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Abstract: An algorithmic approach, based on satellite-derived sea-surface (“skin”) salinities (SSS),
is proposed to correct for errors in SSS retrievals and convert these skin salinities into comparable
in-situ (“bulk”) salinities for the top-5 m of the subpolar and Arctic Oceans. In preparation for
routine assimilation into operational ocean forecast models, Soil Moisture Active Passive (SMAP)
satellite Level-2 SSS observations are transformed using Argo float data from the top-5 m of the
ocean to address the mismatch between the skin depth of satellite L-band SSS measurements (∼1 cm)
and the thickness of top model layers (typically at least 1 m). Separate from the challenge of Argo
float availability in most of the subpolar and Arctic Oceans, satellite-derived SSS products for these
regions currently are not suitable for assimilation for a myriad of other reasons, including erroneous
ancillary air-sea forcing/flux products. In the subpolar and Arctic Oceans, the root-mean-square
error (RMSE) between the SMAP SSS product and several in-situ salinity observational data sets for
the top-5 m is greater than 1.5 pss (Practical Salinity Scale), which can be larger than their temporal
variability. Thus, we train a machine-learning algorithm (called a Generalized Additive Model) on
in-situ salinities from the top-5 m and an independent air-sea forcing/flux product to convert the
SMAP SSS into bulk-salinities, correct biases, and quantify their standard errors. The RMSE between
these corrected bulk-salinities and in-situ measurements is less than 1 pss in open ocean regions.
Barring persistently problematic data near coasts and ice-pack edges, the corrected bulk-salinity data
are in better agreement with in-situ data than their SMAP SSS equivalent.

Keywords: salinity; SMAP; skin-effect; bias; air-sea; Arctic; ocean; machine-learning

1. Introduction

In this paper, we present an algorithm to bias-correct and convert sea-surface salinity
(SSS) fields from L-band passive microwave satellite retrievals at northern high latitudes
into surface salinity fields that can be assimilated by ocean modeling systems. Satellite
L-band passive microwave observations (Section 2.1) have demonstrated information po-
tential for nearly global depiction of SSS. Satellite SSS derived from NASA’s Aquarius
mission and Argo products are generally consistent to about 60◦N/S, particularly when
compared over coarser resolutions [1]. The collected satellite observations from the Eu-
ropean Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (greater
than 10 years) and National Aeronautics and Space Administration (NASA) Soil Moisture
Active Passive (SMAP) mission (greater than 5 years) have been summarized and shown
to generally agree with in-situ observations [2]. However, monitoring SSS in the Arctic is
more challenging. There are many challenges associated with using SMAP-derived SSS
observations to monitor Arctic freshwater changes [3], including its accuracy in the colder
waters at such high latitudes and utility to monitor variations in the vicinity of ice and/or
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coasts. The sources of these accuracy problems include systematic errors in the ancillary
wind fields or the wind roughness model that are used in the surface roughness correction,
ancillary sea surface temperature (SST) fields, and ancillary sea-ice products that are used
in sea-ice contamination correction, all of which are used in the SSS retrievals. Adding
to these challenges, temporally-varying SSS drift-like behavior exists in the SMOS data,
which, at least partially, accounts for the inability of SMOS to characterize the annual cycle
of SSS in the subpolar North Atlantic Ocean [4]. Because SMAP data suffer from fewer
problems than SMOS data in the northern high latitudes and a previous study has achieved
an improved surface salinity product based on SMOS data [5], we demonstrate the utility
of our algorithmic approach using SMAP data.

One difficulty with assimilating SSS into ocean models is the mismatch between the
depth levels that L-band satellites observe (top centimeter of the ocean) and the resolution
of the top ocean model layer (typically at least one meter). This mismatch can be seen
in the in-situ salinity data collected during multiple observational campaigns (e.g., [6]),
including two NASA-sponsored Salinity Processes in the Upper-ocean Regional Study
(SPURS) campaigns [7,8]: SPURS-1 in the subtropical North Atlantic Ocean and SPURS-2
in the eastern equatorial Pacific Ocean, with a planned third campaign in the Arctic Ocean.
We examine whether differences can be reconciled between the “skin” (satellite-derived
from the top centimeter) salinity and “bulk” (in-situ at 1–5 m) salinity at high latitudes
using an algorithmic approach. If there is a difference in salinity between the top-centimeter
and top-meter, or so, of the ocean due to evaporation, precipitation, runoff, ice melt, or
freezing/brine rejection effects, then a correction is needed in order to assimilate the satellite
SSS observations. Under evaporation, a theory [9] argues for the existence of a salty, cool,
sea surface skin layer; however, this theory was revisited after the creation of an air-sea
exchange data set [10]. The latter study found that the cooler and saltier skin layer is always
statically unstable, and that cooling controls the tendency to overturn, after which it takes
90 times longer to reestablish the skin salinity than the skin temperature. The skin-effect
from this theory depends on several air-sea forcing/flux fields, and SSS retrievals depend
on some of the same fields using ancillary data. The availability of in-situ and air-sea
forcing/flux data sets is, therefore, crucial to the conversion of skin salinity to bulk salinity
for use in ocean data assimilation models. The in-situ data are available from several
campaigns at high latitudes (Section 2.2), but remain sparse.

