dataset into 1 km × 1 km tiles according to
the local map page division nomenclature and by processing each tile in a separate process.
Of course, data splitting results in visible tile boundaries, also in the segmentation results,
which could be avoided by adding postprocessing to the workflows. However, in our study,
tile borders were not additionally processed.

3. Results
3.1. Examples of the Segmentation Results

Figure 5 shows an example of the first stage of JSEG segmentation using only the
CHM as the input. It can be seen that the JSEG segmentation can efficiently capture smooth
borders between microstands of different heights, and RCHM2 seems to be a visually better
match to the reference data.
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Figure 5. Example of the CHM segmentation using the JSEG workflow without adding the mul-
tispectral information (56.51◦N, 24.96◦E: 56.51◦N, 24.97 ◦E). (a) Reference data delineated by the
image analyst, (b) RCHM1 (see Section 2.3.1) segmentation results, and (c) RCHM2 (see Section 2.3.1)
segmentation results.
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Figure 6 shows examples of the JSEG results when the multispectral data segmentation
was added to the CHM segmentation. Green borders in the image confirm how the
complementary nature of height information in the CHM and spectral information in the
satellite images allowed one to include significant aspects of microstands. Similar height
classes were extracted from the CHM, but the coniferous and deciduous tree species and
the tree crown closure as a macrotexture were extracted from the multispectral images.Version March 8, 2022 submitted to Journal Not Specified 12 of 19

(a) Reference data (b) RCHM1,MS1,J I33,J I7

(c) RCHM2,MS2,J I7,J7 (d) RCHM2,MS3,J I33,J I7,J I7

Figure 6. Example of segmentation results using JSEG workflow with multispectral information
added (56.51◦ N, 24.96◦ E: 56.51◦ N, 24.97◦ E, notation is described in section 2.3.1.). The white line
denotes CHM segmentation results, but the green one denotes the lines added during multispectral
data processing. Background layer: GeoEye-1 satellite image (NIR, G and B bands).
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average segment area avgA and standard deviation of the segment area stdA are394

shown as well.395

The lowest RMSE = 67.9m3/ha was achieved by using the image analyst’s selec-396
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4467 segments for testing. In comparison, only 1890 segments were available for401
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Figure 6. Example of segmentation results using the JSEG workflow with multispectral information
added (56.51◦N, 24.96◦E: 56.51◦N, 24.97◦E; the notation is described in Section 2.3.1). The white
line denotes the CHM segmentation results, and the green one denotes the lines added during
multispectral data processing. Background layer: GeoEye-1 satellite image (NIR, G, and B bands).

Figure 7 shows an example of the GRM tests with different dataset combinations
(CHM, MS, and fused images) and optimisation criteria (D and RMSE; see Section 2.3.4)
for the adjustment of the algorithm parameters, as well as a sample of the image analyst’s
segmentation and the regular grid. When optimisation concerning D was applied, we
could observe meaningful segments, however different from the delineation results of the
human analyst. Meanwhile, optimisation concerning the RMSE resulted in a strong over-
segmentation.

Visual comparison of GRM and JSEG showed that the usage of J images for seg-
mentation resulted in smoother region boundaries; in contrast, the GRM results required
boundary regularisation in postprocessing or should be applied using even lower-spatial-
resolution images.
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(a) Regular grid (b) Reference data

(c) CHM, D for optimization (d) CHM, RMSE for optimization

(e) MS, D for optimization (f) MS, RMSE for optimization

(g) Fused image, D for optimization (h) Fused image, RMSE for optimization

Figure 7. Examples of different segmentation results using GRM (56.51◦ N, 24.96◦ E: 56.51◦ N,
24.97◦ E): a) regular grid 48× 48 m, b) microstands delineated by the image analyst, c) GRM results
using only Geo-Eye1 CHM and D as optimization criteria, d) GRM results using only Geo-Eye1
CHM and RMSE as optimization criteria, e) GRM results using only Geo-Eye1 4 bands and D as
optimization criteria, f) GRM results using only Geo-Eye1 4 bands and RMSE as optimization
criteria, g) GRM results using combined Geo-Eye1 bands and CHM and D as optimization criteria,
g) GRM results using combined Geo-Eye1 bands and CHM and RMSE as optimization criteria.

