
����������
�������

Citation: Wang, G.; Bo, F.; Chen, X.;

Lu, W.; Hu, S.; Fang, J. A

Collaborative Despeckling Method

for SAR Images Based on Texture

Classification. Remote Sens. 2022, 14,

1465. https://doi.org/10.3390/

rs14061465

Academic Editors: Vito Pascazio,

Konstantin Lukin, Krzysztof Kulpa

and Dusan Gleich

Received: 10 February 2022

Accepted: 17 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Collaborative Despeckling Method for SAR Images Based on
Texture Classification
Gongtang Wang 1, Fuyu Bo 1 , Xue Chen 1, Wenfeng Lu 2, Shaohai Hu 3 and Jing Fang 1,*

1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
wanggt@sdnu.edu.cn (G.W.); 2020317005@stu.sdnu.edu.cn (F.B.); 201909030103@stu.sdnu.edu.cn (X.C.)

2 School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China;
luwenfeng@sdjzu.edu.cn

3 Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China; shhu@bjtu.edu.cn
* Correspondence: fangjing@sdnu.edu.cn

Abstract: Speckle is an unavoidable noise-like phenomenon in Synthetic Aperture Radar (SAR)
imaging. In order to remove speckle, many despeckling methods have been proposed during the past
three decades, including spatial-based methods, transform domain-based methods, and non-local
filtering methods. However, SAR images usually contain many different types of regions, including
homogeneous and heterogeneous regions. Some filters could despeckle effectively in homogeneous
regions but could not preserve structures in heterogeneous regions. Some filters preserve structures
well but do not suppress speckle effectively. Following this theory, we design a combination of two
state-of-the-art despeckling tools that can overcome their respective shortcomings. In order to select
the best filter output for each area in the image, the clustering and Gray Level Co-Occurrence Matrices
(GLCM) are used for image classification and weighting, respectively. Clustering and GLCM use the
co-registered optical images of SAR images because their structure information is consistent, and
the optical images are much cleaner than SAR images. The experimental results on synthetic and
real-world SAR images show that our proposed method can provide a better objective performance
index under a strong noise level. Subjective visual inspection demonstrates that the proposed method
has great potential in preserving structural details and suppressing speckle noise.

Keywords: Synthetic Aperture Radar (SAR); despeckling; clustering; Gray Level Co-Occurrence
Matrices (GLCM)

1. Introduction

Synthetic Aperture Radar (SAR) is the high-resolution imaging radar that can obtain
high-resolution radar images similar to optical images under low visibility weather con-
ditions. SAR is not limited by climatic conditions, and, as an active microwave sensor,
can continuously observe the earth. Moreover, it has a strong capability to distinguish
the features of the surface. The image features obtained are rich in information, including
amplitude, phase, and polarization, which compensates for the shortage of other imaging
methods, such as visible light and infrared light. Therefore, SAR imaging is one of the most
valuable data sources for analysis. Unfortunately, the SAR imaging system is based on
coherence, which leads to a multiplicative noise called speckle noise. Therefore, the general
models of reducing additive noise are ineffective. Intense speckle noise may seriously im-
pact subsequent processing, such as segmentation, classification, and target detection [1–3].
Therefore, the study of despeckling is critical to applying SAR images.

SAR image despeckling has been a hot research field in recent decades [4,5]. Many
new algorithms are proposed almost every year. Although traditional spatial filtering
methods are simple [6–8], they may result in over-smoothing, loss of textures, and reduced
resolution. At the end of the 20th century, the wavelet transform provided a new idea for
SAR image despeckling [9–11]. The transform domain methods can effectively suppress

Remote Sens. 2022, 14, 1465. https://doi.org/10.3390/rs14061465 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14061465
https://doi.org/10.3390/rs14061465
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7107-9551
https://doi.org/10.3390/rs14061465
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14061465?type=check_update&version=1


Remote Sens. 2022, 14, 1465 2 of 20

speckle noise, but they may lead to pixel distortions and artifacts. This is mainly due to
the selection of the base function in the transform domain. Total variation methods can
maintain boundaries well [12,13], but a significant disadvantage is the filtered images’
staircase effect. In recent years, low-rank representation methods have achieved great
success in image denoising [14,15]. However, it is necessary to convert the multiplicative
noise model into an additive noise model before using low-rank methods. Furthermore,
deep learning is showing outstanding performance in many natural image processing
methods. Indeed, the remote sensing community is also starting to exploit the potential of
this approach [16–19]. The abilities of deep learning to handle SAR images are advancing by
leaps and bounds. Some approaches do not simply transfer the processing of natural images
to SAR images, but also utilize the spatial and statistical characteristics of SAR images, or
combine more complex methods [20–22]. Nevertheless, at present, deep learning-based
SAR image despeckling methods require a large number of datasets and reference clean
images. It is not easy to obtain the noise-free version of real SAR images.