Cold-induced biases in satellite-derived skin SSS observations, however, present a
problem at high latitudes for data-assimilating ocean models. Due to the strong dependency
of density on salinity in the polar regions, SSS can have a significantly higher impact than
SST on constraining the modeled circulation of the Arctic Ocean, notably the waters that
overlie the warm, salty Atlantic water mass transiting the Norwegian Sea into the Arctic
Ocean. Placing upstream constraints on this Atlantic water can significantly impact on the
heat imported to the base of the mixed layer along the shelf-basin slopes in the Eastern
Arctic, which subsequently impacts the mixed-layer salinity and sea-ice melting in this
region [11,12]. Subsequent sea-ice melt, in turn, can influence the Arctic Ocean’s salinity [13],
which, when exported to the subpolar North Atlantic Ocean, can have consequences for
the Atlantic Meridional Overturning Circulation (AMOC) [14–17]. Several theories have
been developed to explain the complicated relationships between the sea-ice state, the
ocean’s salinity, and the circulation in the Arctic context [18–23]. Thus, if SSS can be better
constrained in ocean models, then there is the potential to unravel and understand the
relationships between sea ice and ocean properties in the Arctic Ocean.

In this study, our primary objectives are to: (1) assess associated biases in a SMAP-
derived SSS product relative to in-situ observations in the top-5 m, (2) characterize the
statistics of SMAP-derived SSS observations, and (3) assess whether an algorithm to correct
for biases and convert the SMAP-derived (skin) salinities to near-surface (bulk) salinities
improves their agreement with in-situ observations, thereby permitting ocean data assimi-
lation systems to exploit northern high-latitude SMAP-derived skin SSS. Currently, SMOS
and SMAP observations can be adjusted to correlate with Argo float salinity observations in
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the top-5 m; but, because there are no Argo floats in the Arctic Ocean, we need an alternative
method to effectively correct for both satellite measurement biases, particularly in colder
waters, and skin-induced effects that are inconsistent with the model’s top-layer thickness.
(We refer to the resulting bulk surface salinity product as “corrected” hereafter.) To achieve
this objective, we first identify potential issues with Arctic SSS, characterizing the statistics
of SMAP SSS and how those data compare with in-situ observations for 2015 through 2019.
We then demonstrate the utility of our algorithm for the corrected bulk surface salinity by
comparing the root-mean-square error (RMSE) of the algorithm’s estimates, relative to the
in-situ observations, with the RMSE of the SMAP SSS product, relative to the same in-situ
observations. Finally, we characterize the statistics of the algorithm’s corrected bulk salinity
product derived from SMAP SSS data. The same exercises can be conducted using a SMOS
data product. In demonstrating that our algorithm improves the validity of SMAP data,
we note that the algorithm can easily be extended to SMOS data. We highlight differences
between the original SMAP product and the corrected bulk salinity product derived from
SMAP data.

2. Data and Methods
2.1. Satellite Data

Satellite passive microwave retrievals of ocean salinity exploit the L-Band (1.41 GHz),
with SMOS employing a synthetic aperture interferometer and SMAP using a scanning
radiometer. Because of the different instrumentation, they have different strengths and
weaknesses. For example, SMOS retrievals are known to be challenged near land and
the ice-pack edge due to greater off-viewing-angle sea-ice contamination of the salinity
signal [24]. SMOS spatial resolution depends on incident angle, spanning from about
40 km near nadir to about 60 km near 55-degrees incident angle [25], whereas SMAP has
a fixed incident angle of 40 degrees, with spatial resolution around 40 km [26]. Higher
SSS accuracy can be achieved through spatial averaging. Global coverage from SMOS is
approximately 3 days, with suborbital repeats being 23 days and the exact repeat period
being 149 days [25]. Global coverage from SMAP is exactly 8-days, with nominal global
coverage also every 3 days [26]. The 3-day periods mostly have a single data value for each
data set so we choose to average over longer periods for each gridded file. Higher SSS
accuracy can be achieved through spatial averaging.

In processing the Level-2 SMAP SSS data [27], we perform the following steps. First,
we reduce latitude/longitude coordinates in numerical precision to a single digit after the
decimal place. This decreases the required computation time and is inconsequential because
a resolution of less than tens of kilometers in the horizontal with the raw Level-2 SSS data
are not possible without a downscaling technique. This reduced numerical precision allows
us to save memory and effectively bin the data. Next, the SMAP data were gridded at
50 km by 50 km resolution by averaging the values over 8 days (chosen because this is
the satellite’s repeat interval) and aggregating all of the data over 50 km by 50 km boxes.
Then, for each grid point, the 8-day averages of SMAP SSS had their trends and seasonal
cycles removed over their respective time periods, by using a Generalized Additive Model
(GAM—Section 2.4) to fit SSS with a smooth function of time. The residual time series at
each grid point had a variance and skewness computed. Lastly, we calculate two statistics
from SSS data to examine their spatial distributions relative to marginal ice zones. We
compute an anomalously large SSS value statistic at each point on the grid by counting
the number of times where the median SSS is exceeded by more than three times the SSS
standard deviation. We do not show the same for anomalously small SSS values because
the distribution of SSS values tend to be negatively skewed (i.e., the distribution’s tail is
longer towards smaller SSS values). We also compute mixing length scales according to an
established theory [28]. For these mixing length scales, we supplement SMAP data with
a gridded product for horizontal spatial gradients of SSS, which comes from the Level-3
daily Earth & Space Research SMOS data.
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We compare Level-2 SMAP data with in-situ data, described in the following subsec-
tion, from the top-5 m north of 55◦N. We do this by searching for data points from SMAP
that were within 50 km and 3.5 days of each in-situ observation’s horizontal location and
sampled time. These selected points, spatio-temporally local to the in-situ data, are used as
training data for the statistical model described below.