Table 4 shows that stand volume estimation error was minimally affected by seg-403

mentation results. RMSE varies within a range of 6m3/ha showing RMSE =404

76.0m3/ha for JSEG applied to fused data set and RMSE = 78.8m3/ha for GRM405

applied to the fused data set as well. However, this small difference does not show406

practical gain of data fusion already in the segmentation stage, since an even smaller407

error RMSE = 74.8m3/ha was achieved by performing no segmentation at all and408

using regular grid patches as a basic spatial unit for stand volume estimation.409

Comparing overlap metrics between the results of segmentation algorithms and410

image analyst, one can observe that the summary score D is quite high for all411

outputs, indicating that the areas of the microstands found by the workflows are412

noticeably different from those found by the image analyst, however, similar in413

size. Optimization tests with respect to RMSE show clear trends of oversegmen-414

Figure 7. Examples of different segmentation results using GRM (56.51◦N, 24.96◦E: 56.51◦N, 24.97◦E):
(a) regular grid 48× 48 m, (b) microstands delineated by the image analyst, (c) GRM results using
only the GeoEye-1 CHM and D as the optimisation criteria, (d) GRM results using only the GeoEye-1
CHM and the RMSE as the optimisation criteria, (e) GRM results using only the 4 GeoEye-1 bands
and D as the optimisation criteria, (f) GRM results using only the 4 GeoEye-1 bands and the RMSE
as the optimisation criteria, (g) GRM results using combined GeoEye-1 bands, the CHM, and D as
the optimisation criteria, and (h) GRM results using the combined GeoEye-1 bands, the CHM, and
the RMSE as the optimisation criteria.

3.2. Unsupervised Metrics

Table 3 summarises the unsupervised metric values for the JSEG and GRM workflows,
as well as for regular grid cells and the segmentation by the image analyst. The ab-
breviations CHM, MS, and fused (both the CHM and MS) explain the dataset used for
segmentation, but the D and RMSE reflect the optimisation criteria used to the adjust
workflows’ parameters.

The internal heterogeneity of the segments vWarNormCHM with respect to the CHM
was naturally higher for the regular grid and for those experiments performed using
multispectral information only. When the CHM was included in the segmentation process,
both segmentation algorithms achieved higher internal segment homogeneity than the
image analyst.
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Differences between stand-specific segment characteristics S f were higher for tests
optimised by the D criterion, but significantly lower for tests where the optimisation using
the RMSE of stand volume estimation was performed. The GRM and JSEG algorithms for
the fused dataset showed the best performance. GRM in all cases captured multispectral
differences between stands better, while JSEG segmentation resulted in higher height
differences between adjacent microstands.

Table 3. Unsupervised metrics. Arrows ↓ and ↑ indicate whether a lower or higher value is considered
as better. The best value for each metric is emphasised with bold font.

Case vWarNormCHM ↓ SCHM ↑ SMS ↑ SLMH ↑
Regular grid 48× 48 m 0.35 3.9 9.32 2.83

Reference polygons 0.24 5.68 934 4.2

GRM CHM, D 0.09 7.47 569 4.34

GRM CHM, RMSE 0.01 4.86 31 3.09

JSEG CHM 0.12 8.2 103 4.4

GRM MS, D 0.35 4.3 638 3.8

GRM MS, RMSE 0.3 2.63 23.7 2.4

JSEG MS 0.25 4.2 223 4.1

GRM fused, D 0.14 6.53 822 4.27

GRM fused, RMSE 0.1 4.92 173 3.18

JSEG fused 0.09 7.1 106 4.9

3.3. Supervised and System-Level Metrics

The supervised direct and system-level metrics are summarised in Table 4. In addition,
the average segment area avgA and standard deviation of the segment area stdA are shown
as well.

Table 4. Supervised metrics. Arrows ↓ and ↑ indicate whether a lower or higher value is considered
better. The best value for each metric is emphasised with bold font.

Case OS ↓ US ↓ D ↓ CB ↑ RMSE ↓ avgA stdA

Regular grid 48× 48 m 0.63 0.45 0.55 0.5 74.8 1369 0

Reference polygons - - - - 67.9 1352 362

GRM CHM, D 0.38 0.5 0.45 0.67 82 890 425

GRM CHM, RMSE 0.89 0.15 0.63 0.99 78.8 66 12

JSEG CHM 0.63 0.43 0.54 0.69 80.1 586 572

GRM MS, D 0.51 0.54 0.53 0.76 80.6 833 326

GRM MS, RMSE 0.94 0.11 0.67 0.99 78.9 38 8

JSEG MS 0.61 0.45 0.75 0.75 82 620 535

GRM fused, D 0.38 0.52 0.46 0.74 82 1104 416

GRM fused, RMSE 0.71 0.3 0.55 0.94 78.8 271 55

JSEG fused 0.71 0.43 0.54 0.79 76.0 651 114

The lowest RMSE = 67.9 m3/ha was achieved by using the image analyst’s selection.
However, in this case, the regression task was performed only for six sample areas contain-
ing a smaller number of segments. Other tests were performed in the whole study site with
a large number of segments. For example, the GRM fused test included 10,422 segments
for training random forest regression and 4467 segments for testing. In comparison, only
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1890 segments were available for training and 810 for testing in the case of the image
analyst’s selection.