Non-Local Means (NLM) methods with their particular advantages have achieved
excellent despeckling results for SAR images [23]. The core idea of the NLM filter exploits
spatial correlation in the entire image for noise removal, which can produce promising
results. For example, the Probabilistic Patch-Based (PPB) [24] filter uses a new similarity
criterion instead of Euclidean distance and achieves strong speckle suppression by itera-
tively thinning weights. SAR-Block-Matching 3D (SAR-BM3D) [25] is the SAR version of
the BM3D [26] algorithm that combines the non-local methods and the transform methods.
Similar patches are found in non-local regions and despeckled in the transform domain.
Moreover, Guided Non-Local Means (GNLM) [27] uses the structure information of the
co-registered optical images to provide beneficial image filtering, since it is easy to find the
best predictor in a noise-free optical image. With this structural similarity, high filter quality
can be obtained. Recently, more and more sophisticated despeckling methods have been
proposed. Among these, it is worth mentioning that Guo et al. [28] proposed a truncated
nonconvex nonsmooth variational model for speckle suppression, and Ferraioli et al. [29]
obtained the similarity by evaluating the ratio patch and using the anisotropic method.
Penna et al. [30] used the stochastic distance to replace Euclidean distance and despeckling
in the Haar wavelet domain. Aranda-Bojorges et al. [31] incorporated clustering and sparse
representation in the BM3D framework. In addition, polarimetric SAR can obtain richer
target information than single-channel SAR. There are some studies on polarimetric SAR
despeckling [32]. Nevertheless, polarimetric SAR despeckling is more complicated, and
sophisticated methods are required. Mullisa et al. [33] proposed a multistream complex-
valued fully convolution network to despeckle polarimetric SAR images that can effectively
estimate the covariance matrix of polarimetric SAR.

However, at present, most of the despeckling methods have some drawbacks. PPB, for
example, performs well in homogeneous regions, but cannot preserve texture details well
in heterogeneous regions or wavelike visual artifacts. In contrast, SAR-BM3D performs
well for texture structure, but the capability of speckle suppression in homogeneous regions
is general. In a word, it is obvious that using one method for SAR image despeckling is
not enough. Accordingly, this study reports a new despeckling method that combines two
complementary filters.

We use co-registered optical images and Superpixel-Based Fast Fuzzy C-Means (SF-
FCM) clustering [34] to cluster pixels with the same characteristics, providing different
weights to the filters based on the consistency of the structure information between co-
registered optical images and SAR images. The weights are given by Gray Level Co-
Occurrence Matrices (GLCM) [35]. The GLCM is a common method used to describe
texture by studying the image gray level’s spatial distribution and correlation characteris-
tics. We analyze the texture of many images in advance and save the optimal weight of
the experiment as our reference dataset. When a new image patch is given, the nearest
item in the dataset is taken and directly assigned to the weight. Experiments on simulated
and real-world SAR images show that the proposed method shows a more significant
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improvement in objective and subjective indicators than a single method. Meanwhile, the
ratio image of our proposed method contains less image texture information.

The following sections of this article are organized as below. We describe the materials
and methods in Section 2. The experimental results are described in Section 3. Finally, the
discussion and conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods

In order to obtain the best despeckling results, we select the state-of-the-art despeckling
methods. They are PPB, SAR-BM3D, Weighted Nuclear Norm Minimization (WNNM) [14],
and GNLM. As mentioned earlier, PPB has a good speckle suppression effect in homoge-
neous areas, and SAR-BM3D has a good performance in texture preservation. However,
WNNM cannot be used directly for SAR image despeckling as a low-rank method. We
must use a logarithmic operator, called H-WNNM (homomorphic version of WNNM), to
convert the multiplicative model to the additive model.

Let us consider that Y and X represent the observed SAR image and the noise-free
image, respectively. Then Y is related to X by the multiplicative model [36]

Y = N × X (1)

where N is the multiplicative speckle noise. Assuming the speckle noise is fully developed,
the noise in the L-look intensity SAR image follows a gamma distribution with unit mean
and variance 1/L. The Probability Density Function (PDF) of N is given by [37]

p(N) =
LLNL−1e−LN

Γ(L)
, N ≥ 0, L ≥ 1 (2)

where the gamma function is denoted as Γ(L) =
∫ ∞

0 tL−1e−tdt. With a logarithmic operator
applied on (1), the multiplicative speckle noise can be transformed to:

logY = logN + logX (3)

In (3), logN and logX can be considered as unrelated signals, and logN follows a
near-Gaussian distribution with a biased (non-zero) mean value. Therefore, a biased mean
correction is required after inverse logarithmic operations, especially for SAR images with
high noise levels.