2.2. In-Situ Data

In-situ data provide evidence that skin-salinity values from satellites should be con-
verted into bulk-salinity values in multiple regions around the world. Observations from
the SPURS-2 campaign demonstrate that precipitation (or other freshwater flux) into the sea
surface have an influence on the skin salinity within the top half-meter of the water column,
finer than the vertical resolution of most ocean models. Whether this skin-to-bulk salinity
conversion is necessary at high latitudes is currently unknown. However, an additional
issue that may be more important at high-latitudes is the error associated with retrieval
algorithms for satellite-derived SSS due to low signal-to-noise ratios in cold brightness
temperature environments [5].

In order to determine whether the skin-effect and/or biases in satellite-derived high-
latitude SSS need to be corrected, we need to use in-situ data in the top-5 m of the water
column in subpolar and Arctic Ocean locations. We make use of multiple in-situ data sets,
including the salinity and pressure observations from Saildrone [29], Oceans Melting Green-
land (OMG) [30], ship-based CTD hydrographic transects, and NOAA’s National Centers
for Environmental Information (NCEI) Surface Underway Marine Database (SUMD; “Un-
derway” hereafter). The Saildrone sent to the Arctic in 2019 is a wind-powered, unmanned
surface water vehicle. The data the Saildrone collect are transmitted via satellite and are
available to both researchers and the public. The Underway data comprises uniformly,
quality-controlled in-situ sea-surface measurements from thermosalinographs, involving
more than 450 ships and unmanned surface vehicles. These data are so extensive that, even
when we include all data sets available over the length of the SMOS Arctic time series, the
number of data points in the Underway database are orders of magnitude larger than any
other data sets used here. The OMG data comprise both CTD and Airborne eXpendable
CTD (AXCTD) (CTD probes dropped from aircraft) data collected during the summer
months, 2015 to the present, with about 250 probes being dropped each year. Ninety-two
ship-based CTD hydrographic transect data sets are used here. The OMG and ship-based
CTD hydrographic transect data are subsampled such that we only use data within 5 m of
the sea surface.

2.3. OAFlux Air-Sea Forcing/Flux Data

We supplement the in-situ salinity data with air-sea forcing/flux fields from the OAFlux
product [31,32]. To get the wind stress, data from six Special Sensor Microwave/Imager
(SSM/I) sensors, two Special Sensor Microwave Imager/Sounder (SSMIS) sensors, Ad-
vanced Microwave Scanning Radiometer for EOS (AMSR-E), WindSat, QuikSCAT, and
Advanced Scatterometer (ASCAT-A) were used [33]. The footprint resolution various across
the SSM/I sensors is finer with higher frequencies (along × cross-track): 69 km × 43 km at
19 GHz, 50 km × 40 km at 22 GHz, 37 km × 28 km at 37 GHz, and 15 km × 13 km at 85 GHz.
One-hundred twenty-six buoy time series were used to calibrate different SSM/I sensors
due to known issues with drift. The footprint resolution of the conically scanning SSMIS
varies from 14 km × 13 km at 183 GHz to 70 km × 42 km at 19 GHz; for ASMR-E varies from
75 km × 43 km at 6.9 GHz to 6 km × 4 km at 89 GHz; and for WindSat is 40 km × 60 km
at 6.8 GHz, 25 km × 38 km at 10.7 GHz, 15 km × 13 km at 18.7 GHz, 12 km × 20 km at
23.8 GHz, and 8 km × 13 km at 37 GHz. The elliptical footprint size of the antenna for
QuikSCAT is about 24 km × 31 km at inner beam. For ASCAT, an operational product at
spatial resolutions of 25–34 or 50 km can be generated on a nodal grid of 12.5 or 25 km.
Rain-contaminated retrievals of wind from microwave sensors were discarded because
of known problems under rainy conditions. Surface winds from the European Centre for
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Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA) interim project [34] and the
Climate Forecast System Reanalysis (CFSR) from the National Centers for Environmental
Prediction (NCEP) [35] were used to as background data in the synthesis. Sensible and latent
heat fluxes were similarly derived using satellite observations (the advanced microwave
sounding unit A (AMSU-A) and the Special Sensor Microwave Imager) and reanalyses
where and when satellite observations were not available [36], except surface fluxes were
computed from the COARE bulk flux algorithm [37]. Evaporation is directly proportional
to the latent heat flux and scaled by the inverse product of the density of sea water and the
latent heat of vaporization. To get the surface humidity and temperature fields, brightness
temperature observations from four vertically polarized channels at 19, 22, and 37 GHz from
SSM/I and SSMIS and 52 GHz from AMSU-A were used and related to buoy observations
of surface humidity and temperature at 2–3 m above the sea surface [38,39]. The surface hu-
midity and temperature fields were height-adjusted to 2 m using the COARE algorithm [37].
Sea surface temperatures, derived from the global operational NOAA product at 25 km
based on AMSR-E and the advanced very high resolution radiometer (AVHRR) [40], were
used as constraints for the synthesis of surface humidity and temperature.

The theory of the least-variance linear statistical estimation [41,42] was the basis for
the methodology of the OAFlux objective synthesis, using all of the above data constraints.
This approach allows the formulation of a least squares estimator (i.e., the cost function) to
include both data from different sources and a priori information. For the optimization of
each of the turbulence flux fields, a conjugate-gradient method was used [31]. The 25 km
resolution of the OAFlux product was chosen as a compromise between being able to
satisfy the cost function and the data coverage.