Table 4 shows that the stand volume estimation error was minimally affected by the seg-
mentation results. The RMSE varied within a range of 6 m3/ha showing RMSE = 76.0 m3/ha
for JSEG applied to the fused dataset and RMSE = 78.8 m3/ha for GRM applied to the
fused dataset as well. However, this small difference does not show a practical gain of data
fusion already in the segmentation stage, since an even smaller error RMSE = 74.8 m3/ha
was achieved by performing no segmentation at all and using regular grid patches as a
basic spatial unit for stand volume estimation.

Comparing the overlap metrics between the results of the segmentation algorithms and
the image analyst, one can observe that the summary score D was quite high for all outputs,
indicating that the areas of the microstands found by the workflows were noticeably differ-
ent from those found by the image analyst, however similar in size. Optimisation tests with
respect to the RMSE showed clear trends of oversegmentation. The mutually similar OS and
US scores for outputs with the multispectral information added characterised only different
segmentation results without clear trends in oversegmentation or undersegmentation.

Meanwhile, the coincidence of the boundaries CB was high, indicating that significant
transitions were found even in the presence of different polygon shapes. However, the CB
metric was also affected by oversegmentation, which led to a higher border matching
score. Considering only the JSEG results and GRM results with D as the optimisation
criteria, 76–79% of the borders found by the image analyst were also found using automatic
segmentation methods.

We found no correlations between the border matching score and forest inventory
parameters such as tree species, stand volume, and stand density. Still, Table 5 shows a
mild correlation between CB and the level of confidence of the image analyst in different
sample areas. Metric CB was slightly lower for sample areas where the image analyst
reported lower confidence levels indicating complex forest structures. A visual assessment
of those study sites showed that Areas 1 and 6 were subject to intensive management with
frequent, clearly visible rectangular compartments divided by rides, roads, and ditches,
but Areas 3 and 4 were very inhomogeneous. The higher confidence level for Area 3 might
be explained by subjectivity factors. It was the first study site to be processed by the image
analyst, and further work process and communication with remote sensing specialists
might have changed this evaluation.

Table 5. CB values for the CHM segmentation using the JSEG workflow at two scales.

Site No. Average CB for
RCHM1

Std of CB for
RCHM1

Average CB for
RCHM2

Std of CB for
RCHM2

Confidence Level of the
Image Analyst

1 0.49 0.04 0.56 0.03 0.73

2 0.41 0.08 0.51 0.06 0.70

3 0.35 0.05 0.44 0.01 0.67

4 0.34 0.1 0.43 0.08 0.67

5 0.41 0.05 0.49 0.03 0.7

6 0.45 0.07 0.52 0.07 0.72

4. Discussion
4.1. Applicability for Microstand Border Refinement

A visual assessment of the workflow segments confirmed that meaningful and relevant
microstands were separated by both workflows. However, the segments were visually
different from those selected by the image analyst. This was already expected because
microstand segmentation is ill-defined with many correct solutions.
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Considering oversegmentation OS, undersegmentation US, and the summary score
D, those values for our study were higher than presented by Sanchez-Lopez et al. [21],
but these differences could also be caused by differences in the spatial resolution of the
datasets used in our study and the study of [21].

Since microstands in many cases cannot be unambiguously defined even by a human
interpreter and fieldwork, the CB measure is an efficient metric to measure the ability of the
workflow to find significant borders even in the presence of oversegmentation. However,
since a buffer zone is created around the algorithm border, CB can show higher values
only due to oversegmentation. Therefore, the width of the buffer zone has to be taken into
consideration when analysing the values of CB. A larger buffer zone can cause a risk of
unreasonably increasing CB, while a too-small buffer zone does not include the possible
delineation inaccuracies of the image analyst.

In general, the unsupervised metrics showed better values for the JSEG and GRM
workflows than for the selection of the image analyst. This could be explained by border
generalisation when microstands are selected by hand, while the data processing workflows
without additional modules for generalisation draw borders at the pixel scale. Finer borders
might result in higher internal segment homogeneity and higher average differences
between adjacent segments. The study by [17] evaluated an internal homogeneity metric,
normalised variance (the normalisation methodology was different than in our study), on
a 1 m2 grid and obtained higher values. However, this could be explained by both the
different normalisation methodology and higher heterogeneity of LiDAR-based metrics.