GNLM uses the optical image as guidance in SAR image despeckling. Although SAR
and optical images are completely different imaging mechanisms, the structure information
of the co-registered SAR and optical images is the same. Therefore, by utilizing this struc-
tural consistency, the co-registration of optical images can be very helpful for SAR image
despeckling. However, using an optical image to guide SAR despeckling requires special
attention. In fact, despite the careful co-registration and the obvious correspondence of the
observed scene, important differences exist between optical and SAR images, especially
in the presence of man-made objects and regions characterized by a significant orography.
Therefore, while the optical data can certainly be helpful in guiding the despeckling process,
there is the risk of injecting alien information into the filtered SAR image, generating annoy-
ing artifacts. To prevent injecting optical domain information into the filtered image, GNLM
performs an SAR-domain statistical test to reject any risky predictors. Furthermore, for
each target patch, GNLM carries out a preliminary test to single out unreliable predictors
and exclude them altogether from the nonlocal average. GNLM also limits the maximum
number of predictors. Thanks to these limitations, the time span and the mismatch do not
significantly impact the filter results [27].

The key to this combination method is distinguishing homogeneous regions and
heterogeneous regions in the image and allocating different weights to the corresponding
filters. The solution in [38] is to compute the Equivalent Number of Looks (ENL) of
different pixels to determine whether the area is homogeneous, heterogeneous, or extremely
heterogeneous. The ENL can be converted to the weight of (0–1) through the sigmoid
function. The larger the ENL, the more likely the region is to be homogeneous. Due to the
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SAR image being overwhelmed by the strong speckle noise, the ENL of the noisy SAR image
may not be accurate in some cases. Therefore, this strategy may have some limitations.

Since co-registered optical images have the same structural information as SAR images,
optical images can be used to guide filtering and extract other information. Therefore, the
strategy we choose to distinguish different regions is SFFCM, which can divide images
into some clusters based on the image self-similarity. Unlike supervised methods, i.e.,
Convolutional Neural Networks (CNN), Fully Convolutional Networks (FCN), etc., SFFCM
is an unsupervised method. The former requires a large number of training samples and
label data for feature learning, while the latter does not require any of these. Moreover,
reference [34] uses a new watershed transform based on Multiscale Morphological Gradient
Reconstruction (MMGR-WT) to generate superpixel images. Based on the superpixel image
obtained by MMGR-WT, the objective function of SFFCM is as follows:

Fm =
q

∑
n=1

C

∑
k=1

Snum
kn‖

(
1

Sn
∑

p∈Rn

xp

)
− vk‖2

(4)

where n is the color level, 1 ≤ n ≤ q, q is the number of regions of the superpixel image,
n, q ∈ N+. Superpixel will segment the original image into several small contiguous
regions. Then we replace all pixels in the region with the average of each superpixel region
to obtain fewer color levels n to optimize the processing time. C is the number of clusters
(see more details in Section 3.1), Sn is the number of pixels in the nth region Rn, and xp is
the color pixel (i.e., the original pixel value) within the nth region of the superpixel image
obtained by MMGR-WT. um

kn represents the fuzzy membership of n with respect to the
kth clustering center vk, and m is the weighting exponent. The performance of SFFCM is
insensitive to the value of m (from 2 to 100) according to [34].

We then compute the minimum of the objective function. By using the Lagrange multi-
plier operator, the above problem is transformed into an unconstrained optimization problem:

F̃m =
q

∑
n=1

C

∑
k=1

Snum
kn‖

(
1

Sn
∑

p∈Rn

xp

)
− vk‖2

− λ

(
C

∑
k=1

ukn − 1

)
(5)

where λ is the Lagrange multiplier. Let the partial differential of F̃m to ukn and vk equal

zero (i.e., ∂F̃m
∂ukn

= 0, ∂F̃m
∂vk

= 0).
The corresponding solutions for ukn and vk are computed by:

ukn =
‖( 1

Sn
∑pεRn xp

)
− vk‖−2/(m−1)

∑c
j=1‖

(
1

Sn
∑pεRn xp

)
− vj‖−2/(m−1)

(6)

vk =
∑

q
n=1 um

kn ∑pεRn xp

∑
q
n=1 Snum

kn
(7)

First, we need to initialize a random membership partition matrix U(0) to compute
the clustering centers vk. Then we update the membership partition matrix U using (6)
until U(b) −U(b+1) < η then stop, to reduce accuracy losses, η set to 10−5 empirically. U
represents which cluster the pixel belongs to. Finally, we can obtain the output image. The
calculation speed is faster because the number of different colors in the superpixel image is
much smaller than in the original image. As shown in Figure 1, (a) is the original optical
image and (b) is the superpixel image. It can be seen clearly in (c) that SFFCM classifies the
image into C classes based on the local spatial information and self-similarity.
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Figure 2. Feature images of Gray Level Co-Occurrence Matrices (GLCM) computed by Figure 1a. 
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As mentioned above, we set the clustering to C classes. Therefore, we first use 
SFFCM to segment the image and assign different filter weights to each different cluster. 
Then, by iteratively changing the weights, the optimal weights are obtained when the 
best subjective and objective indicators are acquired. The mean and variance of the tex-
ture region corresponding to each cluster in the four feature images are computed at this 
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Figure 1. Superpixel-based Fast Fuzzy C-Means (SFFCM) clustering segmentation example. (a) Orig-
inal image; (b) Superpixel image; (c) Output image.