2.4. Generalized Additive Model

We use a machine-learning-based approach to convert the satellite skin salinity ob-
servations to bulk near-surface salinity that match the salinities measured with in-situ
instruments while accounting for high-latitude retrieval biases. The significance of partic-
ular terms in the regression equation used will yield evidence of whether the skin-effect
and/or biases need to be corrected. Our algorithm of choice is a Generalized Additive
Model (GAM) [43]. This machine-learning-based approach, in particular, has a history
rooted in statistical regression techniques (e.g., [44]). Ultimately, predictions are made
by using predictors (described below) as inputs, just as other statistical regression-based
approaches would do. One primary difference between a general linear-regression tech-
nique and a GAM is that the latter aims to achieve a balance between the bias and variance
of its predictions through a regularization term. This regularization term prevents the
machine-learning method from over-fitting to a particular training data set, permitting the
approach to be applied to other data sets for prediction purposes. To guarantee that the
machine-learning model does not over-fit to the training data, a cross-validation is applied
by excluding some of the observations from the training data set, predicting those data,
verifying that those predictions are accurate, and then repeating this procedure for different
subsets of the training data set.

Instead of estimating the bulk surface salinity, we use a GAM to estimate the bulk
surface salinity bias plus skin effect in the satellite-derived SSS data,

∆SSSbulk = f0 + f1(t) + f2(∆SSS) + f3(SSSskin) (1)

+h(SSSskin, SST, λ, winv, Qsens, Qlat, E, qhum, ∆SSS),

where Table 1 describes what each term means.
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Table 1. Descriptions of each term in Equation (1).

Term Description

fi(·) Smoother functions for i = 0 . . . 3

h(·) Tensor product of pairwise variables

SSSskin Satellite-derived SSS from Dsat

t Julian day relative to January 1 of 1970

z Depth of the in-situ observations

λ
= 6(1 + (16(Qsens + Qlat(1 + Sβcp/(αLe)
+0.99 × 5.67 × 10−8(SST + 273.16)4)gαρcpν3w4

inv/k2)3/4)1/3

an empirical coefficient as in [10]

Qsens Sensible heat flux from OAFlux [31]

Qlat Latent heat flux from OAFlux [31]

SSTbulk Sea-surface temperature in Celsius from OAFlux [31]

Le Latent heat of evaporation calculated using TEOS-10 [45]

α Thermal expansion coefficient calculated using TEOS-10 [45]

β Haline contraction coefficient calculated using TEOS-10 [45]

cp Specific heat of seawater calculated using TEOS-10 [45]

ν = 1.4 × 10−6 is the kinematic viscosity of seawater

p Pressure

k
= 0.5715(1 + 0.003SSTbulk−
1.025 × 10−5SST2

bulk + 6.53 × 10−4 p + 0.00029SSSbulk)
thermal conductivity of seawater [46] (in W m−1 K−1)

g = 9.806 m s−2 is the acceleration due to gravity

τ wind stress from OAFlux [32]

ρ in-situ density calculated using TEOS-10 [45]

winv = (τ/ρ)−1/2 is a function of the inverse wind stress

E Evaporation from OAFlux [31]

qhum Near-surface humidity from OAFlux [31]

∆SSS
= fcSSSskinλEwinv
bias correction, with proportionality constant fc [10];
fc is determined with the GAM

The Julian day, t, is the most important term to include for the satellite-derived SSS
data because it aligns satellite observations with when the in-situ observations were taken.
∆SSS is important to include in the GAM because it at least partially corrects for the skin
effect seen in the satellite data; the remaining terms correct for biases. The correlation
between ∆SSS from the co-located SMAP-derived SSS and the in-situ salinity observations
in the top-5 m is 0.37, which is significant to the 95% level. However, the skin-effect
correction associated with including ∆SSS in our algorithm reduces the RMSE by less
than 10%. The majority of the decrease in RMSE between our algorithmically-calculated
bulk salinities and the in-situ observations in the top-5 m can be explained by the other
GAM terms, which are associated with bias-correction. The equivalent correlation for the
co-located Barcelona Expert Center SMOS-derived SSS [47,48] is higher (0.46), suggesting
that the GAM will be different for different data products.
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We derive the corrected bulk surface salinities with the following order of operations.
At each location and time, we predict the bulk surface salinity biases, ∆SSSbulk(x, y, t). We
then average these biases over the entire time satellite data period to get ∆SSSbulk(x, y) =
∆SSSbulk(x, y, t). We then add this temporally-averaged bias correction term to the satellite-
derived SSS to get SSSbulk(x, y, t) = SSSsat(x, y, t) + ∆SSSbulk(x, y). The order of these
operations is important because t explains some variability that isn’t simply related to the
seasonal cycle and/or trend. The RMSE between the BEC SMOS SSSskin and the in-situ
data in the top-5 m is larger than that between the SMAP SSSskin and the in-situ data in the
top-5 m.

An important, but subtle, detail is that both winv and λ depend upon SSSbulk and we
will not know SSSbulk everywhere when using the GAM for prediction. If we assume that
we know SSSbulk to calculate winv and λ, then our GAM can explain 100% of the deviance
(with a RMSE of about 0.04%), but SSSbulk is what we aim to predict. If we assume that
we know SSSbulk, then we would only be able to calculate SSSbulk at the points where
we have in-situ data, so we use SSSskin to calculate winv and λ employing TEOS-10. We
then estimate the values of SSSbulk with the GAM. We could then iterate by recalculating
winv and λ using the predicted values of SSSbulk and subsequently estimate new values
for SSSbulk, reducing the RMSE with respect to in-situ data, but the time variability of the
resulting SSSbulk is not realistic. Thus, we use a single iteration. It is important to include a
minimal number of tensor product terms in g(·) because the data close to the coast have
large biases, due to land contamination, making the GAM over-fit to the data, resulting in
large bias estimates in most locations outside of the training data.