Many authors acknowledge that segmentation accuracy metrics describe only certain
aspects of segments [28,35,39], but there are no metrics that can unambiguously determine
the best segmentation result. Varo-Martínez et al. [17] specified that metric sets should be
established for certain tasks, for example precision silviculture requires very precise stand
delineation regarding intra-region variance.

4.2. Applicability to the Stand Volume Estimation Task

Our study showed that segments produced by different algorithms, datasets, and algo-
rithm parameters have a small impact on the stand volume estimation accuracy, suggesting
that other factors are setting limits to reduced the RMSE instead of segment delineation.
The same conclusion about different datasets, including LiDAR and hyperspectral data,
were also made by Dechesne et al. [26]. Moreover, even using regular grid patches as a
basic spatial unit resulted in a lower error of the random forest regressor.

The RMSE values in our tests were similar (74.8 m3/ha 6 RMSE 6 80.6 m3/ha,
nRMSE ≈ 13% using 600 m3/ha as the maximal stand volume) to those acquired in other
studies reviewed by Surovỳ and Kuželka [40].

The lack of significant fluctuations in the RMSE between different tests and better
results using regular grid patches raise a question about potential error sources. The classi-
fication accuracy also had a small variation in the study of Räsänen et al. [28], providing
evidence of the robustness of object-based methodology, meaning that good classification
accuracy can be obtained even if the segmentation is not the best possible.

However, in our study, the RMSE limits might be determined by the reference data
compatibility with microstands or grid patches as the spatial units (see Figure 8) and
erroneous entries in the NFI database. The stand volume value for a forest compartment
is obtained by the summation of the values for microstands within this compartment.
Since the forest compartment boundaries are also affected by management factors and
historical reasons, compartments are more heterogeneous than microstands. Therefore,
in the case of mixed compartments, even stand volume values for dominant tree species
are not valid reference data for much more homogeneous microstands, introducing errors
both in training and testing. The solution could be to increase the study area to a much
larger region and use only pure NFI compartments (with one dominant tree species of a
similar age) to capture the correct ground truth accounting for natural variations in tree
species and age. Since the RMSE was used just as one metric to evaluate the segmentation
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quality, the workflow for stand volume estimation was also simplified, and more studies
about the error sources in the stand volume estimation would be required.

Figure 8. Forest compartment borders are marked with a green line, while structurally different
microstands within a compartment with red. Background layer: LiDAR-based CHM.

The higher accuracy obtained using regular grid patches could be caused by the re-
duced variance of the feature values when the spatial unit is without any size variations.
The optimisation procedure for GRM tended to achieve lower RMSEs when oversegmenta-
tion was applied with a higher emphasis on spectral homogeneity. Thus, the unsupervised
metrics already allowed us to conclude that oversegmentation is not an undesirable phe-
nomenon, if the segments are further planned to be used as basic units for forest inventory
parameter estimation tasks. Still, differences between tests showed variation in a range of
no more than 7 m3.

5. Conclusions

Microstands can serve as robust spatial processing units for an automated remote-
sensing-based forest inventory and for increasing the accuracy of microstand borders used
in the traditional forest inventory. GeoEye-1 stereo data give a great opportunity to acquire
both spectral and height information, which is up-to-date and coincident in time.

Metrics characterizing overlap between the workflow segments and segments pro-
duced by the image analyst showed that 76–79% of significant borders were also found by
the segmentation methods; however, the segment geometry itself was different.

In future studies, we would recommend changing the accuracy assessment procedure
by offering workflow-produced segments for review to several independent image analysts
instead of requiring the image analysts to delineate microstands themselves. Then, those
workflow segments could be analysed visually and assessed as useful ones in daily forest
inventory or invalid segments specifying why a segment cannot be used for practical
microstand border refinement. Since we found no correlations between forest inventory
parameters and the confidence level assigned by the image analyst, the reason for the
low confidence would give valuable information about the further development of the
workflows. This might also give more appropriate insight into the practical applicability of
segmentation for border refinement because the visual interpretation of the segmentation
results confirmed meaningful microstand propositions.

Stand volume estimation tests showed no benefits of using segments instead of just
regular grid patches as a basic spatial unit. The best RMSE = 74.8 m 3/ha was achieved
by using regular grid patches. This could be explained by the actual incompatibility
between the stand volume format in the NFI and required for using microstands as a basic
spatial unit.

The GRM workflow efficiently captures borders in multispectral data, but the JSEG
workflow is more efficient on tree crown macrotexture delineation.

Both segmentation approaches would be useful for preparing ready-to-use microstand
maps, but the accuracy assessment procedure should be switched to one including direct
visual analysis of workflow segments. For stand volume estimations using the microstand
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as a basic spatial unit, tests should be repeated using a much larger study site and only
forest compartments with a homogeneous structure.
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