In this work, we refer to GLCM for setting weights. However, the GLCM is only a
quantitative description of the texture that cannot be used to extract the features of the
texture image directly. Therefore, the four feature properties computed by the GLCM
can well reflect the four different textures characteristics of the image, namely correlation
(COR), contrast (CON), energy (ENE), and homogeneity (HOM). For example, the size of
the COR value reflects the local gray correlation in the image, while the ENE is the sum
of the squares of the GLCM element values, reflecting the uniformity of the gray level
distribution in the image. CON represents the clarity of the textures. The more complex
the textures, the higher the value of CON. HOM can be utilized for checking similarity in
the image. The feature image is obtained by traversing the entire image using a 7*7 sliding
window. If the window size is too small, the texture will not be adequately represented. If
it is too large, the computational cost will be significantly increased. As shown in Figure 2,
(a) is the COR, (b) is the CON, (c) is the ENE, and (d) is the HOM.
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Figure 2. Feature images of Gray Level Co-Occurrence Matrices (GLCM) computed by Figure 1a.
(a) Correlation (COR); (b) Contrast (CON); (c) Energy (ENE); (d) Homogeneity (HOM).

As mentioned above, we set the clustering to C classes. Therefore, we first use SFFCM
to segment the image and assign different filter weights to each different cluster. Then,
by iteratively changing the weights, the optimal weights are obtained when the best
subjective and objective indicators are acquired. The mean and variance of the texture
region corresponding to each cluster in the four feature images are computed at this time
and then recorded as a set of datasets together with the optimal weight. In our experiment,
we learned the best weight of different textures through 50 different types of images
(including mountains, rivers, buildings, roads, forests, plains, etc.) in advance. Although
this method is complicated, it is useful. When a new image patch is given, the Euclidean
distance between the four feature properties of this patch and each dataset group are
computed. Then the smallest distance is taken, and the corresponding optimal weights
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are derived. We summarize the complete algorithm of the proposed method for image
despeckling in Algorithm 1.

Algorithm 1. The proposed SAR image despeckling algorithm.

Input: SAR image I, optical image O, cluster number C.
Obtain the filter 1 and filter 2 results Y1, Y2.
Clustering by SFFCM.

for each cluster Ci do
Calculate the feature images by GLCM.
Estimate the weight wi.

end for
Obtain the weighting map.
Weight sum of Y1, Y2.
Output: The despeckling image Î.

Following the method above, the proposed technique’s block diagram is shown in
Figure 3. The original SAR image is filtered by filter 1. Filter 2 is performed with the co-
registered optical image, if needed. At the same time, the optical image is split up by SFFCM
to obtain the corresponding weights of different regions. Finally, a linear combination is
performed to obtain the final SAR image.
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3. Experimental Results

In this section, we first compared four filters (PPB, SAR-BM3D, H-WNNM, and
GNLM) and then selected several complementary combinations. Next, we chose the best
combination as the final output and compared it with other despeckling methods. Contrast
experiments were performed on synthetic multiplicative noise images and real SAR images.
As shown in Figure 4, we selected six images for the test, including three synthetic (a) and
three real SAR images (b), with corresponding co-registration optical images at the bottom.
According to [39], we selected representative images with homogeneous regions, complex
texture regions, roads, etc. To compare the objective indices of the proposed method with
others, we computed the Feature Similarity Index (FSIM) [40] and the Peak Signal-to-Noise
Ratio (PSNR) in the synthetic multiplicative noise image. Generally, the larger the PSNR
is, the better the image quality will be. FSIM is a number between 0 and 1. The larger
FSIM shows that the image structure information preservation is better. The no-reference
measure we selected is ENL for real-world SAR images. Generally, a larger ENL indicates a
stronger capability of the filter to remove speckle. In addition, we also calculated the ratio
images to compare the residual speckle noise.
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regions of interest being used to compute the Equivalent Number of Looks (ENL).

3.1. Parameter Set

In order to test the sensitivity of the proposed method to parameter C, we further
discussed the relationship between the number of clusters and the filtering results. All
real-world SAR images and co-registered optical images are from Sentinel 1–2 dataset [41].
The SAR images are obtained by Sentinel-1, the pixel spacing is 20 m, azimuth is 5 m,
polarization is VV, and acquisition mode is IW. The optical images are obtained by Sentinel-
2, only using bands 4, 3, and 2 (i.e., red, green, and blue channels) to generate RGB images.
As shown in Figure 4a, we selected three standard test images with rich homogeneous
regions and structures to evaluate the impact of cluster C on the performance of PSNR and
FSIM. In these experiments, we contaminated the reference test images with various looks
of multiplicative speckle noise (L = 1, 2, 4, 8). We used a combination of SAR-BM3D and
GNLM as output (the reason is given later) and set C from 2 to 10 to determine the best
value. The curve in Figure 5a shows that PSNR increases significantly when C ranges from
2 to 7 and stabilizes when C is greater than 7. Similarly, the curve in Figure 5b shows that
the FSIM values have a clearly increasing tendency when C ranges from 2 to 7. However, in
the case of a high number of looks (greater than 7), the values of FSIM are stable. Therefore,
we set the cluster number C to 7.
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3.2. Comparison of Selected Tools