While ocean state estimate outputs suggest that the difference between sea-surface
height and ocean-bottom pressure anomalies could be a good proxy for SSS in many
locations within the Arctic [49], operational use of coinciding Level-2 sea-surface height
and ocean-bottom pressure data with Level-2 SSS data would be limited. Further, sea-
surface heights and ocean-bottom pressures decrease the RMSE of the GAM by less than
0.1%; thus, we use the GAM specified in Equation (1).

3. Results

We first assess the biases in the satellite-derived SSS products relative to in-situ ob-
servations in the top-5 m. Next, we characterize the statistics (mean, standard deviation,
seasonal cycle magnitude, skewness, horizontal gradient trends, large anomaly counts,
and mixing lengths) of high-latitude satellite-derived SSS observations. Then we use our
algorithm to convert the SMAP-derived (skin) salinities to near-surface (bulk) salinities
that can be used for data assimilation and characterize the statistics of the skin-effect and
bias-corrected surface salinities. We lastly co-locate in-situ observations and the skin-effect
and bias-corrected surface salinities to examine whether our algorithm improves the fidelity
of the satellite-derived SSS.

3.1. Satellite SSS and In-Situ Salinity Comparisons

We sample the satellite-derived SSS within 50 km and 3.5 days of all publicly available
in-situ observations [50] of the top-5 m north of 55◦N. The number of match-up observa-
tions for SMAP data is fewer than that for SMOS; so, for the SMAP observations, there are
less data for training the GAM. For example, there are no Marine Mammals Exploring the
Oceans Pole to Pole (MEOP) Conductivity, Temperature, and Depth (CTD) [51,52] observa-
tions in the top-5 m within 50 km and 3.5 days of SMAP data (Figure 1). There are very
few ship-based CTD hydrography and OMG observations that can be compared with the
SMAP data. The number of co-located SMAP-derived SSS data points with in-situ salinity
observations in the top-5 m are: 2929 observations with ship-based CTD hydrography,
1,710,428 observations with Saildrone, 8,640,999 observations with Underway, and 3219
observations with OMG. For the available ship-based CTD hydrography and Saildrone
match-ups with the SMAP data, their disagreement is smaller than in the comparison
between OMG and SMAP data. As shown in Figure 1, the Underway data comparisons
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with SMAP data have at least two distinct clusters of salinities, one around 32 pss in the
North Pacific Ocean and the other around 35 pss in the North Atlantic Ocean. There may
be a third cluster of points in the North Sea at salinities between 26–28 pss in the Underway
data but much saltier in the SMAP data.

a) SMAP SSS
vs OMG salinity

b) SMAP SSS
vs ShipCTDs salinity

c) SMAP SSS
vs Underway salinity

d) SMAP SSS
vs Saildrone salinity

26

28

30

32

34

36

38

in
 s

itu
 [p

ss
]

26

28

30

32

34

36

38
in

 s
itu

 [p
ss

]

26

28

30

32

34

36

38

in
 s

itu
 [p

ss
]

26

28

30

32

34

36

38

in
 s

itu
 [p

ss
]

26 28 30 32 34 36 38

satellite [pss]
26 28 30 32 34 36 38

satellite [pss]

26 28 30 32 34 36 38

satellite [pss]
26 28 30 32 34 36 38

satellite [pss]

0o 90oE 180oE90oW180oW

0o 90oE 180oE90oW180oW

0o 90oE 180oE90oW180oW

0o 90oE 180oE90oW180oW

Figure 1. SMAP Level-2 skin SSS for April 2015 to December 2020 (abscissa) sampled within
50 km and 3.5 days of all in-situ observations in the top-5 m versus the bulk SSS from
in-situ observations in the top-5 m (ordinate) from the Oceans Melting Greenland (OMG—
panel a), ship-based CTD hydrography (panel b), Underway (panel c), and Saildrone
(panel d) campaigns. The darker the shade of blue, the greater the number of points in
the scatterplots; outliers are shown with single black dots. Additionally shown next to
each scatterplot are the locations where the comparisons between the SMAP SSS product
and the in-situ observations are made (pink dots, regions circled); the dashed black line
indicates where 55◦N is.

We next compare the SMAP data with the aggregated data from all in-situ data
campaigns and inspect whether there is any depth-structure to the biases. The Underway
data comparisons are very representative of the scatter between the satellite and in-situ
data sets (Figure 2a) because they comprise most of the in-situ data. While the differences
between the SMAP-derived SSS relative to the in-situ data have many more outliers in the
top two meters, there is no statistically distinguishable depth-structure to the differences
between the data sets (Figure 2b). The SMAP product has an overall 4.63% (1.54 pss) RMSE
relative to the aggregate in-situ data, which is fairly consistent with a similar comparison
with in-situ data north of 65◦N tabulated in a previous study [53]. This value is relatively
small compared to an overall 6.88% (2.29 pss) RMSE between SMOS, different from the
product compared in the same previous study, and the aggregate in-situ data. Our values
contrast with the ones the previous study reported because of differences in our domains,
our versions of the SMAP and SMOS products, and our in-situ data.
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Figure 2. Comparison to in-situ salinity observations in the top-5 m (ordinate, panels a and
c): (abscissa, panel a) SMAP-derived SSS and (abscissa, panel c) corrected bulk surface
salinity field with a Generalized Additive Model—GAM, see Equation (1)) using Level-2
SMAP-derived SSS and OAFlux data. The darker the shade of blue, the greater the number
of points in the scatterplots; outliers are shown with single black dots. Additionally shown
are boxplots of the SSS minus in-situ observations (panel b) and corrected bulk surface
salinity minus in-situ observations (panel d), each as a function of binned depths in the
top-5 m. The first depth bin is for 0–1 m, the second depth bin is for 1–2 m, . . . , and the
deepest depth bin is for 4–5 m.

After applying our algorithm (Equation (1)) to the satellite and air-sea flux/forcing
data sampled at the in-situ data locations and times, we can directly compare the in-situ
data with the converted skin-to-bulk salinity data for each satellite data product separately.
When trained on 75% of the in-situ data and predicted on the remaining 25%, the RMSE of
the skin-to-bulk converted SMAP product relative to the in situ data are reduced to 2.43%
(0.81 pss), explaining 71.6% of the deviance. We tested our GAM by training it on 50% of
the in-situ data as well, with nearly identical results because the same portion of the phase
space with salinity and air-sea forcing/flux factors gets spanned with this training data. We
achieved this result by balancing the need to reduce the RMSE relative to random subsets
of the in-situ salinity data with the need to not over-fit the GAM. It is possible to achieve a
smaller RMSE using more combinations of predictors, but this increases the generalized
cross-validation score, suggesting that the algorithm is less capable of estimating bulk
surface salinities outside of the in-situ data set. In our final product, there is slightly more
variability as a function of depth for our skin-effect and bias-corrected bulk surface salinities
(Figure 2d) than for the SMAP-derived SSS (Figure 2b) in comparison with in-situ data over
the top-5 m. However, there is no statistically significant depth-structure to the remaining
bias in the skin-effect and bias-corrected bulk surface salinities (Figure 2d). As with the
comparison of the satellite observations to in-situ observations (Figure 2a), the converted
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bulk surface salinity comparisons with in-situ observations (Figure 2c) display the clusters
of salinities and generally lie along the one-to-one line. If we, instead, train a single GAM
using an indicator function on the skin salinity term for SMOS, versus SMAP data, the
RMSE is larger, but comparable (2.50% or 0.83 pss). Although not shown, applying the
same Figure 2 analysis to the SMOS converted bulk surface salinities produces generally
the same descriptions.

3.2. Temporal Statistics of Arctic SSS

Before comparing the in-situ near-surface (bulk) salinities with the satellite-derived
(skin) salinities, we present the temporal statistics of the satellite-derived SSS from the
SMAP product. When the BEC SMOS data are included, by eye the figures are identical.
The SSS is, on average, typically between 33–35 pss, but can be lower to the east of Svalbard
(Figure 3a). In regions with lower SSS, the SSS standard deviations (Figure 3b), after
detrending and removing the seasonal cycle (Figure 3d), can be as high as 4–5 pss. The
standard deviations of SSS tend to get smaller with distance from the perennial, sea-ice-
covered regions. The same is true for the SSS skewness (Figure 3c), except the skewness
values tend to be negative, indicating a long, relatively fresh SSS tail closer to sea ice and
far northern coasts. These large, negative skewnesses could be due to ice melt and/or run-
off, unless precipitation events affect SSS more at high northern latitudes than elsewhere.
However, these skewnesses are impacted by SSS biases because the skewness is a function
of the average SSS. Additionally, the SMAP SSS uncertainties in the Level-2 JPL product,
which are estimated errors in the retrievals, are largest in high-latitude regions (Figure 4a).
At high northern latitudes, these uncertainties reach 1.5 pss, with standard deviations
and seasonal cycle magnitudes at about 0.5 pss (Figure 4b,d). The SMAP SSS uncertainty
skewness is most negative in regions affected by ice melt (Figure 4c). While the SMAP SSS
uncertainties are smaller than their biases in many locations in the high-latitude oceans, it
is likely that the SMAP SSS uncertainties are too small to represent the true uncertainties in
high-latitude regions. Our algorithm quantifies the functional uncertainty associated with
our model specification, which are standard errors from the GAM, can then be added to
the SMAP SSS uncertainties.