To acquire a comprehensive understanding of the selected filters, we tested the perfor-
mance of the four filters. The results are shown in Figure 6. The top lines, from left to right,
are noise images (L = 1), PPB, SAR-BM3D, H-WNNM, and GNLM. The bottom row is the
corresponding ratio images.
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Figure 6. The results of the candidate despeckling methods on S1 (L = 1), and the bottom row are the
corresponding ration images. (a) Noisy image; (b) Probabilistic Patch-Based (PPB); (c) SAR-block
matching 3D (SAR-BM3D); (d) Homomorphic Weighted Nuclear Norm Minimization (H-WNNM);
(e) Guided Non-Local means (GNLM); (f) PPB; (g) SAR-BM3D; (h) H-WNNM; (i) GNLM.

From Figure 6, we can see that PPB and H-WNNM are characterized by excessive
smoothing and the loss of many texture details, and PPB also produces some artifacts. On
the other hand, SAR-BM3D demonstrates its good capability to preserve textures, but it
does not perform well in speckle suppression. GNLM seems to be the best filter, performing
well both in homogeneous and complex texture areas, and producing no artifacts. However,
in some complex areas, GNLMs’ over-smoothing will lead to the loss of some texture details.
Table 1 confirms the visual assessment, where the best values are marked in bold. GNLM is
an outperforming filter in despeckling and preserving the main structure details; it also
presents the highest values of the PSNR and ENL measurements. The best FSIM is given by
SAR-BM3D, which is equal to 0.8626, while the lowest is H-WNNM, which is only 0.7450.
The ENL of SAR-BM3D is the lowest, which indicates that it has a poor capability to remove
speckle. From the ratio images in the bottom row of Figure 6, we can see GNLM and
H-WNNM retain a significant amount of textures, indicating that GNLM and H-WNNM
have less capability to preserve texture details. The ratio image of PPB also shows slight
texture, which indicates that some texture areas are over-smoothed. SAR-BM3D leaves little
texture, which indicates that SAR-BM3D has excellent texture preservation characteristics.

Table 1. FSIM, PSNR, and ENL of the selected despeckling methods.

Methods FSIM PSNR ENL

Single-Look 0.7243 17.63 1.28
PPB 0.8573 25.29 161.69

SAR-BM3D 0.8626 24.86 12.38
H-WNNM 0.7450 21.78 136.24

GNLM 0.8502 26.66 358.58
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3.3. Comparison of Selected Combinations

Based on the analysis of all the candidate filters in the previous section, we selected
the following three combinations for further analysis. They were:

1. SAR-BM3D and GNLM (Fusion #1)
2. SAR-BM3D and PPB (Fusion #2)
3. SAR-BM3D and H-WNNM (Fusion #3)

We combined two complementary filters to overcome their respective shortcomings
and achieve the best performance. The experimental results are shown in Figure 7. Consid-
ering the very strong noise input, it seems certain that Fusion #1 is providing an encouraging
filter quality.

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 22 
 

 

    

(a) (b) (c) (d) 

 

   

 (e) (f) (g) 

Figure 7. The results of the candidate combinations on S2 (L = 1), and the bottom row are the cor-
responding ration images. (a) Noisy image; (b) Fusion #1; (c) Fusion #2; (d) Fusion #3; (e) Fusion #1; 
(f) Fusion #2; (g) Fusion #3. 

The speckle is suppressed effectively without contaminating the image resolution. 
In addition, most details are well preserved, even complex textures, without introducing 
significant artifacts. In contrast, Fusions #2 and #3 cannot suppress speckle effectively. 
The corresponding ratio images are shown at the bottom of Figure 7. An excellent filter 
should only remove the injected speckle. Therefore, the ratio image should only contain 
the speckle without texture. There is an obvious structure leakage in the ratio image of 
Fusions #2 and #3. Fusion#1 also seems satisfactory. The results of RS1 in Figure 8 con-
firm these conclusions. It is evident that Fusions #2 and #3 have very limited speckle 
suppression, and the texture regions are distorted. In contrast, Fusion #1 preserves both 
detail and linear structure while smoothing the image, and the corresponding ratio image 
retains less structural information. 
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#1; (f) Fusion #2; (g) Fusion #3.