Before presenting the bulk surface salinities after conversion and some bias correction,
we present an apparent relationship between SSS and sea-ice melting/refreezing to explain
the spatial patterns in SSS statistics (Figure 3). Greater temporal fluctuations in SSS near
sea ice (Figure 3b–d) can be explained by retreating sea ice leaving relatively fresh water
behind as well as by more frequent absence of sea-ice cover resulting from greater salinity
values, which have a colder freezing temperature. The seasonal cycle of SSS is largest near
the perennial sea-ice edges (Figure 3d), but that has been removed to calculate the standard
deviation and skewness. The trend in SSS is a mixture of increasing and decreasing salinity,
with no large-scale pattern trend that is significant to the 95% level (not shown). However,
anomalously large SSS, found by counting the number of 8-day averages where the average
SSS is exceeded by more than three times the SSS standard deviation (see Section 2.1), align
close with the marginal ice zones (Figure 5a). Further, although surface forcing dominates
eddy stirring, theoretical estimates [28] suggest that the regions with statistically significant
horizontal SSS gradients or anomalously high SSS values always occur where the mixing
lengths are small (Figure 5b). The fact that mixing lengths are smaller in marginal ice zones
is consistent with previously published theory [54]. These results suggest that the biases in
satellite-derived SSS in marginal ice zones are not random and may even provide valuable
constraints on ocean-sea ice data assimilation systems; this further motivates our skin effect
and bias-correction procedure.
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Figure 3. Statistics for SMAP Level-2 sea-surface salinity (SSS) product for the period April
2015 to December 2020: (a) SSS average, (b) SSS standard deviation, (c) SSS skewness, and
(d) SSS seasonal cycle amplitude. The standard deviation and skewness are computed after
the removal of the seasonal cycle and trend. The maps synthesize the SMAP data without
interpolation, but average all data over each nearest 50 km by 50 km grid point and over
each 8-day time period. Overlaid on top are geographical coordinates indicating where the
0◦ and 180◦ meridians, as well as the 55◦N and 80◦N latitudes are.
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Figure 4. Statistics for SMAP Level-2 sea-surface salinity (SSS) product uncertainty for
the period April 2015 to December 2020: (a) SSS uncertainty average, (b) SSS uncertainty
standard deviation, (c) SSS uncertainty skewness, and (d) SSS uncertainty seasonal cycle
amplitude. The standard deviation and skewness are computed after the removal of the
seasonal cycle and trend. The maps synthesize the SMAP data without interpolation,
but averages all data over each nearest 50 km by 50 km grid point and over each 8-day
time period.
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(b) Mixing lengthsa) Number of anomalously high SSS events
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Figure 5. High-latitude satellite sea-surface salinity (SSS) anomalies and trends shown in
heat-map colors: (a) anomalously high SMAP Level-2 SSS product sea-surface salinity (SSS)
for the period April 2015 to December 2020, computed by counting the number of 8-day
averages where the average SSS is exceeded by more than three times the SSS standard
deviation; and (b) the mixing length scales calculated as the ratio of the temporal standard
deviations from Level-2 SMAP SSS data (April 2015 to December 2020) to the horizontal
spatial gradients of SSS from the Level-3 daily Earth & Space Research SMOS product
(January 2011 to December 2020). The cyan (green) contours in each panel indicate the
minimum (maximum) sea ice extent over all winters between 2015–2019. Overlaid on top
are geographical coordinates indicating where the 0◦ and 180◦ meridians, as well as the
55◦N and 80◦N latitudes are.

In Figure 6, we repeat the temporal statistic calculations (Figure 3) using the SMAP
data that has been corrected with our algorithmic approach for the skin effect and biases.
Figure 6a–d are fairly similar maps to those in Figure 3a–d, but there are some important
differences. The average corrected bulk surface salinity values are fresher in the North
Pacific, Bering Sea, Chukchi Sea, Davis Strait, Hudson Bay, and coastal Greenland regions
and saltier in the subpolar North Atlantic Ocean, Norwegian Sea, and Barents Sea regions
(Figures 3a and 6a). The fresher corrected bulk surface salinity values near the Greenland
coasts are in better agreement with the in-situ data from the OMG campaign than the
satellite-derived SSS values. The corrected bulk surface salinity standard deviations and
skewnesses have large magnitudes only for narrow bands near the perennial sea ice and the
coasts (Figure 6b,c), as opposed to a larger area over the marginal ice zones (Figure 3b,c).
Relative to the satellite-derived SSS seasonal cycle amplitudes (Figure 3d), there are large
corrected surface salinity seasonal cycle amplitudes for a greater proportion of the marginal
ice zones on the Siberian Shelf (Figure 6d). The algorithm we apply to calculate the corrected
bulk surface salinities improves their agreement with in-situ data, but we need additional
tests to determine whether the corrected bulk surface salinities are more realistic than the
satellite-derived SSS.
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Figure 6. Statistics for SMAP Level-2 sea-surface salinity (SSS) product, corrected for the
skin effect and bias (April 2015 to December 2019 due to the time range of the available
OAFlux data): (a) SSS average, (b) SSS standard deviation, (c) SSS skewness, and (d) SSS
seasonal cycle amplitude. The standard deviation and skewness are computed after the
removal of the seasonal cycle and trend. The product synthesizes the products without
interpolation, but averages all data over each nearest 50 km by 50 km grid point and over
each 8-day time period, the same as for the statistics shown in Figure 3. Overlaid on top
are geographical coordinates indicating where the 0◦ and 180◦ meridians, as well as the
55◦N and 80◦N latitudes are.

One test of how realistic the corrected bulk surface salinities are is to repeat the in-
situ data comparisons shown in Figure 1. Because we only correct the time-mean bias at
each horizontal location, it is possible that the instantaneous disagreements between the
corrected bulk surface salinities and the near-surface in-situ data are about the same or
worse; however, the skin-effect and bias corrections do not degrade the accuracy of the
salinities relative to the in-situ data (Figure 7). The disagreements between the corrected
bulk surface salinity product from SMAP and each of these in-situ data sets are typically
less than 2 pss (<1 pss overall RMSE), with negligible bias overall, but disagreements
near the coasts, where there is freshening from ice sheet melt, can be much greater. For
example, there remains a 2 pss bias in the corrected bulk surface salinity product from
SMAP SSS data relative to the OMG data (not shown). These biases are well within the
uncertainties associated with the SMAP SSS product (∼1.5 pss; Figure 4a) plus with the
uncertainties associated with our algorithm (1–2 pss; not shown). After skin-effect and
bias-correction, the corrected bulk surface salinities show three distinct clusters of salinities
relative to the Underway data: (1) between 26–27 pss, (2) around 32 pss, and (3) around
35 pss. Overall, the corrected bulk surface salinities are improved relative to the Saildrone
and Underway in-situ data sets, which comprise the shallowest data relative to any other
data sets, but near-coastal satellite data points, where there is potential land contamination,
should be removed.
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Figure 7. Comparison of in-situ and Level-2 SMAP SSS observations (sampled within 50 km
and 3.5 days of in-situ bulk surface salinity observations) for the period of April 2015 to
December 2019 (abscissa = SMAP, ordinate = in-situ): Level-2 SMAP (panels a,c) and
skin-effect and bias-corrected Level-2 SMAP (panels b,d) data; Saildrone (panels a,b) and
Underway (panels c,d). The darker the shade of blue, the greater the number of points in
the scatterplots; outliers are shown with single black dots.