The speckle is suppressed effectively without contaminating the image resolution.
In addition, most details are well preserved, even complex textures, without introducing
significant artifacts. In contrast, Fusions #2 and #3 cannot suppress speckle effectively.
The corresponding ratio images are shown at the bottom of Figure 7. An excellent filter
should only remove the injected speckle. Therefore, the ratio image should only contain the
speckle without texture. There is an obvious structure leakage in the ratio image of Fusions
#2 and #3. Fusion#1 also seems satisfactory. The results of RS1 in Figure 8 confirm these
conclusions. It is evident that Fusions #2 and #3 have very limited speckle suppression,
and the texture regions are distorted. In contrast, Fusion #1 preserves both detail and
linear structure while smoothing the image, and the corresponding ratio image retains less
structural information.

In Table 2, we show the numerical results obtained from these images. The Fusion #1
approach seems to show significant performance improvement. Indeed, from the PSNR
index, Fusion #1 is much higher (more than 1.2 db) than other combinations. Similar
behavior is observed in regards to FSIM and ENL. Fusion #1 provides the best FSIM and
ENL with respect to all combinations. Hence, we eventually chose Fusion #1 (SAR-BM3D
and GNLM) as the final output based on the above evidence.
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Table 2. The FSIM, PSNR, and ENL of the candidate combinations. (FSIM, PSNR, and ENL1 are
computed on S2; ENL2 is computed on RS1).

Methods FSIM PSNR ENL1 ENL2

Single-Look 0.7076 14.76 1.53 3.57
Fusion #1 0.8356 23.86 384.89 263.20
Fusion #2 0.8109 22.63 92.44 170.91
Fusion #3 0.7758 21.12 138.64 227.08

3.4. Comparison with Other Despeckling Methods

To further quantitatively and qualitatively evaluate the performance of the pro-
posed method, in this section, all of the images were tested (including synthetic and
real SAR images).

All results are compared with previously cited filtering methods (with the addition of
the wavelet-contourlet filter (W-C) [42] and Fast Adaptive Non-Local SAR (FANS) [43]),
and some regions are enlarged for more accurate analysis. Through visual inspection, we
find that in Figure 9, PPB and H-WNNM cause over-smoothing of the image and blur
the textures and edges of the image. W-C does not suppress the speckle effectively and
produces some artifacts. Although SAR-BM3D preserves image details well, the speckle
suppression is limited. FANS produces some artifacts when the noise level is high, mainly
due to the recognition of structural errors.

GNLM suppresses speckle well, but blurs the details in complex textured areas. The
proposed method preserves these structures while ensuring effective speckle suppression,
as demonstrated in the zoomed region. In Figure 10, we can see some structures in the
ratio images of W-C, PPB, H-WNNM, and GNLM. Fewer structures exist for the proposed
method and FANS, while SAR-BM3D has hardly any structural leakage. The experimental
results of another synthetic multiplicative noise image are shown in Figures 11 and 12. Sim-
ilar to the previous analysis, the proposed method achieves the best balance in preserving
the textural structure and speckle suppression.
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Figure 9. The results of all filters on S1 (L = 1). The red box highlights the zoomed region of
interest. (a) Clean image; (b) Wavelet-Contourlet filter (W-C); (c) PPB; (d) SAR-BM3D; (e) H-WNNM;
(f) GNLM; (g) Fast Adaptive Non-Local SAR (FANS); (h) Proposed method.
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Figure 10. The corresponding ratio images for S1. (a) W-C; (b) PPB; (c) SAR-BM3D; (d) H-WNNM;
(e) GNLM; (f) FANS; (g) Proposed method.
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Figure 11. The results of all filters on S3 (L = 1). The red box highlights the zoomed region of
interest. (a) Clean image; (b) W-C; (c) PPB; (d) SAR-BM3D; (e) H-WNNM; (f) GNLM; (g) FANS;
(h) Proposed method.
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Figure 12. The corresponding ratio images for S3. (a) W-C; (b) PPB; (c) SAR-BM3D; (d) H-WNNM;
(e) GNLM; (f) FANS; (g) Proposed method.

Objective indices of the selected three synthetic multiplicative noise images are shown
in Table 3. It can be seen that the FSIM and PSNR of the proposed method are nearly
optimal when L is less than 4, and especially when L equal to 1 (the most challenging case).
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W-C and H-WNNM provide poor results, as shown in Table 3. PPB, SAR-BM3D, GNLM,
and FANS obtain good objective values, but they are lower than the proposed method. This
means the proposed method can obtain good despeckling results for images corrupted by
very strong speckle noise.

Table 3. The FSIM, PSNR, and ENL of all filters on the synthesized multiplicative noise images (L = 1,
2, 4, 8).

L = 1 L = 2 L = 4 L = 8

Methods FSIM PSNR ENL FSIM PSNR ENL FSIM PSNR ENL FSIM PSNR ENL

Noisy image 0.7243 17.63 1.28 0.7940 20.78 2.11 0.8534 23.02 3.38 0.9005 25.92 7.87
W-C 0.7292 21.06 14.62 0.7646 23.12 19.08 0.8000 24.71 26.87 0.8332 26.36 42.74
PPB 0.8573 25.29 161.69 0.8939 26.89 175.64 0.9195 28.58 243.17 0.9392 30.37 399.28

SAR-BM3D 0.8626 24.86 12.38 0.8965 26.81 18.87 0.9243 28.89 20.87 0.9477 31.19 43.47
S1 H-WNNM 0.7450 21.78 136.24 0.8032 24.42 154.09 0.8622 27.06 299.54 0.8630 27.63 417.73

GNLM 0.8502 26.66 358.58 0.8809 27.96 403.74 0.9122 29.22 641.59 0.9364 30.49 765.68
FANS 0.8762 26.61 73.95 0.9081 28.57 79.96 0.9318 30.42 154.11 0.9506 32.42 197.41

Proposed 0.8887 27.40 87.77 0.9124 28.80 119.87 0.9308 30.01 142.13 0.9470 31.33 247.33

Noisy image 0.7076 14.76 1.53 0.7710 17.32 2.39 0.8311 20.15 3.98 0.8811 23.05 7.40
W-C 0.7541 18.95 3.82 0.7865 20.94 22.25 0.8197 22.61 19.82 0.8522 24.08 27.80
PPB 0.7342 21.77 192.73 0.8204 23.43 353.06 0.8812 24.92 456.78 0.9115 26.27 885.19

SAR-BM3D 0.8186 21.63 7.83 0.8596 23.36 16.17 0.8979 25.57 23.24 0.9268 27.57 38.33
S2 H-WNNM 0.6903 17.80 410.32 0.7721 21.43 1522.13 0.8317 24.49 3853.19 0.8374 26.35 5100.64

GNLM 0.7793 23.32 4641.76 0.8142 24.05 7809.26 0.8706 25.36 4167.69 0.9117 26.50 7353.35
FANS 0.7861 22.85 67.77 0.8615 24.70 389.37 0.9037 26.62 706.51 0.9295 28.42 479.94

Proposed 0.8356 23.86 384.89 0.8681 24.95 802.32 0.9017 26.28 693.17 0.9265 27.50 1122.42

Noisy image 0.6510 19.47 0.96 0.7385 22.20 1.80 0.8174 25.08 3.73 0.8799 28.01 6.77
W-C 0.7778 25.02 34.89 0.7923 26.63 41.51 0.8141 27.75 62.34 0.8392 28.88 88.23
PPB 0.8102 28.34 131.32 0.8524 29.86 188.35 0.8903 31.30 226.18 0.9203 32.59 241.50

SAR-BM3D 0.8405 27.41 10.12 0.8768 29.16 12.57 0.9116 31.27 18.24 0.9359 33.31 28.60
S3 H-WNNM 0.7081 24.59 1467.09 0.7545 27.34 2285.85 0.8098 29.69 2540.52 0.8250 30.57 2052.38

GNLM 0.8340 30.14 190.29 0.8474 30.92 297.08 0.8757 31.94 264.05 0.9118 33.27 233.44
FANS 0.8308 29.19 121.25 0.8723 31.03 271.44 0.9046 32.69 185.47 0.9328 34.42 130.82

Proposed 0.8649 30.47 183.72 0.8818 31.53 196.25 0.9013 32.59 191.62 0.9261 33.81 139.86

However, when the number of looks is high (i.e., the noise level is low), SAR-BM3D
and FANS perform quite well. The main reason is that when the noise level is low, the
filtering results of SAR-BM3D and FANS do not introduce excessive residues and artifacts,
respectively. Regarding ENL, GNLM and H-WNNM maintain nearly the highest ENL. PPB
and FANS can obtain better ENL values than W-C and SAR-BM3D. Although the ENL of
the proposed method is not the highest, it exceeds PPB and FANS. This indicates that the
proposed method can adequately suppress speckle in homogeneous regions.

These results are even more important for real-world SAR images than for synthetic
ones. The values of ENL of the three selected real-world SAR images are shown in Table 4.
H-WNNM and GNLM are the two filters with the strongest speckle noise suppression
capability, while W-C and SAR-BM3D are the worst. PPB provides better performance
than FANS.

Table 4. The ENL and run times (in seconds) of all filters on real-world SAR images.

Methods RS1 RS2 RS3 Time (s)

Noisy image 3.15 13.27 26.60 /
W-C 15.66 42.19 195.06 18
PPB 434.64 459.31 1137.34 23

SAR-BM3D 55.42 24.48 59.56 32
H-WNNM 5352.23 643.13 2411.27 138

GNLM 338.71 1417.92 5127.57 89
FANS 166.96 62.79 215.82 16

Proposed 263.20 589.10 2435.91 125
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Since the proposed method combines the features of GNLM and SAR-BM3D, the ENL
is lower than that for GNLM. However, it is better than for PPB and FANS, demonstrating
that the proposed method guarantees adequate speckle suppression.