4. Discussion

One motivation for developing our algorithm is to convert skin salinities to bulk
salinities to allow for data assimilation of satellite-derived salinity data in regions without
Argo data, but the more important alteration of the satellite-derived SSS for assimilation
purposes is its inaccuracy at high-latitudes. Our algorithm includes terms for multiple
air-sea forcing/flux fields, including the wind stress, bulk SST, and the implicit exclusion
of regions covered by sea-ice, by making use of the OAFlux product. One interpretation of
our results is that these fields provide corrections to the equivalent ancillary fields used in
SMAP-derived SSS retrievals. However, an alternative interpretation of our results is that
the relevant terms in the Yu (2010) [10] theory and/or additional terms in our algorithm,
together, are proxies for inaccuracies in the SMAP-derived SSS retrievals. Each of these
interpretations are supported by the facts that: (1) relative to available in situ data, our
algorithm reduces the RMSE of the corrected SMAP salinities, and (2) in order to minimize
the RMSE, compared with other possible GAM term combinations, our algorithm requires
the same terms for both SMAP and SMOS data.

Where they overlap, the spatial distributions of high-latitude surface salinity statistics
from our algorithm are consistent with those presented in other observational product
comparison studies [4,53,55–57]. Each of these products are within the ∼2.0–3.5 pss uncer-
tainties we find in high-latitude regions, after skin-effect and bias-correction. The spatial
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patterns are also consistent with previously presented products of surface salinity. Like
our product, other Aquarius-based products, SMOS-based products, and the World Ocean
Atlas suggest there is more fresh surface water near the Pacific and saltier surface water
near the Atlantic [53,56]. Additionally, like our product, these other products suggests
there are larger seasonal cycles in surface salinity closer to the Pacific than to the Atlantic.
In subpolar regions, the seasonal cycle magnitudes of SSS are small (<1 pss), as shown
in previous studies [4,57], especially in comparison with the seasonal cycles both other
observational products and our algorithmically-derived product suggest near the Arctic
Eurasian and Canadian coasts. The primary differences we find with our algorithmically-
derived product in the spatial distribution of the surface salinity statistics are in the relative
magnitudes of the standard deviations versus seasonal cycles in these Arctic coastal regions.
This is conceivably a result of the temporal resolution of the OAFlux product. However, in
these coastal regions and in other locations in the marginal ice zone, a seasonal cycle cannot
be accurately estimated due to the seasonal aliasing of the satellite-derived SSS so estimates
of the seasonal cycle magnitudes and higher-order statistics that rely on extraction of the
seasonal cycle (e.g., standard deviations) are not reliable in these places.

5. Conclusions

This study presented a method to convert satellite skin salinity observations to bulk
salinity for assimilation into modeling systems. The temporal statistics in a satellite-derived
data set of SSS reveal likely influence from sea-ice melt in marginal ice zones. Trends
were not detectable over the 5-year period of the data record. Data collected from the
SPURS-1 campaign (not shown here) suggested that there could be non-constant structure
to salinity profiles, even within the upper-50 centimeters of the water column. Point-by-
point comparisons of the satellite SSS with several different sources of in-situ observations
in the top-5 m for northern high-latitude regions demonstrated that different geographic
regions have different clusters of salinity values and that the satellite-derived data do not
agree well enough with the in-situ data for data assimilation purposes. The disagreements
between the satellite and in-situ data exceed 1.5 pss, which can be greater than the temporal
variability in the satellite data. We presented an algorithm, based on machine learning and
trained on the in-situ salinity data and air-sea flux/forcing data, to convert skin-salinities
to bulk-salinities. This algorithm for corrected bulk surface salinities cut the disagreement
with the in-situ data down by at least half from the comparison between the satellite and
in-situ data. The algorithm can reduce the disagreement to a level of less than 1 pss and
can produce uncertainties that are simply propagated along with the Level-2 product
uncertainties.

The algorithm to convert skin salinities to bulk salinities and correct for biases can be
improved and used in multiple applications. First, we can repeat the application of our
algorithm with an improved SMAP product after the removal of sea-ice contamination [58]
as well as using a SMOS product. We also expect the upcoming SPURS-3 (Salinity and
Stratification at the Sea Ice Edge or SASSIE) campaign to enhance the accuracy of our
algorithm by making available a greater amount of variance data in the near-surface
salinity field. Future air-sea forcing/flux data potentially will be provided in the future
by using an observing system called FluxSat that could reduce air-sea flux observational
errors by 50% [59]. Our algorithm can be applied to different depth ranges for the in-situ
data, as well as in the Antarctic region, depending upon the resolution and domain of
the modeling system assimilating the corrected bulk salinities. Both OAFlux and in-situ
data would be required for these domains as well, with no additional requirements. The
assimilation of bulk salinities can potentially constrain the salinity field at high latitudes,
allowing models to evaluate the sensitivities of the surface salinity field to other model
processes and parameters. A more realistic surface salinity field in the Arctic could enable
better simulation/representation of sea-ice formation/melt, allowing coupled ocean-sea
ice-atmosphere models to improve their representation of heat and moisture fluxes. Our
algorithm and potential refinements allow for the possibility of these studies and more.



Remote Sens. 2022, 14, 1418 16 of 19

Future observing system evaluation (OSE) studies need to demonstrate improvements in
representing upper-ocean hydrography and sea-ice properties to conclude that corrected
bulk salinity data have value for assimilation purposes.
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