Visual inspection is necessary for a solid evaluation. In Figure 13, we show the results
of the real-world SAR image RS1 and the zooming area of interest. As shown in Figure 13,
PPB, H-WNNM, GNLM, and FANS do not completely preserve texture details. PPB and
FANS also produce ghost artifacts. W-C has limited speckle suppression capability, and it
produces some artifacts. SAR-BM3D faithfully preserves the texture details, but it retains
too much speckle noise. The proposed method shows good performance, not only in
effective speckle suppression, but also in the preservation of the most textural details. The
ratio images of the proposed method in Figure 14 also contain the least structures. The
despeckling results for real-world SAR images RS2 and RS3 are shown in Figures 15–18,
respectively. It is reconfirmed that the proposed method preserves the edge and image
details while removing speckle.

The executable codes of the compared methods can be downloaded from the au-
thors’websites (http://www.math.u-bordeaux1.fr/~cdeledal/ppb; http://www.grip.unina.
it/web-download.html; https://github.com/csjunxu/WNNM_CVPR2014; https://github.
com/grip-unina/GNLM) accessed on 15 December 2020, and the parameters were set as
recommended. All the experiments were run in MATLAB R2017a on a desktop computer
with an Intel Pentium 2.80 GHz CPU and 8GB memory. In Table 4, it is shown that the
processing speed of FANS is higher than the other competing algorithms. W-C, PPB, and
SAR-BM3D also achieve faster speed. H-WNNM takes the longest time. The proposed
method uses two different filtering strategies; therefore, it does not yield superior results in
terms of processing time. In the future, we will study how to reduce the complexity of the
algorithm in order to reduce the running time.
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(a) Noisy image; (b) W-C; (c) PPB; (d) SAR-BM3D; (e) H-WNNM; (f) GNLM; (g) FANS; (h) Pro-
posed method.
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4. Discussion

In this study, two complementary filters are combined for despeckling, and the weights
are allocated from an offline database based on GLCM learning. Since a single filter
has different advantages and disadvantages, the proposed method can combine these
advantages and overcome the disadvantages. Synthetic and real-world SAR images are
used in the experiment. The purpose of using synthetic multiplicative noise images is
to obtain rich objective indexes; this is helpful for us to evaluate the performance of the
proposed method.

The experimental results compared with other filters show that the proposed method
exhibits nearly the highest FSIM and PSNR at a high noise level (L less than 8). Although
the ENL of the proposed method is not the highest, the visual inspection proves that the
noise suppression capability of the proposed method is better. We observe similar results
described previously in real-world SAR images, and the proposed method achieves an
optimal balance between preserving image edges and textures and suppressing speckle.
However, when the noise level is low, FANS achieves better filtering results. Perhaps when
L is more than 4, we could add FANS as the third combination.

In the future, we will consider how to better solve this problem, and we will optimize
the code scheme to reduce the processing time of the proposed method. Moreover, the
probability of the incorrect assignment of weights can be reduced by increasing the training
data. This would help reduce the generation of artifacts.

5. Conclusions

We propose a new weighted combination method based on block classification for
the two most advanced SAR image despeckling methods. By clustering the co-registered
optical images with SFFCM, similar blocks are obtained and weights are assigned to two
different filters. The weights are set empirically by the feature images of the GLCM. Two
complementary combinations of filters can produce better results. The two complemen-
tary filters are selected through experimental analysis of the existing filter schemes. The
experimental results show that our proposed method provides the highest objective indices
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under very strong noise contamination when compared to other methods. Strong speckle
suppression is observed, together with a faithful preservation of details. Other methods
may show insufficient or excessive speckle rejection. Experiments on real-world SAR
images are likewise encouraging, as the proposed method does an excellent job of texture
preservation and artifact reduction. For SAR images with low noise level, although our
method achieves good despeckling results, FANS seems to obtain even better results.

Since a large part of our scheme relies on the co-registration of optical images, the
current research is not fully automated. Future work may resort to deep-learning methods
to improve this issue. We hope that more people will invest in this research. Another
important drawback of our method is its complexity. Simplifying this method is also a
direction for our future research efforts.
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Abbreviations
The following abbreviations are used in this manuscript:

ENL Equivalent Numbers of Looks
FANS Fast Adaptive Non-Local SAR
FSIM Feature Similarity Index
GLCM Gray Level Co-Occurrence Matrices
GNLM Guided Non-Local Means
H-WNNM Homomorphic version of Weighted Nuclear Norm Minimization
MMGR-WT Multiscale Morphological Gradient Reconstruction-Based Watershed Transform
NLM Non-Local Means
PPB Probabilistic Patch-Based
PSNR Peak Signal-to-Noise Ratio
SAR Synthetic Aperture Radar
SAR-BM3D SAR-Block-Matching 3D
SFFCM Superpixel-Based Fast Fuzzy C-Means
W-C Wavelet-Contourlet filter
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